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A B S T R A C T   

Background: COVID-19 is an infectious disease that has killed more than 555,000 people in the US. During a time 
of social distancing measures and increasing social isolation, green spaces may be a crucial factor to maintain a 
physically and socially active lifestyle while not increasing risk of infection. 
Objectives: We evaluated whether greenness was related to COVID-19 incidence and mortality in the US. 
Methods: We downloaded data on COVID-19 cases and deaths for each US county up through June 7, 2020, from 
Johns Hopkins University, Center for Systems Science and Engineering Coronavirus Resource Center. We used 
April–May 2020 Normalized Difference Vegetation Index (NDVI) data, to represent the greenness exposure 
during the initial COVID-19 outbreak in the US. We fitted negative binomial mixed models to evaluate associ-
ations of NDVI with COVID-19 incidence and mortality, adjusting for potential confounders such as county-level 
demographics, epidemic stage, and other environmental factors. We evaluated whether the associations were 
modified by population density, proportion of Black residents, median home value, and issuance of stay-at-home 
orders. 
Results: An increase of 0.1 in NDVI was associated with a 6% (95% Confidence Interval: 3%, 10%) decrease in 
COVID-19 incidence rate after adjustment for potential confounders. Associations with COVID-19 incidence were 
stronger in counties with high population density and in counties with stay-at-home orders. Greenness was not 
associated with COVID-19 mortality in all counties; however, it was protective in counties with higher popu-
lation density. 
Discussion: Exposures to NDVI were associated with reduced county-level incidence of COVID-19 in the US as well 
as reduced county-level COVID-19 mortality rates in densely populated counties.   

1. Introduction 

The global spread of Severe Acute Respiratory Syndrome Coronavi-
rus 2 (SARS-CoV-2), the virus responsible for COVID-19, has caused a 
worldwide public health emergency (Sohrabi et al., 2020; WHO, 2020a). 
The outbreak was declared pandemic by the World Health Organization 
(WHO) on March 11, 2020 (WHO, 2020b), and as of November 16, 
2020, 54.5 million cases of COVID-19 had been documented worldwide, 
and more than 1.3 million deaths had been recorded (Johns Hopkins 

Coronavirus Resource Center, 2020). Until the end of 2020, there were 
few effective therapies and no effective vaccines, therefore public health 
measures at the population level (e.g., social distancing measures, 
stay-at-home orders, public education initiatives (Prem et al., 2020; 
Tammes, 2020)) were the primary approach for reducing transmission. 

The coronavirus pandemic presents an unprecedented situation for 
the globe; however, this is not the first time the world has confronted a 
large-scale infectious disease threat. Historical approaches to combat 
infectious disease outbreaks provide crucial lessons that we can still 
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apply today. One of those approaches is the use of urban parks as a 
resilience measure. Frederick Law Olmsted, who designed New York’s 
Central Park, Boston’s Emerald Necklace, and many other major urban 
parks, championed the concept of “parks as lungs” and he espoused “two 
great natural agents of disinfection: sunshine, and fall foliage”(Bever-
idge and Hoffman, 1997). 

The spread of infectious diseases, like COVID-19, is dependent on the 
duration of infectiousness, transmissibility, and the contact rate (Hee-
derik et al., 2020; Delamater et al., 2019). These three factors generally 
summarize the basic reproduction number (R0). R0 is affected by 
numerous biological, socio-behavioral and environmental factors that 
influence pathogen transmission (Delamater et al., 2019). Several 
studies reported that air pollution, wind speed, humidity and tempera-
ture might impact the spread of infectious diseases (Coccia, 2020a, 
2020b; Moriyama et al., 2020; Martelletti and Martelletti, 2020; Dowell 
and Shang Ho, 2004). Green spaces may influence the contact rate and 
in turn the reproduction number, as they provide a setting to obtain 
much needed physical activity and a place for social interactions while 
maintaining the recommended safe distance (three or six feet). Because 
these activities take place outdoors, wind dilutes the amount of virus in 
the air substantially (Qian et al., 2020), which greatly decreases trans-
mission risk. In addition, theory (Ulrich, 1984; Kaplan and Kaplan, 
1989) and empirical evidence (Banay et al., 2019; Bezold et al., 2018) 
suggests that living near green spaces allows us to restore our attention 
and decrease stress, leading to lower incidence of depression, anxiety, 
and other negative psychological factors. During a time of social 
distancing measures and increasing social isolation, urban green spaces 
may be a crucial factor to maintain a physically and socially active 
lifestyle while not increasing risk of infection. 

Our goal was to evaluate whether greenness was related to COVID-19 
incidence and mortality in the US. To quantify the relationship between 
greenness and COVID-19 incidence and mortality, we compiled county 
level data on both greenness and COVID-19 outcomes. Furthermore, 
based on evidence that there are large disparities in incidence and 
mortality rates, we evaluated whether the relationship between green-
ness and incidence/mortality differed according to county-level popu-
lation density, percentage of black residents, median home value and 
issuance of stay-at-home orders. 

2. Data and methods 

Data used in this study are publicly available and links to each of the 
data sources can be found in Table S1. 

2.1. COVID-19 data 

The Johns Hopkins University Center for Systems Science and En-
gineering Coronavirus Resource Center provides daily updates about 
COVID-19 death counts and cases for each country (Dong et al., 2020). 
For the US, county level data is provided by the US Centers for Disease 
Control and Prevention (CDC) and State governments. Publicly available 
daily county-level COVID-19 case counts were available starting March 
22, 2020. The number of COVID-19 cases is the sum of the number of 
deaths and active cases. As of April 14, 2020, CDC case counts and death 
counts included both confirmed and probable cases and deaths in 
accordance with CDC guidelines (CDC, 2020). 

We downloaded data on the cumulative number of COVID-19 cases 
and deaths for each county through June 7, 2020, to correspond roughly 
with the end of the first wave of COVID-19 infections in the US. County- 
level COVID-19 mortality/incidence rates were defined as the ratio of 
COVID-19 deaths/cases to county level population size (Wu et al., 
2020). 

2.2. Variables 

For each county, the Normalized Difference Vegetation Index (NDVI) 

was estimated using satellite imagery. The NDVI is calculated as the 
ratio between the red and near infrared values, and ranges from − 1 to 1 
(NASA, 2020). Values close to 1 correspond to areas with complete 
coverage by live green vegetation, values close to zero correspond to 
areas without much live vegetation (e.g., rocks, sand) and negative 
values correspond to water. We used Landsat 8 (Collection 1 Tier 1 
Operational Land Imager DN values, representing scaled, calibrated at 
sensor radiance (USGS, 2020)) images for the entire US from April 1, 
2020 up to May 31, 2020, to represent the exposure during the initial 
COVID-19 outbreak in the US. Landsat 8 images are generated every 16 
days at 30m resolution. Using Google Earth Engine (Gorelick et al., 
2017), cloud-free Landsat composites were created for the US. We 
calculated the spatially weighted mean April–May NDVI for each county 
in the US, after setting negative NDVI values to zero. In sensitivity an-
alyses, we also used Landsat 8 images from June 1, 2019 up to August 
31, 2019, to calculate the spatially weighted mean summer NDVI for 
each county. County shapefiles were based on the US Census Bureau 
Tiger dataset of 2018 (US Census Bureau, 2020). 

To adjust for potential confounding bias, we obtained data on several 
variables that might be linked to green space and COVID-19 incidence 
and mortality. We collected eleven county level Census variables from 
the 2000 Census (Census.gov, 2020) and the 2010 5-year American 
Community Survey (American Community Survey, 2020): proportion of 
residents older than 65, proportion of residents aged 15–44, proportion 
of residents aged 45–64, proportion of Hispanic residents, proportion of 
Black residents, median household income, median home value, pro-
portion of residents in poverty, proportion of residents with a high 
school diploma, population density, and proportion of residents that 
own their house. From the Behavioral Risk Factor Surveillance System 
(BRFSS) (County Health Rankings and Roadmaps) we obtained the 
proportion of individuals that were obese and the proportion of current 
smokers in 2011, the most recent year available. 

We used days since first COVID-19 case reported in a county as a 
proxy for stage of the COVID-19 outbreak. Further, we linked days since 
issuance of stay-at-home order (state-level), days since closure of non- 
essential businesses (state-level), and days since nursing home visitor 
ban (state-level) from the COVID-19 US State Policy Database (Raifman 
et al., 2020) to our data. Since the availability of adequate hospital re-
sources might influence COVID-19 outcomes, we collected county-level 
information on the number of hospital beds available in 2019 from the 
Homeland Infrastructure Foundation-Level Data (HIFLD Open Data, 
2020). In addition, we used state level information on number of 
COVID-19 tests performed up to June 7, 2020 from the COVID tracking 
project (The COVID Tracking Project, 2020). 

Based on previous studies implicating relations between exposure to 
particulate matter less than 2.5 μm (PM2.5), temperature and/or relative 
humidity and COVID-19 incidence and mortality (Wu et al., 2020; 
Raines et al., 2020), we also adjusted our analyses for these factors. 
Temperature and relative humidity data were available from the Grid-
ded Surface Meteorological dataset (Abatzoglou, 2013), and we created 
long-term (2000–2016) summer (June–August) and winter (Decem-
ber–February) averages for each county. PM2.5 concentration estimates 
for 2000–2016 were derived from an established publicly available 
exposure prediction model (Van Donkelaar et al., 2019). 

2.3. Data analysis 

We used negative binomial mixed models to evaluate associations of 
NDVI with COVID-19 incidence and mortality. We report mortality rate 
ratios (MRR) and incidence rate ratios (IRR), i.e., exponentiated effect 
estimates from the negative binomial mixed model, and 95% CI per 0.1 
unit NDVI increase. To evaluate effects of potential confounders, we 
specified a series of models with increasing covariate adjustment. In 
model 1 we only included a population size offset and a random inter-
cept by state. In model 2 we additionally adjusted for degree of urban-
ization. In model 3 we added all county-level SES covariates and BRFSS 
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covariates. In model 4 we added date since first COVID-19 case reported, 
date since issuance of stay-at-home order for each state, number of 
hospital beds per unit population. In model 5 we additionally included 
temperature, relative humidity and PM2.5 (main model for COVID-19 

mortality). The number of tests per unit population was added to 
model 6 (main model for COVID-19 incidence). We used a general ad-
ditive mixed model with penalized cubic regression splines (with 2 de-
grees of freedom as the upper limit) to evaluate whether the association 

Fig. 1. Maps of the US that show (A) the county-level number of COVID-19 cases per 1 million population in the United States up to and including June 7, 2020, (B) 
the county-level number of COVID-19 deaths per 1 million population in the United States up to and including June 7, 2020, and (C) county-level average NDVI 
(April–May 2020). 
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of NDVI with COVID-19 mortality and incidence was linear in the full 
cohort, in rural counties, and in urban counties. We carried out all an-
alyses in R statistical software and performed model fitting using the 
lme4 package (Bates et al., 2015) or the gamm4 package (for spline 
analyses, Wood et al., 2017). 

We evaluated whether associations of NDVI with COVID-19 deaths 
and cases were modified by population density, proportion of black 
residents, median home value, and issuance of stay-at-home orders by 
adding an interaction term to the model. We used quintiles (Q1:0–19%, 
Q2:20–39%, Q3:40–59%, Q4:60–79%, Q5:80–100%) of population 
density, proportion of black residents and median home value to divide 
the cohort into five equal groups. Significance of interaction terms were 
tested by Chi-square tests between the models with and without the 
interaction terms. We hypothesized that associations of NDVI with 
COVID-19 incidence and mortality were stronger in densely populated 
counties, in counties with issuance of stay-at-home orders, in counties 
with higher proportions of black residents, and in counties with lower 
median home values. 

We conducted several sensitivity analyses to assess the robustness of 
the associations. We evaluated associations of summer NDVI in the full 
population, and in urban and rural counties. We excluded 27 counties 
comprising the New York metropolitan area (n = 3062), as this area 
experienced the most severe COVID-19 outbreak. We also conducted 
analysis excluding counties with 10 or fewer confirmed COVID-19 cases. 
We additionally added days since closure of non-essential businesses and 
days since nursing home visitor ban to our models. To evaluate the 
impact of potential spatial residual confounding, we additionally added 
longitude and latitude of the centroid of each county to the models. In 
addition, we used county averages of NDVI with negative values 
excluded (instead of set to zero). 

To evaluate whether associations persisted through the second wave 
(June–August 2020) in the US, we performed sensitivity analyses with 
updated COVID-19 data. We downloaded data on the cumulative 
number of COVID-19 cases and deaths for each county through August 
31, 2020 and reran our main models. 

All results presented are based on COVID-19 data through June 7, 
unless otherwise stated. 

3. Results 

Our study cohort consisted of 3089 counties of which 2297 counties 
reported more than 10 cases. The highest COVID-19 death rates were in 
New York, Illinois, Michigan, Florida, Louisiana, and California (Fig. 1). 
COVID-19 incidence rates were more equally spread over the US. NDVI 
values were high along the West coast and in the South. The median 
COVID-19 death rate per 100,000 individuals was 2.8 and the median 
COVID-19 incidence rate per 100,000 individuals was 163.5 (Table 1). 
NDVI was moderately positively correlated with % Black, % current 
smokers, and PM2.5, and weakly negatively correlated with median 
household income (Figure S1). 

In main models (model 5 for mortality and model 6 for incidence) we 
found an IRR of 0.94 (95% CI: 0.90, 0.97) and a MRR of 0.99 (95% CI: 
0.94, 1.05) per 0.1 unit increase in NDVI. There was little impact of 
population density on estimates; however, estimates were attenuated in 
models that included county-level SES, BMI and smoking (Figure S2). 
Epidemic stage, timing of stay-at-home-orders, hospital beds per capita, 
long-term exposures to PM2.5, weather and COVID test rate did not 
appear to confound the association. Estimated IRR and MRR for all 
covariates included in the fully adjusted models can be found in 
Table S2. The overall exposure-response curve for COVID-19 incidence 
showed some small evidence of deviations from linearity, with a po-
tential threshold effect around an NDVI of 0.5 (Fig. 2). For urban 
counties, the curve for COVID-19 incidence was inverse and linear, 
while for rural counties increasing NDVI appeared beneficial at the 
lower end of the distribution only. Similar patterns, although slightly 
less pronounced, were observed for COVID-19 mortality. 

Associations of NDVI with COVID-19 incidence and mortality were 
positive in the least densely populated counties and negative in the most 
densely populated counties (Fig. 3). For COVID-19 incidence, but not for 
mortality, we found stronger associations for counties with higher me-
dian home values and issuance of stay-at-home orders. Associations of 
NDVI with COVID-19 incidence were similar across quintiles of the 
proportion Black residents, while we found a positive association with 
COVID-19 mortality in the lowest quintile. 

In sensitivity analyses, associations were robust to additional 
adjustment for potential spatial clustering, days since closures of non- 
essential businesses or days since a nursing home visitor ban, exclu-
sions of the NYC metro area, restriction to counties with at least 10 cases, 
or alternative procedure for calculating NDVI (Figure S3). In the full 
cohort, associations of summer NDVI with COVID-19 incidence and 
mortality were weakly negative, but not-significant (Table S3). For 
urban counties, we found an IRR of 0.96 (95% CI: 0.91, 1.01) and a MRR 
of 0.94 (95% CI: 0.88, 1.00) per 0.1 unit increase in summer NDVI. 
Extended analyses (Table S4), based on the cumulative number of 
COVID-19 cases and deaths through August 31, 2020, showed an IRR of 
0.97 (95% CI: 0.95, 0.99) and a MRR of 1.00 (95% CI:0.97, 1.04) per 0.1 
unit increase in NDVI. Weak, non-significant, associations were found 
with summer NDVI. 

4. Discussion 

We observed that greenness in April–May of 2020 was inversely 
associated with COVID-19 incidence, especially in urban counties. An 
increase of 0.1 in NDVI was associated with a 6% decrease in COVID-19 
incidence rate March–June 2020, after adjustment for potential 

Table 1 
Descriptive statistics of the full cohort (n = 3089 U.S. counties)a,b.  

Variable Median (IQR) 

COVID-19 death rate (per 100,000) 2.8 (13.4) 
COVID-19 incidence rate (per 100,000) 163.5 (330.2) 
NDVI (April–May 2020) 0.44 (0.27) 
NDVI (June–August 2019) 0.63 (0.21) 
County-level SES covariates:   
• Population density (person/sq. mi.) 60.6 (208.7)  
• % in poverty 9.2 (6.1)  
• % owner occupied housing 76.7 (9.3)  
• % less than high school education 19.1 (13.2)  
• % Black 1.4 (7.8)  
• % Hispanic 3.1 (5.8)  
• % 65+ years of age 15.6 (5.0)  
• % 45–64 years of age 26.5 (2.9)  
• % 15–44 years of age 37.9 (5.4)  
• Median home value ($1000) 110.3 (67.7)  
• Median household income ($1000) 47.7 (15.2) 
BRFSS covariates:   
• % Obese 33.1 (7.2)  
• % current smokers 17.0 (4.8) 
Days since stay-at-home order 68 (74) 
Days since non-essential businesses closure 69 (74) 
Days since nursing homes visitor ban 62 (83) 
Days since first case 74 (13) 
Rate of hospital beds (per 100,000) 50 (173) 
Rate of tests (per 100,000) 5670.7 (2394.6) 
Average summer temperature (K) 303.3 (5.0) 
Average winter temperature (K) 280.2 (10.5) 
Average summer relative humidity (%) 91.3 (6.7) 
Average winter relative humidity (%) 88 (5.6) 
PM2.5 (μg/m3) 8.8 (4.1) 
Urban counties [NCHS classification ≤4 (n)] 1149 
Counties with issuance of stay-at-home order (n) 2196 
Counties with 10< cases (n) 2297  

a The number of COVID-19 cases and deaths are based on data from March 22, 
2020 through June 7, 2020. 

b abbreviations: IQR = interquartile range, NDVI = normalized difference 
vegetation index, sq. mi. = square mile, PM2.5 = particulate matter less than 2.5 
μm, NCHS = National Center for Health Statistics. 
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Fig. 2. Exposure-response curves of the association of NDVI with COVID-19 incidence and COVID-19 mortality in the full cohort, in urban counties (NCHS clas-
sification ≤4) and in rural counties (NCHS classification >4) a, b, c,.a log IRR = log incidence rate ratio, log MRR = log mortality rate ratio, b Models included a 
population size offset, a random intercept by state and were adjusted for degree of urbanization, % in poverty, %owner occupied housing, % less than high school 
education, %Black, % Hispanic, % 65+ years of age, % 45–64 years of age, % 15–44 years of age, median home value, median household income, % obese, % current 
smokers, days since stay-at-home order, days since first case, rate of hospital beds, average summer temperature, average winter temperature, average summer 
relative humidity, average winter relative humidity, PM2.5. For COVID-19 incidence, models were also adjusted for rate of tests. c solid black line shows the 
exposure-response curve, dotted black lines show the 95% CI of the exposure-response curves, density bars are shown on x-axis. 

Fig. 3. Associations of NDVI with COVID-19 incidence and COVID-19 mortality by strata a, b, c. a Main = main model, Home value = median home value, Pop. 
density = population density, no stay-at-home = counties with no issuance of stay-at-home order, stay-at-home = counties with issuance of stay-at-home order. b 
Associations are expressed per 0.1 unit increase in NDVI. Models included a population size offset, a random intercept by state and were adjusted for degree of 
urbanization, % in poverty, %owner occupied housing, % less than high school education, %Black, % Hispanic, % 65+ years of age, % 45–64 years of age, % 15–44 
years of age, median home value, median household income, % obese, % current smokers, days since stay-at-home order, days since first case, rate of hospital beds, 
average summer temperature, average winter temperature, average summer relative humidity, average winter relative humidity, PM2.5. For COVID-19 incidence, 
models were also adjusted for rate of tests. c We used the following values (20, 40, 60 and 80 percentile) to define quintiles of % Black: 0.3, 0.8, 2.3, 12.8. Median 
home value ($1000): 81.3, 99.6, 124.5, 169.0. Population density (persons/miles2): 14.3, 40.6, 99.8, 325.2. 
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confounders at the county level. Associations with COVID-19 incidence 
were stronger in more densely populated counties, and in counties with 
stay-at-home orders. NDVI was not associated with COVID-19 mortality 
in all counties; however, NDVI was protective in counties with higher 
population density. 

Several studies indicated that environmental exposures, such as air 
pollution, temperature, and humidity, could affect the spread and 
impact of infectious diseases because of their impact on host suscepti-
bility and virus stability/survival (Coccia, 2020a, 2020b; Moriyama 
et al., 2020; Ciencewicki and Jaspers, 2007; Martelletti and Martelletti, 
2020; Dowell and Shang Ho, 2004). Less is known about the impact of 
greenness on infectious diseases. Since the COVID-19 outbreak, social 
distancing policies and guidelines have led to more time spent at home 
and therefore people may be more dependent on their immediate sur-
roundings. A study based on data from the Google Community Mobility 
Report showed that stay at home orders and restrictions on social 
gatherings were associated with increased park visitations during 
COVID-19 (Geng et al., 2021). Because gyms were closed in large parts 
of the US during the COVID-19 outbreak, people may have relied on 
parks to be physically active. Parks also provide places for social gath-
erings outdoors while maintaining the recommended safe distance 
(three or six feet). Being outside might substantially reduce the chance 
of SARS-CoV-2 transmission as wind dilutes the amount of virus in the 
air substantially (Qian et al., 2020). According to a study performed 
among 7324 identified cases in China, only a single small outdoor 
outbreak was identified (Qian et al., 2020). 

In line with our results, studies in Italy and Canada also reported 
inverse associations of greenness with COVID-19 morbidity (Cascetta 
et al., 2021; Stieb et al., 2020). A study in Wuhan, China found a weak 
negative correlation between green space density and COVID-19 
morbidity rate but reported a positive association of green space den-
sity with COVID-19 morbidity rate in spatial regression models (You 
et al., 2020). To the best of our knowledge, no study evaluated associ-
ations of greenness with COVID-19 mortality. We found stronger asso-
ciations between NDVI and COVID-19 incidence than mortality. This 
seems plausible as neighborhood green space might affect contact rates 
and therefore COVID-19 incidence, while COVID-19 mortality also de-
pends on available treatments and on host susceptibility, such as age and 
presence of chronic diseases. Several reviews showed inverse associa-
tions of greenness with a variety of diseases (Fong et al., 2018; James 
et al., 2015; Twohig-Bennett and Jones, 2018). A couple of studies also 
reported inverse associations with cardiovascular and respiratory dis-
ease mortality, even after adjustment for air pollution (Crouse et al., 
2017; Vienneau et al., 2017). This suggests that increased amounts of 
greenness could influence host susceptibility. For COVID-19 incidence, 
associations were stronger (and linear) in urban versus rural counties. 
This is in line with the literature on the health effects of green spaces, 
which suggest benefits of green space are stronger in urban areas (Fong 
et al., 2018). In urban areas, vegetation likely represents urban parks 
and street greenery, which are generally accessible and suitable spaces 
for recreational activities. This may not be true for vegetation in rural 
areas. 

Associations with April–May NDVI differed a bit from associations of 
summer 2019 NDVI. Summer 2019 NDVI was weakly, but not signifi-
cantly, associated with COVID-19 incidence and mortality. April–May 
NDVI was more strongly associated with COVID-19 incidence, while 
summer NDVI was slightly more strongly associated with mortality. We 
speculate that summer 2019 NDVI might better capture the long-term 
impact of greenness on health and therefore the impact of greenness 
on host susceptibility, while April–May NDVI might better capture the 
impact of greenness on contact rates as it largely overlaps with the 
beginning of the COVID-19 outbreak. Extended analyses, with COVID- 
19 data through August 31, 2020, showed an inverse association with 
COVID-19 incidence. However, associations were weaker compared to 
our primary analyses with COVID-19 data through June 7, 2020. As 
stay-at-home/shelter in place policies were lifted and restaurants and 

gyms reopened in most states in the beginning of summer, the beneficial 
impact of green spaces on COVID-19 during the second wave in the US 
(June–August 2020) might have been mitigated. 

For COVID-19 incidence, we found stronger associations in densely 
populated counties and counties with high median home values. Median 
home value is likely related to health insurance and the ability to work 
from home, which affects COVID-19 incidence. The positive associations 
of NDVI with COVID-19 mortality in the lowest population density 
quintiles could be because an increase in greenness in these areas is 
related to limited access to health care. Associations of NDVI with 
COVID-19 incidence were modified by state-level issuance of stay-at- 
home orders. Individuals living in states with stay-at-home orders 
might spend more time at home and are thus more dependent on their 
immediate surroundings, like greenness. Individuals living in states 
without stay-at-home orders might not practice social distancing and 
may differ in COVID-19 health risk perceptions. However, differences in 
associations could also be due to differences in epidemic stage (number 
of COVID-19 cases) in counties with and without stay-at-home orders. 
Associations of NDVI with COVID-19 mortality, but not COVID-19 
incidence, were modified by percentage Black. NDVI was harmful in 
the counties with the lowest proportion of Black residents, but not in 
other quintiles. We have no clear explanation for this but note that it 
may be related to higher observed rates of COVID-19 incidence and 
mortality among Black individuals (Millett et al., 2020). The percentage 
of Black residents was generally lower in rural areas where the impact of 
greenness on the contact rate is likely limited. 

This study has several strengths. We used NDVI for April–May 2020, 
largely overlapping with the beginning of the COVID-19 outbreak in the 
US, allowing us to assess the impact of temporally relevant exposures on 
incidence and mortality. Associations of NDVI with COVID-19 incidence 
remained in analyses stratified by urban-rural status or population 
density, indicating that our associations are not a result of differences in 
urban-rural COVID-19 incidence or testing rates. We adjusted for several 
potentially important confounders, such as proportion of Black resi-
dents, population density, and days since first COVID-19 case. We note 
that NDVI was moderately positively (Spearman rho > 0.40) correlated 
with % less than high school education, % Black residents, % current 
smokers, and PM2.5, while these variables were all positively associated 
with COVID-19 incidence and mortality. Further, sensitivity analyses 
showed that associations were robust to exclusion of counties with 10 or 
fewer COVID-19 cases, excluding all counties comprising the New York 
metropolitan area and additional adjustment for physical distance clo-
sures and potential spatial clustering. 

We acknowledge that this study has several limitations. This is an 
ecological study with aggregated data on county level. Ecological de-
signs should not be used to make inferences about individual risks even 
though they are valid for hypothesis-generating purposes. Publicly 
available COVID-19 outcome data was only available at county level, 
while COVID-19 incidence and mortality, and sociodemographic char-
acteristics likely vary at a smaller spatial scale (Villeneuve and Gold-
berg, 2020). COVID-19 events are not independent and likely cluster 
over time and space which may have resulted in biased effect estimates 
(Villeneuve and Goldberg, 2020). Although we adjusted for several 
important confounders, such as days since first COVID-19 case reported 
and days since stay-at-home order, it is possible that there is residual 
confounding by these factors. Days since stay-at-home order is based on 
the start date of the issuance of the order. However, in several states the 
stay-at-home order was ended/relaxed in (the end of) April or May 
(earlier than June 7). Further, there are other state-level physical dis-
tance closures (e.g., daycares, K-12 schools, gyms) that we did not take 
into account. As additional adjustment for days since non-essential 
business closure and days since nursing home visitor ban did not 
affect our associations, we do not think that adjustments for additional 
closures would greatly impact our findings. We also note that physical 
distance closures and face covering requirements could differ between 
counties within a state. We used a county-level vegetation index as a 
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proxy for green space access, which does not distinguish whether 
vegetation represents urban parks, forests, agricultural land, or over-
grown vacant lots. Detail on park amenities, vegetation species or ty-
pology, and park usage during the COVID-19 pandemic were 
unavailable at the time of data collection but would add to future ana-
lyses. Another major limitation is the underreporting of COVID-19 cases 
and deaths. Widespread testing was limited during the time of our an-
alyses and differences in testing availability might differ between 
counties and could have changed over time due to additional resources 
and increased recognition of the disease. 

5. Conclusion 

Our findings suggest that during the first wave (March–June 2020), 
exposures to greenness had beneficial impacts on county-level incidence 
of COVID-19 in the US and may have reduced county-level COVID-19 
mortality rates in areas of higher population density. Although causal 
relationships cannot be drawn from ecological studies, our findings 
imply that keeping parks open, maintaining funding for parks in light of 
coming surges of COVID-19 and future pandemics may have important 
public health benefits. 
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