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A B S T R A C T   

Problem: A worldwide challenge is to provide medical resources required for COVID-19 detection. They must be 
effective tools for fast detection and diagnose of the virus using a large number of tests; besides, they should be 
low-cost developments. While a chest X-ray scan is a powerful candidate tool, if several tests are carried out, the 
images produced by the devices must be interpreted accurately and rapidly. COVID-19 induces longitudinal 
pulmonary parenchymal ground-glass and consolidates pulmonary opacity, in some cases with rounded 
morphology and peripheral lung distribution, which is very difficult to predict in an early stage. 
Aim: In this paper, we aim to develop a robust model to extract high-level features of COVID-19 from chest X-ray 
(CXR) images to help in rapid diagnosis. In specific, this paper proposes an optimization model for COVID-19 
diagnosis based on adaptive Fuzzy C-means (AFCM) and improved Slime Mould Algorithm (SMA) based on 
Lévy distribution, namely AFCM-LSMA. 
Methods: The SMA optimizer is proposed to adapt weights in oscillation mode and to mimic the process of 
generating positive and negative feedback from the propagation wave to shape the optimum path for food 
connectivity. Lévy motion is used as a permutation to perform a local search and to adapt SMA optimizer (LSMA) 
by generating several solutions that are apart from current candidates. Furthermore, it permits the optimizer to 
escape from local minima, examine large search areas and reach optimal solutions in fewer iterations with high 
convergence speed. The FCM algorithm is used to segment pulmonary regions from CXR images and is adapted to 
reduce time and amount of computations using histogram of the image intensities during the clustering process. 
Results: The performance of the proposed AFCM-LSMA has been validated on CXR images and compared with 
different conventional machine learning and deep learning techniques, meta-heuristics methods, and different 
chaotic maps. The accuracies achieved by the proposed model are around (ACC = 0.96, RMSE = 0.23, Prec. =
0.98, F1_score = 0.98, MCC = 0.79, and Kappa = 0.79). 
Conclusion: The experimental findings indicate that the proposed new method outperforms all other methods, 
which will be beneficial to the clinical practitioner for the early identification of infected COVID-19 patients.   

1. Introduction 

The new virus called COVID-19 was identified in Wuhan, China, in 
December 2019 [1]. It belongs to the Corona family of viruses, but it is 
more deadly and dangerous than the rest of the coronaviruses [2]. Due 

to the restricted testing resources available, several countries are only 
willing to apply the COVID-19 test to a small number of people. Despite 
considerable efforts to find a viable way to diagnose COVID-19, a major 
obstacle remains the medical services available in many countries. There 
is also an urgent need to identify a quick and convenient process for 
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effectively detecting and diagnosing COVID-19. 
As the number of patients infected by this disease increases every 

day, it turns out to be extremely hard for radiologists to finish the 
diagnostic process in the constrained accessible time [3]. Medical image 
analysis is one of the most important fields of study, offering diagnosis 
and decision-making tools for a variety of diseases, such as the Middle 
East respiratory syndrome (MERS) or COVID-19, among others. 
Recently, many efforts and more attention are paid to imaging modal
ities. Therefore, interpretation of these images requires expertise and 
necessitates several algorithms to enhance, accelerate and make an ac
curate diagnosis [4]. There have been several attempts to find an 
effective and fast way to identify contaminated patients early on using 
image processing and artificial intelligence algorithms. For example, 
Randhawa et al. [5] proposed supervised machine learning techniques 
with digital signal processing (MLDSP) for COVID-19 detection using 
intrinsic genomic signatures for rapid classification of novel pathogens. 
Li et al. [6] developed a fully automatic framework to detect COVID-19 
from chest CT using a deep learning model (COVNet). The dataset was 
collected from 6 hospitals to detect COVID-19 accurately and differen
tiate it from pneumonia and other lung diseases. Al-Waisy et al. [7] 
proposed a hybrid deep learning framework for identifying COVID-19 in 
CXR images (COVID-CheXNet). First, the contrast of the CXR image was 
enhanced, and the noise level was reduced. Then, the learning features 
obtained from two different pre-trained deep learning models are fused 
and used to classify and discriminate between the healthy and COVID-19 
infected people. They improved their work based on CXR images for 
Pneumonia COVID-19 detection using a hybrid multimodal deep 
learning system (COVID-DeepNet) [8]. Mohammed et al. [9] present a 
comprehensive investigation of different machine learning for auto
mated identification of COVID-19 from CXR using ANN, SM, RBF, k-NN, 
and DT and different architectures of convolutional deep learning 
models. Mohammed et al. [10] proposed an intelligent system to help in 
COVID-19 diagnosis. The multi-criteria decision-making (MCDM) 
method is integrated with TOPSIS for benchmarking and ranking pur
poses, while entropy was used to calculate the weights of criteria, and 
the SVM classifier was used for COVID-19 diagnosis. Abdulkareem et al. 
[11] developed a model to diagnose patients with COVID-19 in smart 
hospitals based on machine learning and the Internet of Things. They 
used three ML methods: Naive Bayes (NB), Random Forest (RF), and 
SVM for COVID-19 classification. Ismael and Şengür [12] proposed deep 
feature extraction, fine-tuning of pre-trained convolutional neural net
works (CNN), and end-to-end training of a developed CNN model 
COVID-19 classification from CXR images. Nayak et al. [13], proposed 
different architectures of automated deep learning for the classification 
of COVID-19 from normal cases using chest X-ray images. The best 
performance is obtained by CNN-ResNet-34 with an accuracy of 98.33%. 
Gupta et al. [14] proposed the Stacking InstaCovNet-19 model for the 
detection of COVID-19 patients using CXR images. This model uses 
various pre-trained models to compensate for a relatively small amount 
of training data. From the literature review, we can confirm that the 
accuracy and optimum time remain a major challenge for the doctors to 
reduce the suffering of the patients. 

When being used on X-ray based pneumonia COVID-19 diagnosis, 
classical machine learning (ML) techniques have faced numerous 
problems, such as stuck in local minima, time-consuming, sensitivity to 
noise, and uncertainty. The most growing and complicated issue is the 
curse of dimensionality. There are usually two major approaches to the 
feature selection: (1) the filter approach is based on some statistical 
criteria and assigns scores to each feature, (2) the wrapper approach is 
based on a heuristic search of all possible subsets of feature [15]. To 
improve and boost the effectiveness of feature selection, bio-inspired 
swarm intelligence (SI) approaches are required for global optimiza
tion [16]. 

SI algorithms have recently been on track to address engineering 
optimization issues [17]. It has demonstrated its efficiency in solving 
large-scale problems as well as non-linear optimization problems, which 

are increasingly growing in complexity in comparison to their size. All SI 
algorithms have differences and similarities, for example, all of them 
perform two steps known as exploration and exploitation. The explo
ration is when the algorithm is diversifying the solutions looking for 
prominent regions in the search space. Meanwhile, in the exploitation, 
the searching is intensified but only in the areas detected by the 
exploration. The balancing between these two phases is the key chal
lenge to achieve an adequate balance for the optimization problem [18]. 
Slime Mould Algorithm (SMA) is one of the more recent global SI opti
mization algorithms that is caused by the slime mould diffusion and 
foraging behavior [19]. SMA relies primarily on the spreading wave 
generated by the biological oscillator to adjust the cytoplasmic flow of 
the veins in such a way that they appear to be in a better place of food 
concentration. At the same time, SMA uses weights to simulate the 
positive and negative feedback generated during foraging and thus 
forming different morphotypes. 

The advantages of SMA over different SI algorithms are as follows: 
(1) it has fewer parameters that need to adapt during the optimization 
process. (2) the distribution of SMA is mainly concentrated in multiple 
regions with local optimum, which shows the tradeoff of slime mould 
between multiple local optimums. (3) the fast oscillation in the explo
ration phase and the slight oscillation in the exploitation phase can 
ensure the fast convergence of slime mould and the accurate search near 
the optimal solution. Moreover, SMA exhibits significant advantages in 
the exploitation phase for uni-modal and multi-model functions and able 
to avoid local optimum and show better exploration. Furthermore, it 
achieves superior solutions faster than other counterparts due to the 
ability to well coordinate between exploration and exploitation [19]. 

However, the existing bio-inspired algorithms cannot solve all types 
of optimization problems. When the exploration facility is improved in 
SMA, it will lead to reductions in the exploitation capability, and vice 
versa. It is relatively challenging to attain an appropriate balance be
tween these two phases through the optimization process, specially with 
the critical cases. Hence, there is a need for a new or enhanced opti
mization algorithms to better resolve existing problems that are too 
complicated to solve with current methods. Therefore, for optimization 
and optimum search, Lévy’s distribution behavior is employed to get a 
good balance between the exploration and exploitation phases. The Lévy 
motion process is known as a non-Gaussian stochastic motion which can 
be considered as a random search pattern extracted from nature. In 
general terms, the Lévy motion is a random movement in which its 
duration depends on a Lévy distribution [20]. Many natural and artifi
cial facts that can be depicted by Lévy distribution, such as fluid dy
namics, earthquake analysis, and diffusion of fluorescent molecules,… 
etc. [21]. Lévy also was used by Ren et al. [22] and Iacca et al. [23] for 
constrained and non-constrained problems, and by Charin et al. [24] 
and Zhang et al. [25] for estimating parameters in a photovoltaic system 
under partial shading conditions. Lévy considers as a family of scale-free 
distribution by random steps and directions. Lévy helps the optimizer by 
generating several solutions that are different from the existing solutions 
to escape local minima, increase the efficiency in examining large search 
areas, avoid premature convergence, and improve the global search. 

On the other hand, segmentation of the X-ray scans by separating 
regions of an image from each other is an important phase in the image 
processing and computer vision, focusing on a particular region, thus 
increasing the precision of the techniques of image analysis. One of the 
most common algorithms for clustering is the fuzzy c-means (FCM) [26]; 
it is an unsupervised learning method that is simple and can maintain 
more information than other methods. In medical images, the FCM has 
been applied in different clustering problems such as [27–32]. The main 
drawbacks of the FCM are that easily affected by noise and highly time- 
consuming. Besides, it does not consider the spatial information of the 
image. The adaptive-FCM has been proposed to overcome these prob
lems; this adapted clustering method reduces the time consumption and 
enhances the immunity to noise. However, in an application such as 
pneumonia COVID-19 diagnosis, to obtain good segmented images, it is 
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necessary to precisely define the centroids and increase the convergence 
speed. 

The motivation of this study is to propose an accurate diagnosis 
model with optimum time for COVID-19 infection from chest X-ray 
image depends on combining the strength of different techniques. The 
proposed model mainly consists of five phases; in the first phase (Pre
processing), the images are enhanced, and noise is removed using 
removal and median filters. In the second phase (Segmentation), pul
monary regions are segmented from a chest X-ray, the adaptive-FCM is 
proposed to cluster image and segment pulmonary regions from CXR 
images automatically. Then, the morphological operators are used to 
refine the segmentation process. In the third phase (Feature extraction), 
the high-level features with different scales are extracted from the 
segmented regions using five different feature extraction methods: Grey 
Level Co-occurrence Matrix (GLCM), Histogram of Oriented Gradients 
(HOG), Local Binary Pattern (LBP), Segmentation based fractal texture 
analysis (SFTA), and Speeded-Up Robust Features (SURF). Then these 
features are fused to increase the diversity of features and to increase the 
rate of classification accuracy. Feature fusion helps to learn image fea
tures fully for the description of their rich internal information and helps 
to obtain a compact representation of integrated features, thus resulting 
in lower computational complexity and better performance to identify 
COVID-19 with an unconstrained environment. In the fourth phase 
(Feature selection), the SMA method is adapted to determine the 
optimal significant features from the huge matrix of extracted features 
for subsequent classification and decision making. To address the in
crease in the performance of SMA, we propose to use Lévy motion dis
tribution to achieve the balance between exploration and exploitation 
rates. Moreover, the kernel-decision-tree function is used as a part of the 
optimizer to validate the significant features. In the fifth phase (Clas
sification), the optimal features, whose selected by LSMA after feature 
fusion, are used to train the decision tree classifier for recognition of 
COVID-19 from chest X-ray images. Moreover, different assessment 
criteria are used to compare the efficiency of the proposed model and the 
whole model (called AFCM-LSMA) with popular meta-heuristic opti
mization algorithms and various chaotic maps. The experimental results 
confirm that the proposed model can properly estimate the optimal 
features with fast convergence. Besides, a high accuracy is also 
computed in the identification of COVID-19 patients. 

The main contributions of this article are listed as follow:  

– An improved slime mould optimization algorithm based on Lévy 
distribution (LSMA) is proposed to select high-level features of 
COVID-19 from CXR images to help in rapid diagnosis and to 
improve classification accuracy.  

– Lévy motion distribution is used as a permutation to perform a local 
search, escape from local minima, and adapt SMA optimizer.  

– An improved FCM algorithm is adapted to reduce the time and 
number of computations in pulmonary regions segmentation from 
CXR images using the histogram of the image,  

– The experimental results revealed that the proposed AFCM-LSMA is 
superior to other well-known bio-inspired optimization algorithms 
and different chaotic maps in the literature and outperforms different 
machine learning and deep learning techniques. 

The remainder of this paper is organized as follows. Section 2 pre
sents the dataset description and the background of the methods 
involved in the proposed model. Section 3 introduces the AFCM-LSMA 
model for COVID-19 X-ray diagnosis. Experimental results are pre
sented in Section 4. Finally, Section 5 concludes this paper and presents 
the future work. 

2. Materials and methods involved 

2.1. Dataset description 

The dataset is composed of 1124 CXR images. More specifically, 
there are 403 images of patients with COVID-19 and 721 images of 
normal patients. The dataset of CXR images are collected from four 
publicly available sources: (1) IEEE-COVID-19 CXR images [33], (2) 
Radiography-COVID-19 CXR images [34], (3) Initiative-COVID-19 CXR 
images [35], and (4) Radiopedia-COVID-19 [36]. The decision to collect 
and create one dataset of CXR images from four sources is motivated 
because each one has a limited number of CXR COVID-19 cases, and 
also, they are all open-source and freely transparent to the public and 
research communities. Samples of the selected images are given in 
Fig. 1. 

2.2. Slime mould algorithm (SMA) 

The SMA is a new optimizer that takes as inspiration the slime mould 
(SM) oscillation mode [19]. The slime mould relates to the physarum 
polycephalum, which was first identified as a fungus, and for that 
reason, it is called “slime mould”. One of the main features of the SMA is 
the mathematical model that considers the use of weights that dynam
ically adapt their values. The weights permit to have feedback about the 
propagation wave of SM by using a bio-oscillator that allows to have a 
mechanism for linking food. This process conduces a proper balance 
between the exploration and exploitation of the search space. 

The SM, also called plasmodium, is the primary nutritional step; it is 
also a dynamic phase in SM. Throughout the migration, the front end is 
converted into a fan-shaped network, accompanied by an integrated 
venous network allowing cytoplasm to circulate within. Due to their 
features related to the patterns, they may concurrently utilize several 
sources of food to create a venous network that binds them. If the 
environment has enough food, SM may also grow to over 900 square 
centimeters. For food sources, SM uses a bio-oscillator to create a 
propagating wave that raises the cytoplasm flow across the vein. Then 
most of the cytoplasm goes to the thicker section of the vein. Along the 
process and by using the positive–negative feedback, the slime can 
define an optimal path to a relatively superior food connection. The 
mathematical model of SM may also be developed and implemented in 
graph theory and route networks. 

The SM can dynamically change their search patterns based on the 
nature of the source food. If a food source has a high-quality, then the SM 
employs the process called region-limited search. Considering such 
facts, this is the exploitation phase where the search is focused only on 
certain food sources. Meanwhile, if the quality of the food is low, then 
the SM leaves the food source and moves to another region of the search 
space. This corresponds to the exploration. To model SMA algorithm 
[19], the following equation is used to simulate the contraction mode of 
the approaching behavior: 

X(t + 1)
̅̅̅̅̅→

=

{

Xb(t)
̅̅→

+ vb
→⋅

(
W→⋅XA(t)

̅̅̅→
− XB(t)

̅̅̅→)
, r < pvc→⋅X(t)

̅̅→
, r ≥ p (1)  

where vb
→

is oscillates parameter vb
→

∈ [ − a, a], vc→ is oscillates parameter 
decreases linearly from [1,0], t is the current iteration, Xb

̅→ represents 
the best position obtained so far, X→ denotes the current position of slime 
mould, XA

̅→ and XB
̅→ are two randomly selected individuals from the 

swarm, W→denotes the weight of SM. The p parameter can be represented 
as follows: 

p = tanh|S(i) − BF | (2)  

where i ∈ 1,2,3,⋯,n, S(i) denotes the fitness of X→, BF is the best fitness 
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obtained so far. The parameter vb
→

can be calculated is as follows: 

vb
→

= [ − a, a] (3)  

a = arctanh
(
−
( t

max t

)
+ 1

)
(4) 

The weight of SM W→ can be calculated as follows: 

W(FitnessMin(i))
̅̅̅̅̅̅̅̅̅̅̅→

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + rand⋅log
(

bF − S(i)
bF − wF

+ 1
)

, i ≤
(
Nagent

/
2
)

1 − rand⋅log
(

bF − S(i)
bF − wF

+ 1
)

, others
(5)  

FitnessMin = sort(S) (6)  

where i ≤ (Nagent/2) simulates the SM to adjust their search to the food 
quality and Nagent represents the number of agents. S(i) indicates the 
ranks first half of the population. The rand is random variable rand ∈ [0,
1], bF and wF represent the optimal and worst fitness through the current 
iterative process, respectively, and FitnesMin(i) is the sorted sequence of 
minimum fitness values. Besides, Eq. (5) reflects the positive and 
negative feedback that exists between the width of the SM vein and the 
concentration of food explored. The greater the concentration of food 
reached by the vein, the stronger the bio-oscillator wave, the faster the 
cytoplasm flows, and the thicker the vein. 

To update the SM position the following mathematical formula is 
proposed: 

X*
̅→

=

⎧
⎪⎨

⎪⎩

rand⋅(U − L) + L, rand < z

Xb(t)
̅̅→

+ vb
→⋅

(
W⋅XA(t)

̅̅̅→
− XB(t)

̅̅̅→)
, rand < pvc→⋅X(t)

̅̅→
, rand ≥ p (7)  

where L and U are the limited boundaries of the search space, lower and 
upper, respectively. The parameter z is used to probability maintain the 
SMA search space for exploration and exploitation. In this paper, the 
optimal value for parameter z is set to 0.03. 

The SM relies primarily on the spreading wave generated by the 
biological oscillator to adjust the cytoplasmic flow of the veins in such a 
way that they appear to be in a better place of food concentration. To 

simulate variations in the venous width of the SM, the parameters W→,vb
→
,

and vc→ are used to identify the variations. W→ reflects the oscillation 
frequency of SM close one at various food concentrations, meaning that 
SM will approach food more rapidly while seeking high-quality food, 
thus approaching food more slowly when the concentration of food is 

lower in individual positions, thereby increasing the efficiency of SM in 
selecting the optimum food source. To pursue a better food source, and 
though SM has found a better food source, it would also separate some 
organic matter for exploring and searching other places in an attempt to 
locate a higher quality food source, rather than concentrating it all in 
one place. The steps of SMA algorithm are shown in Algorithm 1. 

2.2.1. SMA-based Lévy distribution 
In the 1930s, a researcher discovered a class of probability distri

butions having an infinite second moment and governing the sum of 
these random variables. Such distribution is called Lévy motion [20]. In 
previous research, it is seen that the foraging behavior of nature animals 
is a sort of random act of movement. Since the next move usually de
pends on the current position and the probability of moving to the next 
position, the success of each random move is quite critical. Recent 
studies have shown that Lévy’s distribution is one of the strongest 
methods for random movement [21]. The process is known as a non- 
Gaussian stochastic random motion form, in which a Lévy distribution 
is used to compute the random step lengths. To identify the issues in a 
broad range of unknown large search spaces, the variation of Lévy’s 
movement (non-Gaussian distribution) is more efficient compared to the 
dimensional Brownian movement (Gaussian distribution); this effi
ciency motivates the optimization algorithms to use this distribution. 
Since this distribution has more chances to search further points than 
Gaussian distribution. Therefore, numerical and optimization algo
rithms for generating Lévy random distribution were introduced in 
different applications to provide a chance to escape from local optima 
such as [22–25]. 

Fig. 2 shows an example of the Lévy movements, where it is possible 
to see different jumps with long and short distances. In this study, the 
Lévy motion mechanism is introduced to the Slime mould position up
date. On the one hand, it can effectively avoid the overreliance of the 
slime mould position change on the previous generation position in
formation and ensure the diversity of the population. On the other hand, 
the random oscillations mode of Lévy that changes large steps suddenly 
after a series of small steps gives the slime mould individual the ability to 
inverse suddenly to another location, which helps the algorithm to 
escape from the local minima, avoiding the premature convergence, 
increase the efficiency in examining large search area, and improve the 
global search capability. Besides, Lévy random motion adopts the opti
mizer to generate several solutions that are different from existing so
lutions. The mathematical model of the Lévy distribution is defined as 
follows: 

Fig. 1. Examples of X-ray scans from the collected dataset. The first row represents the COVID-19 for different infected cases and the second row represents the 
normal cases. 
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L(s, γ, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γ

2π exp
(

−
γ

2(s − μ)

)
1

(s − μ)3/2, 0 < μ < s < ∞

√

0otherwise

(8)  

where μ is minimal step size (shift parameter), γ is a scale parameter 
γ > 0, and s is a random vector computed from a simple power-law 
formula L(s) |s|− 1− β where 0 < β < 2. Lévy motion is more effective 
than Gaussian’s random motion to perform the exploration of complex 
search spaces and it can be seen from the long and abrupt jumps. Thus, 
Lévy’s random motion motivates to exploit it to perform the random 
motion of slime mould. 

The SMA agents are redistributed in the search space with Lévy 
method. To get rid of local minima and improve the global search 
capability. Therefore, a new SMA position Xi+1 corresponding to an ith 

SM is obtained by combining a Lévy motion with its old position Xi as 
follows: 

Xi+1 = Xi +L ⊕ L(λ) (9)  

where L is a random step size parameter, and λ is a Lévy motion dis
tribution parameter. The step size L is achieved using the Mantegna 
formula as follows: 

L = v ⊕ L(λ) ∼ 0.01
u

|v|1/B

(
Xi − X̂

)
(10)  

where Xi is the current position and X̂ is the best position obtained. The 
factor 0.01 comes from the fact that L /100 should the typical step size 
of walks where L is the typical length scale; otherwise, Levy motion 
may make new solutions (even) jump outside of the design domain. The 
u and v parameters are obtained from the following equations. 

u N
(
0, σ2

u

)
, σu =

(
Γ(1 + β)sin(πβ/2)

βΓ[(1 + β)/2]2(β− 1)/2

)

(11)  

v N
(
0, σ2

v

)
, σv = 1 (12)  

where 0 < β ≤ 2, and Γ is the gamma function defined as: 

Γ(y) =
∫

zy− 1e− ydt (13)  

2.2.2. LSMA-based decision tree kernel 
In this study, the decision tree method (DT) is used as a kernel or 

objective function to assess each slime mould in each iteration. The 
advantages of using the DT method as a kernel function are as follows; it 
is a robust method and requires less time computation for training, and 
requires a small set of training data. The following kernel function for
mula is used to assign fitness value to each SM in the search space 
through the optimization process: 

Fitnessval = (1 − δ)⋅(1 − DTACC)+ δ⋅
Sattr

(Lattr − 1)
(14)  

where δ is a balance factor (set to δ = 0.01, after different trials), DTACC is 
the DT accuracy, Sattr is the summation of selected features, and Lattr is 
the length of selected features. The goodness of each subset of features 
represented by SM position in the feature space is assessed by kernel- 
based DT function. 

2.3. Adaptive fuzzy C-Means (AFCM) 

The segmentation of medical images is an essential task that permits 
to perform posterior analysis of the objects. Then it is crucial to have a 
robust technique that permits handling the challenges of medical im
ages. Based on this fact, the Fuzzy C-Means (FCM) is considered one of 
the most popular approaches for image clustering [26–31]. The FCM is 
regarded as a part of the unsupervised clustering techniques, and it has 
been widely used to solve complex problems. However, it is not a perfect 
method, and its drawbacks are the computational effort that depends on 
the number of clusters and the accuracy that is affected by the noise of 
the datasets. 

The FCM process starts by considering that object O is a set of p 
pixels, and C is the set of c centroids in an n-dimensional feature space. 
To classify each pixel, the algorithm uses the following objective func
tion iteratively: 

J =
∑n

j=1

∑c

i=1
μij

m|Oj − Ci|
2 (15)   

Algorithm 1: Steps of SMA algorithm. 

1: Initialize parameters Nagent, Maxt.  

(continued on next page) 

Fig. 2. A series of 100 consecutive steps of Lévy motions (non-Gaussian distribution).  
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(continued ) 

Algorithm 1: Steps of SMA algorithm. 

2: Initialize slime mould positions Xi.  
3: While (t ≤ Maxt)

4:Calculate the fitness of all SM; 
5: UpdatebestFitness,Xb  

6:Calculate W by Eq. (5); 
7:For each agenti 
8: Updatep, vb, vc.  
9: UpdatepositionsbyEq.(7).  
10:EndFor  
11: t = t + 1;  
12: End While 
13: Return OptimalsolutionXb.   

where m is a weighted index parameter m ∈ [1,∞], Ci is the ith cluster 
centers, and μij is the fuzzy membership which can be calculated as 
follows: 

μij = 1

/
∑c

k=1

(
dij

dkj

)2/m− 1

(16)  

where dij is the Euclidian distance. The objective function is minimized 
during the process of clustering, the pixels close to cluster centroid have 
been assigned high membership values, and these membership values 
are updated in each iteration. The FCM stops when the criteria are 
satisfied (the centroids of the previous and current iteration are 
identical). 

In medical images and especially in chest X-ray images for COVID-19 
infection detection, the implementing of the algorithms applied during 
the life pandemic should be accurate and fast. Nevertheless, 

conventional FCM may not have enough convergence speed, especially 
in emergency conditions. The FCM assigns membership values to every 
pixel and iteratively updating the cluster centers. Updating the mem
bership matrix is, therefore, a time-consuming procedure. Thus, the 
adaptive-FCM (AFCM) is proposed using the histogram of the image 
intensities (maximum (Imax) and minimum (Imin)) through the clustering 
process instead of the raw image data to reduce time computation in the 
standard FCM. The steps of the adaptive FCM are shown in Algorithm 2.  

Algorithm 2: Adaptive fuzzy c-means (AFCM) 

Input: X-ray image (I). 
Output: Labeled image. 
1: Compute image histogram (Ihist). 
2: Compute range of intensity (Imin, Imax). 
3: Initialize cluster centroids. 
4: Update fuzzy memberships and centroids. 
5: While (Pre centroid < > Cur centroid) 
6:For each Pixel (P) in Ihist 
7:Compute Euclidian distance. 
8:Compute fuzzy memberships for each P in Ihist. 
9:End For 
10:End While 
11: Update centroids. 
12: Defuzzify and create image label.  

3. The proposed AFCM-LSMA model 

In this section, the proposed new model is presented based on 
adaptive-FCM and Lévy-SMA to analyze and diagnose patients with 
COVID-19 from CXR scans using a set of real data. The proposed opti
mization model consists of five phases: preprocessing, segmentation, 

Fig. 3. Pipeline of the proposed AFCM-LSMA model for COVID-19 detection in chest X-ray images.  
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feature extraction, feature fusion and selection, and identification with 
decision making. The following is a detailed description of each phase, 
with the steps involved and the characteristics for each phase. Fig. 3 
shows the pipeline of the proposed AFCM-LSMA model for infected 
COVID-19 identification based on CXR images.  

– Preprocessing phase. In this phase, X-ray images are converted into 
a gray-scale levels and resized to reduce computational time. The 
adaptive noise removal (ANR) filter is used to remove noise and to 
reflect the true intensities of the images. The ANR uses a pixel-wise 
adaptive wiener method based on statistics estimated from a local 
neighborhood of each pixel. Then, the median filter is applied with 
median size 5-by-5 neighborhood to the input CXR image.  

– Segmentation phase. The pulmonary regions are segmented in this 
phase from CXR images. Here the adaptive-FCM is proposed to 
automatic cluster images and segment pulmonary regions from the 
CXR images, and morphological operators are used to refine seg
mentation results. The intensities histogram of the CXR image (Imin, 
Imax) is utilized during the clustering process instead of raw image 
data. Arguably, the AFCM does not depend on the whole CXR image, 
and it depends on the frequencies of the CXR images. The AFCM 
method is less sensitive to noise, it reduces the computational time of 
clustering and increases the performance of conventional FCM.  

– Feature extraction phase. In this phase, the high-level features with 
different scales are extracted from the segmented pulmonary regions 
using five different feature selection methods GLCM [37], HOG [38], 
LBP [37], SFTA [39], and SURF [40]. As the extracted features are 
the base for classifying the COVID-19, the classification techniques 
also resulted in low classification accuracy. There is a consensus that 
no single feature has a perfect performance because every feature has 
its limitations. To resolve these issues, features are fused to increase 
the rate of classification accuracy.  

– Feature fusion and selection phase. After feature extraction of 
each candidate region by the five feature extraction methods, these 
feature vectors of the same X-ray pulmonary regions are concate
nated to form higher dimensional fusion features. This can 
compensate for the inadequacy of a single method in the feature 
extraction. However, there always exist irrelevant, some correlation, 
and information redundancy between these features and higher 
dimensional features lead to higher computational complexity. 
Therefore, the LSMA is adopted to determine the significant features 
from the high dimensional feature fusion matrix. In this sense, a 
subset of features can be regarded as a point in a large feature space. 
In the search space, the SMA population is stochastically initialized 
and moves randomly to change their positions; this is called 
continuous space. Feature selection issues are restricted to the values 
of binary space [0,1]; thus, continuous features are converted into 
their corresponding binary solutions. A 0 or 1 is represented for each 
value in the feature vector. A 1 means the corresponding feature is 
selected, while the value set to 0 means the corresponding feature is 
not selected. In the search space, the fitness value is given to each SM 
and assessed in each iteration. The fitness of each SM is initialized 
using kernel-based DT function as seen in Eq. (14). This kernel 
function is used as a part of the optimizer to validate the significant 
features. Besides, to control the exploitation and exploitation phases 
in SMA, Lévy motion (non- Gaussian distribution) is embedded in 
SMA to generate a fraction of solutions that are apart from existing 
solutions and far enough from the current solution. Such far help the 
SMA optimizer to escape from local optima and finds global solu
tions, avoids stagnation, increases the efficiency in examining large 
search areas, and improves the global search capability.  

– Diagnosis and decision-making phase. In this phase, a simple 
decision tree method is used for the identification of infected COVID- 
19 from CXR images after the feature fusion and selection phase. The 
advantages of the DT-based classification are self-explanatory logic 
flow, richness in representing discrete-value classifiers, less time 

computation, ability to handle small datasets, and ability to handle 
missing data values and error. 

4. Experimental results and discussion 

The proposed new optimization model for COVID-19 detection from 
CXR images is implemented and tested on an Intel® CoreTM i7-2670QM 
2.5 GHz processor with 16 GB RAM using MATLAB (R2016a, The 
MathWorks, Inc.). To evaluate the proposed AFCM-LSMA model, 
numerous measures are utilized to compare different methods and to 
assess the feature selection and classification process for COVID-19 
diagnosis. These measures are best fitness score (BFS), worst fitness 
score (WFS), standard deviation (Std), average attribute selection (AAS), 
accuracy (ACC), computational time (time), root mean square error 
(RMSE), false-positive rate (FPR), sensitivity, specificity, precision, 
F1_score, kappa coefficient (Kappa), Matthews correlation coefficient 
(MCC), informedness (Informed) and markedness (Marked) [15,16]. 

4.1. Parameters setting 

LSMA has a set of parameters that need to be initialized before the 
optimization process. Table 1 shows the parameters setting used in the 
experiments for all the competitive algorithms (Ant Lion Optimizer 
(ALO) [41], Grey Wolf Optimizer (GWO) [16], Whale Optimization 
Algorithm (WOA) [17], Bat algorithm (BAT) [42]). These parameters 
include the number of search agents (NAgents), upper and lower limits 
(U and L), the maximum number of iterations (IterMax), space dimension 
(Sd), and binary domain search (BSD). 

4.2. Segmentation based-AFCM algorithm 

The X-ray images obtained by the medical personal need to be pro
cessed before extract the essential information. Fig. 4 shows the output 
of different steps performed for the prepossessing and segmentation of 
the pulmonary region in the CXR images. In this figure, the CXR images 
(CXR_Imgs) 1 and 2 correspond to the normal patients; meanwhile, the 

Table 1 
Parameters setting used in the experiments.  

Algo. Parameters Init. Description 

ALO TMax 50 Total no. of iterations 
NAgents 5 No. of ants search agents 
SD 672 Space Dimension 
BSD [01] Binary domain search 
[U L] [10] Upper and Lower bound 

WOA TMax 50 Total no. of iterations 
NAgents 5 No. of whales search agents 
SD 672 Space Dimension 
BSD [01] Binary domain search 
[U L] [10] Upper and Lower bound 

GWO TMax 50 Total no. of iterations 
NAgents 5 No. of Wolves search agents 
SD 672 Space Dimension 
BSD [01] Binary domain search 
[U L] [10] Upper and Lower bound 

BAT TMax 50 Total no. of iterations 
NAgents 5 No. of bats search agents 
SD 672 Space Dimension 
BSD [01] Binary domain search 
[U L] [10] Upper and Lower bound 

SMA TMax 50 Total no. of iterations 
NAgents 5 No. of slim search agents 
SD 672 Space Dimension 
BSD [01] Binary domain search 
[U L] [10] Upper and Lower bound 
δ  0.01 DT balance factor 
Z 0.03 Explor. and exploit. factor 

FCM q 2 Fuzzifier Index 
c 3 No. of clusters  
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rest are for COVID-19 infected patients. The CXR images are then firstly 
filtered to remove noise by adaptive wiener filter, and then the median 
filter is applied to smooth image with median value a 5-by-5 neigh
borhood around the corresponding pixel in the input CXR image. Fig. 4 
(a) shows the results of the preprocessing steps in the filtering column. 
Consequently, images are passed to adaptive-FCM for clustering and 
segmentation. The FCM clustering algorithm is adapted to be suitable for 
the problem of COVID-19 detection, as shown in Fig. 4 (b). Before get
ting the final output, morphological operations are applied to make the 
segmented lungs more solid objects as shown in Fig. 4 (c). The 
segmented lungs are then used in the feature extraction phase as shown 
in Fig. 4(d). 

4.3. Feature extraction 

After the segmentation results are generated, the pulmonary regions 

identified are used as an input to the feature extraction process. The idea 
of this task is to obtain the information that describes infected and 
healthy tissue. Five different feature extraction methods are used GLCM, 
HOG, LBP, SFTA, and SURF to extract features from the segmented 
pulmonary regions. They are experimentally selected considering the 
information provided. Thus, features are extracted using different 
methods for different scales of features to increase the rate of classifi
cation performance. GLCM is used to extract the second-order statistical 
texture features and to provide spatial relationships of pixels in the 
segmented image. It provides vectors with size 68 feature values 
computed from the following 17 formula (energy, entropy, homogene
ity, contrast, dissimilarity, angular second moment, correlation, vari
ance, maximum probability, cluster tendency, cluster shade, cluster 
prominence, sum-average, sum variance, sum entropy, entropy differ
ence, difference-variance) with four orientations and one distance. LBP 
is an efficient texture feature uses to labels the pixels of an image by 

Fig. 4. Segmentation results of the proposed Adaptive FCM for different normal and infected COVID-19 X-ray patients. CXR_Img 1 and CXR_Img 2 correspond to 
normal patient’s X-ray, and the remaining are of the X-ray of infected COVID-19 patients. 
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thresholding the neighborhood of each pixel. Due to its discriminative 
power and computational simplicity, LBP has become a popular method 
in various applications. LBP is used to provide vectors with size 4 texture 
feature values from (mean, standard deviation, skewness, and kurtosis). 
HOG uses for the purpose of object detection. This method counts oc
currences of gradient orientation in localized portions of an image. HOG 
is similar to that of edge orientation histograms, scale-invariant feature 
transform descriptors (SIFT), and shape contexts, but differs in that it is 
computed on a dense grid of uniformly spaced cells to improve accuracy. 
In this study, HOG is used to provide vectors with size 500 feature values 
of gradient features. SFTA method is used to decompose the segmented 
pulmonary CXR image into a set of binary images from which the fractal 
dimensions of the resulting regions are computed to describe texture 
patterns. SFTA uses to provide vectors with size 36 features. SURF 
method provides a local feature detector and descriptor to recognize 
objects. SURF uses to detect interest key-points based on the Hessian 
matrix. Simplify the operation and helps to reduce the computational 
cost by applying appropriate filters to the integral image. Haar wavelet 
responses in x and y directions are computed to determine the orienta
tion. Based on the integral image and Hessian matrix, robust keypoint 
descriptors are detected by using the SURF algorithm. In this study, 
SURF provides vectors with size 64 feature values. All this information 
then is fused and stored in a high dimensional matrix for posterior steps. 

4.4. Feature fusion and selection 

Feature fusion of the extracted features helps to learn image features 
fully for the description of their rich internal information, to obtain a 
compact representation of integrated features, and to form a matrix with 
high dimensional features. However, to reduce redundant data, remove 
irrelevant, and obtain optimal features, the enhanced LSMA algorithm is 
used as a feature selection method to identify the optimal and most 
representative features that describe the instances of the dataset 
generated in the previous phase. The enhanced LSMA is then firstly 
compared with the conventional SMA to verify its performance over this 
task. Fig. 5 shows that the convergence curve using the decision tree as 
an objective function. In the plot, it is shown that the optimal fitness 
value looked for by SMA varies with iterations. The convergence curve 
shows the behavior of the algorithm and how the processes of explora
tion and exploitation are applied. Besides, the speed of convergence of 
the LSMA is superior to find the optimal values. 

Table 2 presents an analysis of the optimization results obtained by 
the LSMA and the SMA for the feature extraction. From this table, it is 
possible to analyze that the LSMA provides better values in terms of the 

objective function. Besides, the worst value after 35 independent runs 
are similar for both algorithms; however, the best value of the runs is for 
the LSMA. The computational time is also lower for the LSMA, and the 
Accuracy (ACC) of the classification is also better for LSMA. 

Regarding the different metrics used in classification and feature 
selection, Table 3 presents a comparative analysis between the SMA and 
the LSMA based on different measures calculated. As we can see, the 
proposed model based on Lévy motion has good performance and is 
superior in most of the metrics as in ACC, RSME, time, error, precision, the 
average number of attribute selection (AAS), false-positive error (FPR). 
Moreover, F1-score is 0.9767 that represents a perfect precision and 
recall even if the data is unbalanced, and Kappa is 0.791 that represents a 
good agreement based on Kappa coefficient criteria where 0.60 < k >
0.80, where Informedness is 0.801 that measures how informed the 
model is about positives and negatives predictions. More details about 
SMA and LSMA can be seen in Table 3. 

Since the proposed LSMA is a modified version of the SMA using 
different distributions for random variables, then it is necessary to 
compare it with another kind of distributions. In this sense, six chaotic 
maps are considered, namely Chebyshev, Circle, Logistic, Sine, Singer, 
and Tent. Fig. 6 shows the convergence curve for SMA with different 
chaotic maps and Levy motion distributions. From this plot, we can see 
that Lévy motion is the highest convergence (in around 15 iterations) to 
the optimal solution compared with other chaotic maps. Moreover, from 
Table 4 it is possible to analyze the results generated by the fitness and 
the accuracy of the classification using different chaotic maps and the 
LSMA (Lévy motion). In terms of fitness, the version based on Lévy 
motion provides the best mean value after 35 independent runs. In the 
same way, the LSMA is better for ACC and computational time. The 
worst mean fitness is for the Singer and Chebyshev maps, but the Singer 
map is the best for the Std. Considering the results, we can prove that the 
LSMA is a competitive option that provides more accurate detection of 
COVID-19 cases in X-ray images and less computational time. More 
details about SMA versions with Lévy and different chaotic maps can be 
seen in Table 4. 

Table 5 also shows a comparative study of the feature selection and 
classification tasks by using different evaluation criteria. From such a 
table, we can see that the classification accuracy is better for the Lévy- 
SMA ACC (≈0.96), followed by SMA integrated with the Sine map 
(≈0.94), and the worst for the Singer map (≈0.93). The RMSE is also 
better for the Lévy-SMA (≈0.23), followed by Sine-LSMA (≈0.24) and 

Fig. 5. Convergence curve of the proposed LSMA compared with conventional 
SMA algorithm. 

Table 2 
Results of the proposed LSMA compared with classical SMA in terms of best and 
worst fitness, µ, Std, time, and ACC.  

Algor. µ Std WFS BFS Time ACC 

SMA 0.0325 6.5388e− 04 0.0334 0.0319 56.0668 0.9395 
LSMA 0.0265 0.0032 0.0334 0.0247 42.2139 0.9586  

Table 3 
Results of the proposed LSMA compared with classical SMA using different 
measurement criteria.  

Measure SMA LSMA 

ACC 0.940 0.959 
RMSE 0.236 0.233 
Time 56.067 42.214 
AAS 0.353 0.103 
Sensitivity 0.998 0.975 
Specificity 0.484 0.826 
Precision 0.946 0.979 
FPR 0.516 0.174 
F1_score 0.971 0.977 
MCC 0.660 0.791 
Kappa 0.618 0.791 
Informed. 0.482 0.801 
Marked. 0.904 0.781  
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also worst for Singer (≈0.26). In terms of the computational time, the 
best is SMA based-Lévy (≈0.42 s), but the most time-consuming is the 
Logistic map (≈0.136 s). The lower error is also for the Lévy version and 
the worst for the Singer map. The precision of the LSMA is also superior 
for the classification task. Besides, the minimum average of the attribute 
selection is better for LSMA with high ACC accuracy and less FPR error. 
The MCC is also superior for the LSMA, which takes into consideration 
true, false positives, and negatives and is generally considered a 
balanced measure that can be used even if the classes with imbalance 
size. Kappa is also superior, which represents a good agreement. More 
details about measurement criteria for SMA versions with Lévy and 
chaotic maps can be seen in Table 5. From these results, we can confirm 
that the proposed SMA-based Lévy motion distribution is better than 
other chaotic distribution. 

4.5. Comparison between different meta-heuristic optimization methods 

In this subsection, the performance of the proposed AFCM-LSMA is 
analyzed in comparison to other recent meta-heuristic optimization 
methods such as ALO, Singer version of ALO, WOA, Chebyshev version 
of WOA, Circle version of WOA, Chebyshev version of GWO, Gauss 
version of GWO, BAT and the standard SMA. Those optimization algo
rithms are selected due to the high performance provided in global 
optimization and real problems. In comparative experiments, all algo
rithms are carried out under the same conditions for achieving fairness. 

Fig. 7 presents a graphical comparison between all the selected meta- 
heuristic optimization methods along with the 50 iterations. From this 
figure, the LSMA algorithm converges in around 15 iterations, and the 
worst obtains by the WOA. In the plot of the LSMA, it is possible to see 
the influence of Lévy distribution to change between exploration and 
exploitation for finding the optimal solution. 

Regarding the results of classification and feature selection, Table 6 
presents the results based on different metrics. The ACC of the classifi
cation of COVID-19 patients is superior for the LSMA (≈0.96), followed 
by the standard SMA with ACC (≈0.96) and the worst for the WOA 
(≈0.90), but the accuracy of WOA is increased when the Sine chaotic 
map is integrated with WOA provides ACC (≈0.93). The best RMSE is 
also for the LSMA (≈0.23), followed by standard SMA with RMSE 
(≈0.24) and the higher for WOA (≈0.32), and also the RMSE is improved 
when WOA is integrated with Sine chaotic map with RMSE (≈0.27). In 
addition, the less computational time is archived from the proposed 
LSMA with (≈42 s), followed by SMA (≈56 s) and the worst for the 
Chebyshev map of WOA (≈160 s). This situation also occurs for preci
sion, FPR, F1_score, MCC, kappa, the error, Informed, and the average 
number of selected attributes (AAS). More details about other meta- 
heuristic algorithms can be seen in Table 6. From these results, we can 
also confirm the robustness and the superiority of the proposed AFCM- 
LSMA algorithm against different meta-heuristics and swarm intelli
gence optimization algorithms for COVID-19 detection in chest X-ray 
images. 

4.6. Comparison between different machine learning (ML) methods 

This section provides the comparison results between the proposed 
AFCM-LSMA method and other ML methods for COVID-19 detection in 
chest X-ray images, including K-Nearest Neighbor (KNN), Naïve Bayes 
(NB), Linear Discriminate Analysis (LDA) with linear and quadratic 
kernels, Support Vector Machine (SVM) with Radial basis function (RBF) 
and Gaussian kernels, and Random Forest (RF). Moreover, the proposed 
method is compared with different artificial neural network methods, 
including Back-Propagation Neural Network (BP-NN), Generalized 
Regression Neural Network (GRNN), and Probabilistic Neural Network 
(PNN). 

The comparison results are shown in Table 7 and Fig. 8. It can be seen 
that the proposed AFCM-LSMA method can achieve the highest accuracy 

Fig. 6. Convergence curve for SMA with different chaotic maps and Lévy 
distributions. 

Table 4 
Results of the proposed SMA algorithm modified by different chaotic maps and 
Lévy motion distribution in terms of best and worst fitness, µ, Std, time, and ACC.  

Version µ Std WFS BFS Time/s ACC 

Chebysh. 0.030 0.004 0.033 0.02 77.33 0.936 
Circle 0.029 0.004 0.033 0.024 69.61 0.935 
Logistic 0.028 0.004 0.033 0.024 136.02 0.936 
Sine 0.029 0.005 0.033 0.024 78.98 0.940 
Singer 0.030 0.003 0.033 0.028 69.06 0.934 
Tent 0.027 0.005 0.033 0.020 68.87 0.935 
Lévy 0.027 0.003 0.033 0.025 42.21 0.959  

Table 5 
Results of the proposed SMA algorithm modified by other six chaotic maps and Lévy motion distribution using different measurement criteria.  

Measure Cheby. Circle Logist. Sine Singer Tent Lévy 

ACC 0.9363 0.9352 0.9363 0.9395 0.9342 0.9352 0.9586 
RMSE 0.2524 0.2545 0.2524 0.2460 0.2565 0.2545 0.2327 
AAS 0.4580 0.5059 0.4791 0.4866 0.4672 0.4405 0.1026 
Error 0.0637 0.0648 0.0637 0.0605 0.0658 0.0648 0.0414 
Sensitiv. 0.9918 0.9953 0.9941 0.9929 0.9941 0.9906 0.9750 
Specific. 0.4301 0.3871 0.4086 0.4516 0.3871 0.4301 0.8261 
Precis. 0.9408 0.9368 0.9388 0.9430 0.9367 0.9407 0.9785 
FPR 0.5699 0.6129 0.5914 0.5484 0.6129 0.5699 0.1739 
F1_scor 0.9656 0.9652 0.9657 0.9673 0.9646 0.9650 0.9767 
MCC 0.578 0.5657 0.5755 0.6030 0.5573 0.5706 0.7911 
Kappa 0.541 0.5124 0.5294 0.5666 0.5076 0.5362 0.7910 
Inform. 0.4219 0.3824 0.4027 0.4445 0.3812 0.4207 0.8010 
Marked. 0.7918 0.8368 0.8225 0.8180 0.8148 0.7740 0.7813  
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Fig. 7. Convergence curve of different swarm intelligence algorithms compared with the proposed LSMA algorithm.  

Table 6 
Results of the proposed LSMA compared with the counterpart meta-heuristic algorithms.  

Measures ALO Singer-ALO WOA Cheby-WOA Circle-WOA Sine-WOA Cheby-GWO Gauss-GWO BAT SMA LSMA 

ACC 0.937 0.935 0.895 0.922 0.917 0.927 0.922 0.924 0.920 0.940 0.959 
RMSE 0.250 0.255 0.324 0.279 0.288 0.271 0.279 0.277 0.282 0.236 0.233 
Time/s 112.51 74.974 158.09 160.24 156.59 159.28 92.48 157.83 99.31 56.07 42.21 
AAS 0.595 0.268 0.936 0.946 0.964 0.970 0.487 0.952 0.504 0.353 0.103 
Error 0.063 0.065 0.105 0.078 0.083 0.073 0.078 0.076 0.080 0.053 0.041 
Prec. 0.935 0.938 0.892 0.923 0.913 0.929 0.9198 0.921 0.920 0.946 0.979 
FPR 0.634 0.602 0.795 0.723 0.650 0.661 0.742 0.727 0.742 0.516 0.174 
F1_scor 0.966 0.965 0.943 0.958 0.955 0.961 0.958 0.959 0.957 0.971 0.977 
MCC 0.585 0.567 0.427 0.474 0.565 0.519 0.487 0.501 0.470 0.660 0.791 
Kappa 0.510 0.519 0.309 0.394 0.485 0.458 0.383 0.402 0.377 0.618 0.791 
Inform. 0.366 0.392 0.205 0.273 0.350 0.333 0.258 0.273 0.256 0.482 0.801 
Marked. 0.935 0.819 0.892 0.823 0.913 0.809 0.919 0.921 0.864 0.904 0.781  

Table 7 
Comparison results between the proposed method and different ML methods under different evaluation criteria.  

Meth. ACC Err Sens. Spec. Precis FPR F1 MCC Kappa Inform Marked Time 

KNN 0.904 0.096 0.974 0.349 0.923 0.651 0.948 0.422 0.401 0.323 0.551 1.023 
NB 0.889 0.112 1.000 0.000 0.889 1.00 0.941 – 0.000 0.000 0.000 4.438 
LDA-L 0.913 0.087 0.932 0.762 0.969 0.238 0.950 0.620 0.613 0.694 0.554 4.803 
LDA-Q. 0.876 0.124 0.904 0.651 0.954 0.349 0.928 0.480 0.470 0.555 0.415 4.056 
SVM-RBF 0.906 0.094 0.982 0.302 0.918 0.698 0.949 0.411 0.375 0.284 0.597 1.141 
SVM-G. 0.897 0.103 0.980 0.238 0.911 0.762 0.944 0.334 0.296 0.218 0.511 0.862 
RF 0.927 0.073 0.962 0.651 0.956 0.349 0.95 0.626 0.626 0.613 0.640 0.194 
GRNN 0.890 0.110 0.940 0.508 0.936 0.492 0.938 0.454 0.454 0.448 0.460 18.52 
PNN 0.892 0.108 0.892 1.000 1.000 0.000 0.943 0.168 0.055 0.892 0.032 23.93 
BP-NN 0.926 0.074 0.924 0.957 0.998 0.044 0.960 0.553 0.481 0.881 0.347 1.277 
LSMA 0.959 0.041 0.975 0.826 0.979 0.174 0.977 0.791 0.791 0.801 0.781 42.21  
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(≈0.959), while its sensitivity (≈0.975), specificity (≈0.826), precision 
(≈0.979), FPR (≈0.174), markedness (≈0.781), and F1-score (≈0.977) 
were also the best or close to the best results. Followed by the results 
achieved by PNN with accuracy (≈0.892), sensitivity (≈0.892), speci
ficity (≈1.00), precision (≈1.00), F1-score (≈0.943), and informedness 
(≈0.892). More details about other ML methods can be seen in Table 7. 
In conclusion, the proposed AFCM-LSMA method is superior to con
ventional ML methods. 

Recently, deep learning (DL) has become a popular method with 
different architectures that can classify medical data with good accu
racy. In this study, three different deep learning methods with different 
hidden layers are provided, including Feed Forward Neural Network 
(FFNN), Cascade Forward Neural Network (CFNN), and Recurrent 
Neural Network (RNN). These DL methods are compared with the pro
posed AFCM-LSMA method for COVID-19 detection in chest X-ray im
ages. Table 8 and Fig. 9 show the comparison results between the 
proposed method and the DL methods under different evaluation 
criteria. As we can see, the proposed method achieves good results with 
less computational time, meanwhile, the results of the RNN method 
achieve the same or near results with the proposed method, but it still 
has some deficiencies and shortcomings. For example, it is time- 
consuming and lacks transparency, and it has no proven guaranteed 
convergence. With an increased demand for real-time data analysis, the 
time to quickly retrain DL methods to understand new COVID-19 cases 
may not be sufficient to keep up with the pace of data inflow. From these 
results, we can confirm the robustness and the superiority of the pro
posed method against different classical machine learning and deep 
learning methods for COVID-19 detection in chest X-ray images. 

The main limitation associated with our study is the publicly avail
able dataset size. The chest X-ray images used in this study comprise 
information of 1124 patients (403 with COVID-19 and 721 normal pa
tients). This data is trained to classify the input CXR images into one of 
two classes (COVID-19 infected or normal patients). There are imbal
anced data and bias to normal patients. Therefore, data can be balanced 

by withdrawing some features, or a generative adversarial neural 
network (GAN) can be used to generate synthetic data for imbalanced 
data problems. In addition, the execution of the proposed deep learning 
methods can be improved with a larger COVID-19 dataset. Moreover, 
the overall results are restricted only to the COVID-19 X-ray image. 

5. Conclusion and future work 

The main aim of the proposed work is to develop an image-assisted 
analysis model based on chest X-ray to evaluate and assess the detec
tion of COVID-19. The X-ray scan is recognized as an important tool for 
COVID-19 assessment. Unfortunately, a corona-virus vaccine is expected 
to take at least 18 months if it works at all. Moreover, COVID-19 pan
demics may mutate into a more aggressive form, according to World 
Health Organization (WHO). Therefore, this paper proposed a new 
COVID-19 detection model based on adaptive fuzzy c-mean clustering 
algorithm and Lévy slime mould algorithm for chest X-ray images. In the 
clustering phase, the intensity of the image histogram is computed 
instead of the raw image to reduce time and amount of computations 
and decrease the sensitivity of noise. The slime mould optimization al
gorithm is integrated with Lévy motion to select the significant features 
from the high dimensional feature fusion matrix. SMA uses the weights 
to mimic the positive and negative feedback of the bio-oscillator in order 
to produce a specific thickness of the feeding vein network during the 
foraging to the food source. Lévy motion distribution is used as a per
mutation for performing a local search, escaping from local minima, and 
reaching the optimal solution in fewer iterations with high convergence 
speed. The performance of the proposed AFCM-LSMA model has been 
validated using different measurements on CXR images and compared 
with different state-of-art meta-heuristic and machine learning methods. 
Moreover, the proposed method is compared with different DL methods 
to ensure stability and efficiency. The experimental results demonstrate 
the superiority of the proposed model, and it can be useful for the 
clinical practitioner for early identification of COVID-19 infected pa
tient. In future research, we will increase the dataset of COVID-19 

Fig. 8. Graphical representation for the proposed method and different 
ML methods. 

Table 8 
Comparison results between the proposed method and deep learning approachess with different hidden layers (HLs) under different evaluation criteria.  

Meth. HLs ACC Err Sens. Specific Prec. FPR F1_scor MCC Kappa Inform Marked 

FFNN 5 0.889 0.112 0.889 – 1.00 – 0.941 – 0.00 – 0.00 
10 0.927 0.073 0.926 0.958 0.998 0.042 0.961 0.567 0.498 0.884 0.363 
15 0.927 0.073 0.926 0.958 0.998 0.042 0.961 0.567 0.498 0.884 0.363 

CFNN 5 0.939 0.060 0.937 1.000 1.000 0.000 0.967 0.657 0.603 0.937 0.460 
10 0.936 0.064 0.962 0.721 0.966 0.279 0.964 0.674 0.674 0.684 0.665 
15 0.936 0.064 0.940 0.886 0.992 0.114 0.965 0.632 0.601 0.825 0.484 

RNN 5 0.912 0.089 0.931 0.659 0.972 0.342 0.951 0.486 0.473 0.590 0.401 
10 0.958 0.043 0.969 0.855 0.984 0.146 0.976 0.775 0.773 0.823 0.730 
15 0.889 0.116 0.889 – 1.00 – 0.941 – 0.00 – 0.000 

LSMA – 0.959 0.041 0.975 0.826 0.979 0.174 0.977 0.791 0.791 0.801 0.781  

Fig. 9. Graphical representation for the proposed method and different DL 
methods with different hidden layers. 
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infected patients, and more theoretical analysis will be conducted. The 
proposed model will use to train and classify other types of diseases 
(such as; bacterial pneumonia and viral pneumonia). Moreover, the 
proposed model will apply to different medical images for COVID-19 
such as (CT and MRI scans). 
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