Skip to main content
. 2021 Apr 28;21(9):3071. doi: 10.3390/s21093071

Table 2.

Overview of all layers and model parameters of the proposed CNN architecture. The output shape is given for one batch.

Layer Type Hyperparameter Output Shape # of Parameters
1D Convolution filter1: 256, kernelsize: 3 (398, 256) 4864
Max-pooling poolsize: 2 (199, 256) 0
1D Convolution filter2: 128, kernelsize: 3 (197, 128) 98,432
Dropout dropout1: 0.30228 (197, 128) 0
Max-pooling poolsize: 2 (98, 128) 0
1D Convolution filter3: 16, kernelsize: 3 (96, 16) 6160
Dropout dropout2: 0.03576 (96, 16) 0
Max-pooling poolsize: 2 (48, 16) 0
Fully-connected (768) 0
Dropout dropout3: 0.43372 (768) 0
Dense (3) 2307