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Abstract: Delamination is one of the most common types of defects for carbon fiber reinforced plastic
(CFRP) composites. The application of laser techniques to detect delamination faces difficulties with
ultrasonic wave excitation because of its low thermal conductivity. Much of the research that can
be found in the literature has only focused on the detection of a single delamination. In this study,
aluminum foil was pasted onto the surface of the composite so that it was vulnerable to ablation and
could acquire a usable signal. Using a fully noncontact system with laser excitation at a fixed point
and a scanning laser sensor, the effects of different aluminum foil sizes and shapes on the wavefield
were studied for the composites; we decided to use a rectangle with 3 mm length and 5 mm width for
laser excitation experiments. Wavefield characteristics of the composite plates were analyzed with
single- and multi-layered Teflon inserts. Taking the time window for standard ultrasonic testing as a
reference, the algorithms for localized wave energy with appropriate time windows are presented
for the detection of single and multiple defects. The appropriate time window is meaningful for
identifying each delamination defect. The algorithm performs well in delamination detection of the
composites with one or multiple Teflon inserts.

Keywords: guided wave; laser; delamination; wavefield; local wavenumber; localized wave energy

1. Introduction

In the aircraft and wind turbine industries, carbon fiber reinforced plastic (CFRP)
composites are widely used as structural components thanks to their light weight and high
strength. Since CFRP structures are fabricated by bonding multiple layers of laminates
with resin, one of the most common types of defects is delamination. Such defects can
grow and affect the mechanical properties and structural integrity. Delamination often
occurs between the composed laminates, so it is invisible from the outside; therefore,
non-destructive testing (NDT) of composites is essential and challenging.

Ultrasonic testing is the most commonly used method for detecting defects in materi-
als. Ultrasonic structural health monitoring (SHM) techniques [1–3] apply piezoelectric
sensor arrays to detect composite damage; a small number of sensors can locate damaged
regions. The piezoelectric transducer (PZT) is frequently utilized for excitation. However,
if the piezoelectric sensor arrays are sparse, quantifying defects is difficult. Traditional
ultrasonic NDT testing methods are mainly based on contact methods, and their efficiency
is often low because they are mostly performed manually or semi-automatically. The neces-
sity of a couplant limits the development of ultrasonic techniques [4]. With the advantages
of noncontact detection and high spatial resolution, the laser scanning technique [5–9]
has the potential to be applied for inspection of structural components, mainly by iden-
tifying wave pattern anomalies in the full wavefield caused by damage. The measured,
guided wave has the advantages of sensitivity to a variety of structural defects and long
propagation distance [10,11].

For the detection of defects in CFRP composites, the use of laser techniques for ultra-
sonic wave excitation faces difficulties because of it low thermal conductivity. Relevant
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studies have shown that a laser beam with a wavelength near 3.2 µm is the best for genera-
tion of ultrasonic waves in CFRPs [12,13], but such lasers are not widely used. Common
lasers, e.g., Nd:YAG and CO2 lasers, have been used for ultrasonic testing. The laser
Doppler vibrometer (LDV) is used for guided wavefield measurement because of its high
sensitivity to out-of-plane displacement. To obtain usable laser ultrasonic signals without
ablation in composite materials, the automated PZT/LDV or laser/PZT scanning system
is used for delamination detection. In a PZT/LDV scanning system, the PZT excites the
guided wave and the scanning LDV measures the guided wave; different transducers
are chosen based on the requirements. Vibration patterns [14] were obtained by using a
piezoelectric transducer at 80 V and frequencies ranging from 0 to 100 kHz. The curved
signal acquired from the resonance phenomenon was applied to realize the detection
of multi-component defects. In one study, a 20 kHz–1 MHz, 100 µs chirp excited by a
broadband contact transducer was used for excitation and multi-frequency local wavenum-
ber analysis to detect multi-ply delamination damage in CFRP composite specimens [15].
For laser/PZT scanning systems, a mirror scanner is often used to achieve laser scanning.
In [16], the broadband piezoelectric transducer was used to receive signals and its cut-off
frequency was 2 MHz, which was integrated by an omnidirectional amplifier. The imaging
method of adjacent wave subtraction was developed for non-destructive evaluation of
complex structures to highlight anomalous wave propagation. In [17], a system of scanning
laser-generated ultrasound was used for the detection of 20 mm-impact delamination in a
composite wing section with 2 mm thickness. The proposed local wavenumber estimation
was mapped using a sliding wavenumber band-pass filter to maximize the wave energy of
every grid point at a specific mode and frequency. Currently, complete noncontact laser ul-
trasonic systems are mostly used for metallic materials [11,18–20]. In this study, aluminum
foil was glued to the surface of the composite so that it was vulnerable to ablation and
could achieve complete noncontact laser ultrasonic testing.

There are many methods for delamination detection using the wavefield of a guided
wave [21–31]. Damage indicators can be extracted from time domain [25], frequency do-
main [26], and wavenumber domain [27–31]. Wavenumber imaging methods have been
studied extensively for the detection of a single delamination defect. A single delamination
refers to one delamination through the thickness of the composite material. Frequency–
wavenumber filtering [27] could remove the source waves and highlight the location of
weak scatters related to delamination defects in a composite. A standing wave filter [28]
was adopted for the identification and visualization of hidden delamination in composites.
Filtering reconstruction imaging [29] confirmed that the increased wavenumbers were
correlated with trapped waves of the delamination, and the energy map resulting from the
wavenumber filtering was proven to be effective for single delamination detection. Spatial
or local wavenumber [20,29,30] algorithms were applied to obtain wavenumber values at
each spatial location by spatial or wavenumber windows; these algorithms highlighted
the delamination damage with larger wavenumber values. The wavenumber adaptive
image filtering method [31] was utilized to detect delamination at various impact energies.
The Riesz transform was applied to the wavenumber index technique [32] for damage
detection, which was a generalization of two-dimensional (2D) Hilbert transform. The ro-
bustness of this technology lied in the fact that it located the impact damages with high
resolution near geometry/material discontinuities in the composite with stiffener. However,
when delamination defect is created, it often occurs between multiple ply levels through the
thickness of the composite. In [33], trapping energy increased on the surface of composite
materials when multiple delamination defects existed through the composite thickness.
In [34], the wavenumber analysis could identify the laminates between which multiple
delamination defects occurred. In [15], multi-frequency local wavenumber analysis and
a ply correlation technique were investigated for quantitative assessment of multi-ply
delamination defects in CFRP composite specimens. The wave energy method or filtering
reconstruction imaging is rarely studied for the detection of multiple delamination defects.
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In this study, aluminum foil was attached to the surface of the composite, and the
effects of different aluminum foil sizes and shapes on the wavefield were studied for the
composites. Taking the time window for standard ultrasonic testing as a reference [35],
the algorithms of localized wave energy with appropriate time windows are present for
identification of hidden single and multiple delamination defects. A fully noncontact laser
scanning system, using a pulse laser to excite ultrasonic waves and adopting a continuous
laser to measure out-of-plane displacement, was established for delamination detection.
Three specimens with delamination defects were used for verifying the algorithm.

This article is organized as follows. Section 2 presents the laboratory experimental
setup, the effects of different aluminum foil sizes and shapes on the wavefield, and experi-
mental data. Section 3 gives the wavenumber characteristics of composite with single and
multiple Teflon inserts. Section 4 describes the algorithms of localized wave energy with
appropriate time windows. Section 5 presents the experimental results. Section 6 concludes
with a brief summary.

2. Experiment
2.1. Experimental Set Up

The scheme of fixed-point laser excitation and scanning laser sensor is one style of
four excitation and sensing systems [18]. Such a scanning scheme can minimize the damage
of pulse laser to specimens, although it reduces energy level and signal-noise ratio (SNR)
of the generated ultrasonic waves. An overview of the experimental setup is shown in
Figure 1.
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Figure 1. Experimental setup.

A Nd:YAG pulse laser is used to excite ultrasonic waves. The wavelength is 1064 nm,
the pulse duration is 8 ns, and the maximum pulse energy is 55 mJ. Pulse laser was fixed
on the optical platform and the energy (about 20 mJ) was set for excitation. The beam size
needs to be adjusted by placing optical lens in front of the pulse laser. As the size of the laser
beam becomes large, the amplitude of the direct waves and reflect waves increases when the
peak energy density of the laser beam is constant [36]. In this study, the laser beam radius
is set to 1 mm. A two-wave mixing (TWM) laser interferometer is applied for receiving
ultrasonic waves. The signal is the out-of-plane displacement of the laser-excited ultrasonic
wave, and it has been transformed into an electrical one represented by Volt. The sensing
equipment includes a continuous laser with the wavelength of 1550 nm, an optical splitter
and a TWM laser interferometer with sensitivity 3.9 × 10−6 nm(W/Hz)1/2. The system is
manufactured by Intelligent Optical System Inc. (Torrance, NM, USA). The measurement
head was installed on the X-Y scanning guide rail. The X and Y direction and origin of the
scanning region are shown in Figure 2.
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Figure 2. A schematic of the sensing layout and details of composite specimens containing the Teflon
insert. There were three composite specimens with a stacking sequence of [0/±45/90] s. From the
perspective of the through-thickness panel layup, a single Teflon insert was added to specimen I
between the fifth and sixth layer, and to specimen II between the second and third layer; two Teflon
inserts were added to specimen III, one between the second and third layer, the other between the
fifth and sixth layer.

In the experiment, aluminum foil was attached on the excitation point to protect
the surface from burning. The glue layer was made of acrylic acid with strong adhesion.
The thickness of the bonded aluminum foil was 0.1 mm. Before the aluminum foil was
pasted onto the composite, mark the excitation position. The aluminum foils with the
6 mm-diameter circle or the rectangle of 3 mm length and 5 mm width were studied for
laser excitation. To get a high SNR, an average method of ten measurements was used
at each sensing point. After the laser hits the aluminum foils several times in succession,
it was also easy to cause ablation or breakdown. Therefore, the aluminum foil should be
replaced regularly. In the experiment, the aluminum foil was replaced every two lines of
laser scanning.

The specimens were the 1.5 mm crossply CFRP made of T300 prepreg materials with
a stacking sequence of [0/±45/90] s, as shown in Figure 2. Since the material properties of
CFRP are not known in advance, two specimens with single delamination defect at different
layer positions were made to study the wavenumber characteristics related to the e material
properties. Additionally, its purpose was also to analyze the wavenumber characteristics
in the composite specimen with multiple delamination defects. Specimen I and specimen
II were the composite plates with a single defect, and specimen III was the composite plate
with multiple defects. From the perspective of the through-thickness panel layup, a single
Teflon insert was added to specimen I between the fifth and sixth layer, and to specimen
II between the second and third layer; two Teflon inserts were added in specimen III,
one between second and third layer, the other between the fifth and sixth. The diameter
of all delamination defects was 32 mm, and the distance between two Teflon center in
specimen III was 10 mm. The TWM laser interferometer scans an area of 80 mm × 80 mm
with a spatial resolution of 1 mm.

2.2. Experimental Data

Figure 3 shows the signals measured at (40 mm, 55 mm) and time–space wavefield
at x = 40 mm in the intact composite plate and three specimens. The total signal includes
guided wave and acoustic signal. The acoustic wave here refers to the signal propagated
through the air. The measurement time of the acoustic signal coincides with the time taken
for the wave to travel a distance of a certain distance at a speed of 340 m/s in the air.
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In addition to the acoustical signal, the prominent component of guided wave is the A0
mode because it is the main component of the out-of-plane displacement. The guided wave
velocities in the intact composite plate are different from one in three damaged composite
plates. Additionally, the velocity of the guided wave becomes slower for specimen I, II and
III, because the slope of the line is smaller compared to one in the intact composite.
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2.3. The Effect of Aluminum Foil Size and Shape on the Wavefield

When the surface of a solid is illuminated by the laser beam, the thermal energy of
the electromagnetic radiation is absorbed by the region and local temperature is produced.
Then, the physical process of thermal expansion occurs and it produces stresses and strains
in the solid. The sudden stresses in the illuminated region excite a transient displacement
field. For the composite, the thermal conductivity is low and it is vulnerable to ablation.
Figure 4a shows the ablation caused by 20 consecutive laser radiation on the composite.
Additionally, ultrasonic wave acquired by the laser with low power intensity has the low
SNR. Therefore, it is necessary to protect the surface of the composite from ablation while
ensuring the high SNR of the guided wave.

The aluminum foil with thickness 0.1 mm was pasted onto the surface of the composite
to obtain the wavefield. In order to eliminate the influence of aluminum foil size and shape
on the wavefield, the circular aluminum foil with 6 mm diameter and the rectangular
one with 3 mm length and 5 mm width were prepared in the experiment, as shown in
Figure 4b,c. Figure 4d shows the signals of laser shot on the composite, circular and
rectangular aluminum foil with the same power intensity and average times. The arrival
time of the ultrasonic wave peak and valleys acquired by laser shot on aluminum foil is
basically the same as one by laser shot on the composite. Figure 4e gives corresponding
signals in the frequency domain. There is no difference in terms of the signals of laser shot
on aluminum foil in the frequency domain. The frequency band of the signal obtained
by laser shot on aluminum foil is wider, which may be related to the properties of the
materials. For the three signals, the position of main frequency is the same. It can be
concluded that the aluminum foil can be used for delamination detection and the size and
shape of aluminum foil have no effect on the signal.
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diameter, (c) rectangular aluminum foil with 3 mm length and 5 mm width, and (d) the signal of laser shot on composite,
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The aluminum foil was replaced every two lines of laser scanning and the acquired
wavefield snapshots at 40, 60 and 80 µs by laser shot on two aluminum foils are shown
in Figure 5. The wavefront shapes of two wavefields are almost the same. The wavefield
at 60 µs and 80 µs acquired by the rectangle shape is smoother, because the replacement
position has a small deviation from the preset. The rectangle with 3 mm length and 5 mm
width is a better choice for obtaining the wavefield.
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3. Wavefield Characteristics

The guided wave excited by pulse laser on the composite plate is dispersive and the
frequency or thickness affect the propagation velocity. The wavefield characteristics of the
composite with delamination can be useful for the analysis of damage factor and it can be
used for quantitative assessment of damage. In this section, wavefield snapshots of the
composites with single and multiple delamination defects are analyzed in space–time and
frequency–wavenumber domain.

For specimen I, Teflon insert is between the fifth and sixth layer. Figure 6 shows
the wavefield snapshots acquired from scanning area at different times. The red circle
is the delamination made artificially in specimen I. In the out-of-plane displacement,
the acquired wavefield shows a stronger A0 mode. A0 mode with higher amplitude has
reached the delamination region at t = 50 µs, and the wavelength is reduced. This is
because the delamination causes the incident waves to split and propagate independently
through the upper and lower laminates [8], and the thickness of the measured side changes.
Therefore, the wave in the delamination region propagates at a velocity lower than that
in the undamaged region. Each moment subsequently is accompanied by wave pattern
anomalies and a reduced wavelength.

For specimen II, Teflon insert is between the second and third layer. Figure 7 shows
snapshots of propagating guided wave at different times in specimen II. The red circle is
the delamination made artificially in specimen II. The wave in the delamination region
propagates at a velocity lower than that in the undamaged region. The degree of velocity
slowdown in specimen II is weaker than in specimen I at t = 70 µs.
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artificially in specimen I.
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artificially in specimen II.

For specimen III, two Teflon inserts are added, one between the fifth and sixth layer,
and the other second and third layer. Figure 8 shows wavefield snapshots of the propagat-
ing guided wave in specimen III at different times. The red circles are the delamination
made artificially in specimen III. When the guided wave meets the delamination, a lower
velocity and a reduced wavelength are also found. At t = 50 µs, the guided wave mainly
propagates in the composite with first delamination. The propagation distance for the
second crest of the guided wave is farther than specimen I and it is almost the same as
specimen II. The first Teflon insert is added between the second and third layer. At t = 70 µs,
the guided wave has passed through two delamination defects. Additionally, the wave
pattern anomalies are similar to specimen I. The second Teflon insert is added between the
second and third layer.

Frequency–wavenumber analysis methods can enable further analysis of wave modes
and wavenumber distribution. By using the three-dimensional (3D) Fourier transform
(FT), the acquired time–space wavefield is converted to a frequency–wavenumber field.
The change in wavenumber can be extracted from the diagram of kx and ky at a specific fre-
quency. Figure 9 shows the kx-ky spectrum at 98 kHz of the intact plate and three specimens.
In the damaged plates, as shown in Figure 9b–d, some wavenumber components are obvi-
ously increased in addition to the original curve. The increased wavenumber component
is related to delamination defects. The value of the increased wavenumber in specimen I
is higher than that in specimen II. This can be explained by that the structural thickness
above the delamination in specimen I is lower than that in specimen II. The increased
wavenumber components appearing in specimens I and II are both found in specimen III.
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The main wavenumber that exits in the intact plate, specimen I, II and III, is shown
in Table 1, which is acquired from the kx-ky spectrums at 98 kHz. The wavenumber
85.94 m−1 is in all four specimens. The wavenumber 93.75 m−1 is in specimen II and III.
The wavenumber 117.2 m−1 is in specimen I and III. It has been known in advance that the
delamination defect in specimen I is preset between the fifth and sixth layer and specimen
II between the second and third. From the value of increased wavenumber 93.75 m−1 and
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117.2 m−1, two delamination defects exist in specimen III, one between the fifth and sixth
layer, and the other between the second and third.

Table 1. Main wavenumber that exits in the intact plate, specimen I, II and III.

Main Wavenumber in the
Intact Plate (m−1)

Main Wavenumber in the
Specimen I (m−1)

Main Wavenumber in the
Specimen II (m−1)

Main Wavenumber in the
Specimen III (m−1)

85.94 85.94 85.94 85.94
93.75 93.75

117.2 117.2

4. The Algorithm for Visualizing Defects

Taking the time window for standard ultrasonic testing as a reference, the algorithms
of localized wave energy with appropriate time windows are present. The algorithm
gathers wave energy anomalies caused by delamination defects at a certain frequency.
Figure 10 shows the algorithms of localized wave energy with appropriate time windows.
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First, experimental equipment is used to acquire the 3D measurement matrix. Then,
the signal processing steps below are followed.

(1) The 3D full-wavefield matrix u(x, y, t) is transformed from the space–time domain
to the frequency–wavenumber domain using the 3D Fourier transform and the mathemati-
cal formula is expressed as Equation (1). To obtain the wavenumber field information at
frequency f0, a narrow frequency bandpass filter WF is applied, shown as Equation (2).

U
(
kx, ky, f

)
= F3D[u(x, y, t)] (1)

U
(
kx, ky, f0

)
= U

(
kx, ky, f

)
WF (2)

(2) Wavenumber filter Wk
(
kx, ky, f0

)
is applied in the wavenumber domain to extract

the increased wavenumber, described as Equation (3). Additionally, the wavenumber filter
Wk
(
kx, ky, f0

)
is given in Equation (4). The Threshold is decided by the wavenumber of A0

mode at frequency f0 in the intact plate. The frequency f0 used in this study is 98 kHz.
Other frequencies can also be selected and the effect of the frequency on the quality of the
results has not been studied.

Ũ
(
kx, ky, f0

)
= U

(
kx, ky, f0

)
Wk
(
kx, ky, f0

)
(3)
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Wk
(
kx, ky, f0

)
=

{
0 |k| < Threshold
1 |k| < Threshold

(4)

(3) An inverse Fourier transform is then applied, so that the wavefield with increased
wavenumber components can be obtained by Equation (5). By observing the energy
diagrams at different times, the appropriate time windows n can be selected to highlight
the energy anomalies and i represents the selected moment. The energy anomalies can
be called localized wave energy. The energy anomalies distribution can be calculated by
Equation (6), and delamination defects can be identified by localized wave energy.

ũ(x, y, t) = F−1
3D

[
Ũ
(
kx, ky, f0

)]
(5)

E(x, y) =

√
∑n ũ(x, y, i)2

n
(6)

5. Experimental Results
5.1. Single Defect

In specimen I, the energy caused by increased wavenumber component is becoming
larger when passing through the delamination, as shown in Figure 11. This is because the
thickness of guided wave penetration on the measured side is reduced. The delamination
causes the whole specimen to be divided into two parts and the thickness of the two parts
is reduced. What we are concerned about is the thickness change of the measured side.
The guided wave excited by a laser is dispersive and the thickness affects the propagation
at a certain frequency. When the guided wave has completely passed the delamination,
there still exits trapping wave energy. The energy anomalies can be used for locating where
delamination damage occurs. From t = 40 µs to t = 70 µs, the phenomenon of energy
anomalies is obvious, indicating that these are the appropriate time windows. The test
result of specimen I using localized wave energy algorithm is shown in Figure 12. A clear
profile of delamination defect can be obtained by this algorithm. The value of increased
wavenumber (117.2 m−1) indicates that the Teflon insert is between the fifth and sixth layer.

Similar to the phenomenon of specimen I, the energy caused by increased wavenumber
component in specimen II is also becoming larger when passing through the delamination
and it is less obvious, as shown in Figure 13. The time windows from t = 40 µs to t = 70 µs
can also be used for specimen II. The test result of specimen II using the localized wave
energy algorithm is shown in Figure 14. The delamination profile is visually close to the
actual one. The value of increased wavenumber (93.75 m−1) indicates that the Teflon insert
is between the second and third layer. The result can show a successful identification of
delamination location, size and depth.
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Figure 14. The test result of specimen II using localized wave energy algorithm. The time windows
are from t = 40 µs to t = 70 µs. The red circle is the delamination made artificially in specimen II.

5.2. Multiple Defects

For specimen III, there are two artificial delamination defects, one located between the
fifth and sixth layer, and the other between the second and third. The energy distribution
caused by the increased wavenumber at t = 40~90 µs with 10 µs intervals is shown in
Figure 15. When the guided waves pass through the first delamination, the energy caused
by the increased wavenumber component is becomes large in the first delamination region
from t = 40 µs to t = 60 µs. The energy discontinuity of the defect area at 70 µs is obviously
different from previous time and the contour of the energy accumulation has changed,
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indicating that the guided wave has spread to the second defect. When the wavefield
caused by the increased wavenumber has passed through the second defect, shown at 90 µs,
some energy still remains inside the delamination. The second time windows are from
t = 60 µs to t = 90 µs. Figure 15 shows the localized wave energy distribution when the
time windows are from t = 40 µs to 90 µs, and the result is not affected by the choice of time
windows. The defect overlap region shows high energy anomalies. The imaging results
of two defects are shown in Figure 16a, b, respectively. The appropriate time window is
meaningful for identifying each delamination defect.

Combined with the wavefield characteristics in Section 3 and the value of the increased
wavenumber components (93.75 and 117.2 m−1 at Table 1), the first delamination is between
the second and third layer, and the second is between the fifth and sixth. Different from the
methods in the previous studies, two delamination profiles can be obtained, respectively,
by the algorithm. If the upper (laser measurement side) delamination fully covers the lower
one, the localized wave energy of the overlapping area is high. The region of high localized
wave energy is the lower delamination defect. If the boundaries of the delamination defects
coincide, the number of delamination defects and coincidence degree should be determined
by increased wavenumber value and the localized wave energy.
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6. Conclusions

In this paper, aluminum foil was pasted onto the surface of the composite because
of its low thermal conductivity. Using the fully noncontact system of fixed-point laser
excitation and scanning laser sensor, the circular aluminum foil with a 6 mm diameter and
the rectangular one with 3 mm length and 5 mm width were tested in the experiment to
study the effects of their sizes and shapes on the wavefield. By comparing the wavefield
snapshots obtained by two aluminum foils, the rectangle with 3 mm length and 5 mm width
is a better choice because the replacement position has a small deviation from the preset.

Taking the time window for standard ultrasonic testing as a reference, the algorithms
of localized wave energy with appropriate time windows are present for the detection
of single and multiple delamination defects. The composites with multiple delamina-
tion defects were first researched using the method of localized wave energy. Since the
material properties of CFRP are not known in advance, two specimens with single delami-
nation defects were used to study the wavenumber change related to material properties.
For two specimens with different layered Teflon inserts, the propagation characteristics
of the guided wave is different. For specimen I where Teflon is inserted between the
fifth and sixth layer, the wavefield distortion is more obvious and the value of increased
wavenumber is higher than in specimen II where Teflon is inserted between the second
and third layer. Energy distribution caused by the increased wavenumber is becoming
large when passing through the delamination. For specimen III, where two Teflon inserts
are between the fifth/second and sixth/third layer, the frequency–wavenumber curve
shows two increased wavenumber components appearing in two composites with a sin-
gle delamination defect. The algorithms of localized wave energy with appropriate time
windows are not only suitable for the detection of single delamination defect, but also for
multiple delamination defects. For the detection of multiple delamination defects, the total
localized wave energy distribution is not affected by the choice of time windows and the
defect overlap region shows high energy anomalies. The appropriate time windows are
meaningful for understanding the distribution of each delamination defect. They show a
successful identification of the delamination location and size. Combined with the analysis
of the wavefield and the value of the increased wavenumber, the position in the thickness
direction can be determined.

A fully noncontact inspection method for the composites was present through non-
ablative way. The limitation of the method of pasting aluminum foil onto composite
material is that aluminum foil would be ablated after a period of time and it needs to be
replaced by another material. The algorithms of localized wave energy with appropriate
time windows have only been verified in composites with two regular-shaped delamination
defects, and it should be verified in irregular-shaped delamination defects. In the future,
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we will focus on the influence of different materials on the ultrasonic wavefield of CFRP as
well as the detection of multiple and irregular delamination defects.
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