| Algorithm 1: Training process of ZIC-LDM | |
| Input: Training process iteration rounds , batch size , learning rate , semantic features , FC parameter initialized for semantic features mapping, visual feature , FC parameter for visual features mapping and relation module . | |
| Output: Optimized FC parameter for semantic features mapping, FC parameter for visual features mapping and relation module . | |
| 1 | for do |
| 2 | for do |
| 3 | Sampling training samples and corresponding label from seen classes; |
| 4 | Mapping into common space: ; |
| 5 | Mapping into common space: ; |
| 6 | Concatenate and ; |
| 7 | Calculate similarity score: ; |
| 8 | Calculate MSE loss: ; |
| 9 | Update FC parameters for semantic features mapping, FC parameters for visual features mapping and relation module: ; |
| 10 | end for |
| 11 | end for |