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To the Editor

Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of lymphoid malignancies 

derived from skin-homing T cells. Mycosis fungoides (MF) is the most common form of 

CTCL, and Sezary syndrome (SS) is an aggressive variant with varying levels of clonal 

lymphocytes in the blood. The variable presentation and lack of definitive diagnostic 

markers make CTCL diagnosis challenging. While the biology of these malignancies is not 

fully understood, some microbes, particularly viruses, have been hypothesized to play roles 

in malignant T cell transformation in CTCL (Berger et al., 2002, Mirvish et al., 2013, van 

der Loo et al., 1979). However, high throughput sequencing approaches have failed to 

consistently detect viral sequences in the skin or peripheral blood of CTCL patients 

(Anderson et al., 2018, Dereure et al., 2013). Infections are common in advanced stage 

patients, and antibiotic treatment results in skin improvement and decreased disease activity 

(Lindahl et al., 2019). Hence, to better understand the spectrum of microbial involvement in 
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CTCL, we performed a comprehensive evaluation of the skin microbiome in a cohort of MF 

and SS patients as compared to healthy controls.

In this pilot study, we used shotgun metagenomic sequencing to investigate microbial 

communities at pre-determined, matched skin sites in four MF patients (stages IA to IIIA), 

two SS patients (stage IVA1), and ten age- and sex-matched healthy volunteers (HVs) (Table 

S1). The study was approved by the Institutional Review Boards of Johns Hopkins and the 

National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH. Subjects 

provided written informed consent and underwent skin preparatory regimens. Pre-moistened 

swabs were used to collect samples from the nares, lower back and thigh skin (sites of 

CTCL predilection), and air controls (see Supplementary Materials and Methods for details 

on patient recruitment and sampling). DNA was isolated, and libraries were created for 

metagenomic sequencing (Oh et al., 2014).

Bacterial, fungal, and viral communities were investigated by mapping microbial reads to a 

multi-kingdom reference database (Table S2). Analyses focused on comparing the 

microbiomes between lesional patient skin and HV skin from the lower back and thigh. 

Bacteria predominated microbial communities at all sites (Figure 1a, S1a, S2a, Table S3). Of 

the most abundant taxa across kingdoms (Figure 1b, S1b, S2b), less than 0.5% of 

metagenomic reads mapped to eukaryotic viruses (predominantly Papillomaviridae and 

Polyomaviridae) in MF/SS and HV lower backs (0.09% ± 0.1% vs. 0.05% ± 0.05%) and 

thighs (0.08% ± 0.1% vs. 0.07% ± 0.08%) with no discernible differences regardless of 

sampling area (Figure 1c, S1c, S2c, Table S4). Similarly, fungal abundances did not differ 

significantly between HVs and MF/SS (Figure 1b, S1b, Table S5); Shannon diversity was 

comparable (Figure S3a, S3b).

Given the low viral and fungal relative abundances, we focused on bacterial communities in 

MF/SS and HVs. We performed principle coordinates analysis (PCoA) using Bray-Curtis 

dissimilarity index which demonstrated separation of HVs and MF/SS bacterial skin 

communities on both lower backs and thighs (Figure 1d, S1d). Superimposing MF/SS stages 

on the PCoA showed greatest separation between HVs and stage IVA1 patients, suggesting 

stage IV patients’ skin microbiomes are the most distinct from controls.

We then further investigated specific taxa contributing to differences in bacterial 

communities between MF, SS, and HV skin. Given the association with Staphylococcus 
aureus colonization and infection in CTCL (Krejsgaard et al., 2014, Lindahl et al., 2019) and 

reported staphylococcal-corynebacterial interactions (Ramsey et al., 2016), we compared 

these and other common cutaneous bacteria. Staphylococcus aureus abundances were low in 

most MF, SS, and HV skin samples (Figure S4a, S4b). One HV and one MF patient had 

higher S. aureus relative abundances on the skin. Commensal staphylococci (S. capitis, S. 
epidermidis, and S. hominis) trended higher in MF (3.8% ± 3.9%, 2.7% ± 2.1%, and 1.8% ± 

2.4%, respectively) versus HV lower back skin (0.6% ± 0.6%, 1.4% ± 1.1%, and 0.8% ± 

1.2%, respectively) (Figure S4). Two Corynebacterium species (C. tuberculostearicum and 

C. simulans) were increased on MF and SS skin, with highest mean relative abundances in 

SS patients (C. tuberculostearicum on lower back: 25.6% ± 24.3% (SS) vs. 4.4% ± 5.8% 

(HV); C. simulans on lower back: 6.5% ± 5.5% (SS) vs. 0.3% ± 0.5% (HV)) (Figure 1e, 
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S1e). MF and SS skin also displayed lower relative abundances of Cutibacterium acnes and 

Cutibacterium namnetense as compared to HV skin. These bacterial shifts were not 

statistically significant, likely due to the small number of patients. However, comparing HV 

to MF to SS skin, we observed increasing trends in the mean relative abundances of 

Corynebacterium species and decreasing trends in Cutibacterium species, suggesting 

bacterial shifts may correlate with disease stage or treatment status (Figure 1e, S1e).

Our findings suggest eukaryotic DNA viruses are negligible components of the skin 

microbiome in our MF/SS cohort. These results corroborate and extend previous reports 

suggesting CTCL is unlikely to originate from infection by a directly oncogenic DNA virus 

(Dulmage et al., 2015). However, other mechanisms by which viral pathogens can affect 

neoplastic transformation must be further explored including 1) indirect viral tumorigenesis 

by transient exposure to viral genomes (‘hit-and-run’ oncogenesis) (Niller et al., 2011), 2) 

integration of retroviruses or DNA viral elements into human host DNA, and 3) antigenic 

stimulation of T cells in the peripheral blood.

Our MF/SS patients showed no marked differences in skin viral or fungal communities as 

compared to age-matched HVs sampled at consistent sites. Nonetheless, we observed 

bacterial community shifts including higher relative abundances of Corynebacterium spp. 

and lower relative abundances of Cutibacterium spp. in MF/SS skin. Several staphylococcal 

and corynebacterial species trended higher in MF/SS skin and would be important to 

examine in larger studies. Interestingly, relative abundances of C. tuberculostearicum were 

high (>25% on average) in stage IVA1 patients. Advanced stage patients may be at increased 

risk of infection from impaired skin integrity and immune dysregulation (Axelrod et al., 

1992), and C. tuberculostearicum has been shown to upregulate proinflammatory responses 

in human skin cells, suggesting a potential link to cutaneous inflammation (Altonsy et al., 

2020).

Recently, Salava et al. reported some differences in bacterial communities between clinically 

unaffected and affected patient skin without including HV controls (Salava et al., 2020). Due 

to potential absence of uninvolved contralateral skin in advanced stage patients, reports of 

lymphoma involvement in normal-appearing skin in CTCL patients (Pujol et al., 2000), and 

different skin microbiomes in anatomically distinct but adjacent sites, we studied control 

samples from age-matched HVs sampled at comparable anatomical sites.

The separation of bacterial communities between stage IVA1 patients and HVs is notable, 

and it is intriguing that bacterial shifts appear to correlate with disease stage. Whether these 

findings are driven by disease severity or other unrelated variables, including systemic 

treatments, is unknown. Further investigation with larger and ideally multi-center CTCL 

cohorts is warranted to validate these findings and to evaluate the relationship between 

disease stage and the skin microbiome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bacteria predominate in skin microbiomes of both MF/SS patients and healthy adults, 
but bacterial communities differ between patients and controls.
(a) Relative abundances of lower back skin microbes classified by kingdom in HVs (n=10) 

and MF/SS patients (n=6). Boxplot with each dot corresponding to one subject and 

representing the mean relative abundance (%) of one lower back sample per subject (lesional 

skin for patients; healthy skin for HVs). For each box, the central line represents the median, 

lower and upper edges represent the 1st and 3rd quartile, and whiskers represent values up to 

1.5 times the interquartile range. Shotgun metagenomics microbial reads were mapped to a 
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multi-kingdom reference database containing 2356 bacterial, 395 fungal, 4695 viral and 67 

archaeal reference genomes using Bowtie2. (b) Mean relative abundances (%) of the major 

microbial taxa detected across kingdoms in lower back skin samples of HVs compared to 

MF/SS. In the barplot, colors represent distinct taxa. Due to the unusually high relative 

abundance (>75%) of the plant Gammaproteobacteria (Xanthomonas campestris) on the skin 

of HV4, this subject was removed from downstream analyses. (c) Relative abundances (%) 

of eukaryotic viruses on the skin of HVs and MF/SS patients. (d) Principle coordinates 

analysis (PCoA) of lower back skin bacterial communities in HVs and MF/SS. The distance 

between samples was measured using Bray-Curtis dissimilarity index. Each dot corresponds 

to one lower back sample per subject. HVs (n=9) are represented by gray dots. MF/SS 

patients are color-coded by clinical stage IA (n=1), IB (n=1), IIB (n=1), IIIA (n=1), IVA1 

(n=2). Clustering of dots in the PCoA indicates higher similarity between skin bacterial 

communities. (e) Mean relative abundances (%) of common cutaneous bacteria 

(Corynebacterium spp. and Cutibacterium spp.) on the lower back skin of HVs (n=9) 

compared to MF (n=4) and SS (n=2) patients. Each dot corresponds to one subject and 

represents the relative abundance in one representative lower back sample. Dots are color-

coded as in (d). Black horizontal lines represent the mean. HV, healthy volunteer; MF, 

mycosis fungoides; SS, Sezary syndrome.
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