
Abstract. Background/Aim: Germline mutations in PTCH1
or SUFU in the sonic hedgehog (SHH) pathway cause
Gorlin’s syndrome with increased risk of developing SHH-
subgroup medulloblastoma. Gorlin’s syndrome precludes the
use of radiotherapy (a standard component of treatment) due
to the development of multiple basal cell carcinomas. Also,
current SHH inhibitors are ineffective against SUFU-mutated
medulloblastoma, as they inhibit upstream genes. In this study,
we aimed to detect differences in the expression of genes and
microRNAs between SUFU- and PTCH1-mutated SHH
medulloblastomas which may hint at new treatment directions.
Patients and Methods: We sequenced RNA and microRNA
from tumors of two patients with germline Gorlin’s syndrome

– one having PTCH1 mutation and one with SUFU mutation
– followed by bioinformatics analysis to detect changes in
genes and miRNAs expression in these two tumors. Expression
changes were validated using qRT-PCR. Ingenuity pathway
analysis was performed in search for targetable pathways.
Results: Compared to the PTCH1 tumor, the SUFU tumor
demonstrated lower expression of miR-301a-3p and miR-
181c-5p, matrix metallopeptidase 11 (MMP11) and OTX2,
higher expression of miR-7-5p and corresponding lower
expression of its targeted gene, connexin 30 (GJB6). We
propose mechanisms to explain the phenotypic differences
between the two types of tumors, and understand why PTCH1
and SUFU tumors tend to relapse locally (rather than
metastatically as in other medulloblastoma subgroups).
Conclusion: Our results help towards finding new treatable
molecular targets for these types of medulloblastomas. 

Basal cell nevus syndrome, also known as Gorlin syndrome
(GS) increases the risk of developing odontogenic jaw
keratocysts, skeletal abnormalities (1, 2), basal cell
carcinoma (BCC) of the skin [in areas that have undergone
radiation (1)], and medulloblastomas (MBs) by the age of
five years (2). The most common cause of GS is a
heterozygous germline mutation in the Patched (PTCH1)
gene (3), but germline mutations in the SUFU gene have
also been found to cause GS (4). Up to 5% of individuals
with GS develop childhood SHH-MB (4); therefore,
children with germline mutations are recommended to
undergo periodic MRI screening of the brain until the age
of eight years (5).
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Both PTCH1 and SUFU are vital players in the activation
of the sonic hedgehog (SHH) pathway, which is one of the
main trafficking networks that regulate events during
embryonic development, and aberrations in its regulation
may cause congenital disabilities and cancer. Activation of
the SHH signaling pathway is mediated by the receptor
Smoothened (SMO). When the SHH ligand is low or absent
("off-state"), SMO transports to the membrane, where its
activity is inhibited by Patched (PTCH1). The downstream
effectors are inhibited via SUFU, resulting in inhibition of
target gene expression. When SHH binds to Patched ("on-
state"), SMO levels increase, and SUFU is deactivated,
leading to activation of gene expression, resulting in cell
growth and the patterning of multicellular embryos (6).  

One of the four subgroups of MB – the most common
malignant brain tumor in children (7) – is the SHH subgroup,
which is most frequent in infants (<3 years old) and young adults
(>16 years old). Mutations in PTCH1 or SUFU are frequent in
the tumors of infants with SHH-MB (8). Although most of these
mutations are sporadic, SUFU and PTCH1 germline mutations
can be detected in 2% of all patients with MB, exclusively in the
SHH subgroup (9). The risk of developing MB has been
suggested to be 20 times higher in germline SUFU mutations
and at a younger age than germline PTCH1 mutations (4, 10).
MBs with a germline SUFU mutation show poor prognosis with
overall survival rate of 66% (10), which is much lower than the
>90% overall survival rate reported for desmoplastic MB in
young children (11). These children often demonstrate local
relapse with progression-free survival of 42% at five years, and
they will most likely need radiation for salvage therapy (10). 

Standard MB therapy for children over three years old
includes surgical resection, upfront craniospinal irradiation,
chemotherapy, and high-dose chemotherapy with hematopoietic
stem cell rescue in high-risk patients (12). Due to the enormous
cognitive damage of radiation in infants, treatment is usually
based on chemotherapy alone. However, some children will
relapse or progress and would need subsequent radiation
therapy. Children undiagnosed with GS will develop hundreds
to thousands of BCCs in the irradiated areas. Therefore, it is
vital to identify those children with germline PTCH1/SUFU
mutations to avoid irradiation at all costs.  

Recently, new SHH inhibitors have been developed for the
treatment of SHH-MB (13). However, these are SMO
inhibitors and, therefore, will only inhibit the upstream
activation of the pathway – e.g., at the level of PTCH1 or
SMO – and will not affect downstream mutations, such as
SUFU (14). Also, the SMO inhibitors cause irreversible
growth plate fusion in children and, therefore, clinical studies
are employing these agents for skeletally mature children
only (15). There is a desperate need for new therapies for
young children with GS-SHH-MB that should avoid
radiation therapy, and, in particular children with germline
SUFU mutation, who will not respond to SMO inhibitors.

We aimed to find new potential molecules such as
microRNAs (miRs), to serve as diagnostic biomarkers or as
drug targets (16, 17). miRs are short noncoding RNAs,
which play an essential role in gene translational regulation.
Moreover, miRs can be used to define specific signatures for
individual cancers and cancer stages (18, 19), including for
MB subgroup classification (20). 

In this study, we searched for targetable pathways in the
tumors of two patients diagnosed with SHH-MB, one with a
germline SUFU mutation and the other with a germline
PTCH1 mutation. We aimed to detect similarities and
differences at the expression levels of genes and miRs to
better understand the biology of these two tumors that could
help develop targets for future clinical use. 

Patients and Methods
Patients and tumor collection. The study design adhered to the
tenets of the Declaration of Helsinki and approved by the
institutional and national review board of the Israel Ministry of
Health. Informed consent was obtained. Primary tumor samples
were collected at surgery, placed in RNAlater™ (AM7020; Thermo
Fisher Scientific, Waltham, MA, USA), and stored at −80˚C.

RNA and microRNA extraction and sequencing. Total RNA was
extracted from freshly frozen tumor tissue samples as previously
described (20). Library preparation and sequencing was performed
using the Illumina TruSeq protocol on the HiSeq 2500 machine.
Raw data deposited at the Sequence Read Archive (SRA) accession
number SRP095882. The PTCH1-MB was included in our previous
study (SRS1888277) (20) while SUFU-MB is newly deposited
(SRS3694085).

RNA-seq data analysis. Raw reads were processed and analyzed as
previously described (20). To obtain dispersion estimates for a count
dataset, we used the ‘estimateDispersions’ function in the DESeq R
package (21). Since we had no replicates, we defined the argument
method="blind", which ignored the sample labels and computed the
empirical dispersion value of the gene as if the two samples were
replicates of a single condition. The argument sharing Mode was
defined as "fit-only". Genes with FDR corrected p<0.05 were noted
as displaying different expression levels. 

MicroRNA-seq data analysis. Raw reads were processed and
analyzed as previously described (20). Unless specified otherwise,
a p-value of 0.05 was used as the significance cutoff. 

Ingenuity pathway analysis (IPA). Genes with FDR<0.05 and miRs
with p<0.05 were uploaded to QIAGEN’s Ingenuity® Pathway
Analysis (IPA®, QIAGEN Inc., https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis) software (22). The IPA was used
to gain insights into the overall biological changes introduced by the
expression, miR target gene prediction, and miR and gene Integrated
Analysis. Using the Ingenuity Pathways Knowledge Base, each gene
was linked to specific functions, pathways, and diseases.

Analysis of an independent microarray data. The dataset GSE85217
(23) downloaded from the Gene Expression Omnibus (GEO) database
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(24), comprises 763 samples of which 223 are SHH. There is no
information regarding germline mutations in the database, hence we
had to chose the samples with the highest probability of representing
GS   patients. The likelihood of developing MB in patients with GS
is higher in younger children (2), and as we were interested in SHH-
MBs that are as similar as possible to those examined in our study,
we first selected tumors from children under three years of age. Then
we selected only those with a deletion in 10q, which includes the
SUFU gene (n=3), and those with a deletion in 9q, which contains
the PTCH1 gene (n=13). In this way we can compare tumors with
similar mutations to ours, even if this is just in the tumor and not in
the germline. We employed a moderated t-test, conducted using the
limma (25) R package (version 3.38.3). Deletions, histology, and age
were included as covariates in the linear model, and an FDR-
corrected p-value of 0.05 was used as the significance cutoff. 

Cell culture and siRNA transfections. Daoy cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM; Biological Industries
Israel, Beit Haemek; 01-052-1A) with 4.5 g/l D-glucose, 4 mM L-
glutamine, 10% fetal bovine serum (Biological Industries Israel; 04-
007-1A), and 1% penicillin/streptomycin. Dicer-substrate 27mer short
interfering RNAs (DsiRNAs) targeting human SUFU
(hs.Ri.SUFU.13.1, hs.Ri.SUFU.13.2) and PTCH1 (TriFECTa RNAi
kit, hs.Ri.PTCH1.13) were pre-designed by and purchased from IDT.
The cells were transfected with siRNA at a final concentration of 30
nM per siRNA (SUFU siRNA, PTCH1 siRNA, or Scramble siRNA
for control) by using the Avalanche® Everyday Transfection Reagent
(EZT-EVDY-1), according to the manufacturer’s protocol. Briefly, the
cells were passaged one day before transfection to reach a confluency
of 60-70%. The next day, the selected siRNA was incubated in a
serum-free medium with the recommended volume of transfection
reagent for 20 min at room temperature. The transfection mixture was
gently added to the prepared cell culture plate(s) for continued
incubation at 37˚C for 24-36 h, until harvesting and RNA extraction. 

Reverse transcription (RT) and quantitative PCR (qPCR). Total RNA
was isolated from Daoy cells by using the NucleoZol homogenizing
reagent (Machery-Nagel 740404.200), according to the
manufacturer’s protocol. Purified RNA samples were reverse-
transcribed using the GoScript Reverse Transcription System
(Promega, Madison, WI, USA, A5000) according to the
manufacturer’s protocol. The cDNA product was diluted 1:5 and
mixed with SYBR Green PCR Master Mix (ThermoFisher Scientific)
for amplification on an AriaMX thermal cycler (Agilent Technologies,
Santa Clara, CA, USA) using the gene-specific primer sets described
below. Each qPCR reaction had a total volume of 12 μl. Three
biological replicates were performed, and all reactions were run in
triplicates. The comparative Ct method was used to analyze mRNA
levels, using actin as the normalization control. 

Primers used for qPCR reaction were: SUFU 5’ CAGCA
AACCTGTCCTTCCACCA 3’ CAGATGTACGCTCTCAAGCTGC,
PTCH1 5’ GCTGCACTACTTCAGAGACTGG 3’ CACCAGG
AGTTTGTAGGCAAGG, MMP11 5’ GAGAAGACGGACCT
CACCTACA 3’ CTCAGTAAAGGTGAGTGGCGTC, FOXL2 5’
CGGAGAAGAGGCTCACGCTGT 3’ CTGAGGTTGTGGCGGAT
GCTAT, GSTM1 5’ CTATGATGTCCTTGACCTCCACCGTATA 3’
ATGTTCACGAAGGATAGTGGGTAGCTGA, GABRA4 5’ TC
CTGGACAGTTTGCTCGATGG 3’ CAGAAACAGGTCCAAAG
CTGGTG, NPNT 5’ GTAAGCACAGGTGCATGAACA 3’ GA
ACCATCCGGCATGAGCATA.

Results

Patients. Primary tumor samples were obtained from two
children diagnosed with non-metastatic, desmoplastic MB.
Both tumors were identified as belonging to the SHH subgroup
by using nanoString nCounter Technology, as previously
described (26). 

Patient 1: A boy, the first child of Yemenite origin parents
who are not relatives, with no family history of cancer. Neonatal
follow-up showed large head circumference with continued
growth on the 98% percentile. There was some delay in motor
and speech development. The boy was noted to have torticollis,
unilateral dilation of the renal pelvis, and trivial pulmonary
stenosis. At age 22 months, he presented a two-week history of
recurrent falls followed by vomiting and apathy. MRI at
diagnosis (Figure 1B and C) showed a large heterogeneous
mass in the cerebellar vermis with obstructive hydrocephalus.
No metastatic spread to the craniospinal axis was evident. The
patient underwent gross total removal of the tumor, and
pathology showed desmoplastic medulloblastoma (Figure 1F).
Genetic testing was performed due to macrocephaly and
showed a de novo germline mutation in PTCH1
NM_000264.5(PTCH1):c.379G>T (p.Glu127*) (Figure 1A).
The boy was treated according to the COG 99703 protocol
without irradiation. He is currently 10 years old, with no
evidence of relapse. He developed keratogenic jaw cysts at the
age of 5 years and has mild learning difficulties. He has palmar
pits and multiple melanocytic nevi.

Patient 2: A girl, the fourth child of unrelated parents of
Iraqi-Moroccan/Yemenite origin, with no family history of
malignancy. At age 3 months, the local well bay clinic
noticed increasing head circumference, new-onset
strabismus, and lethargy. MRI (Figure 1D and E) showed
extreme hydrocephalus and a multicystic mass in the
posterior fossa (PF). There were no metastases visible in the
brain or spine. She underwent partial resection of the mass,
leaving a supratentorial residue. The pathology result was
MB with extensive nodularity (MBEN) (Figure 1G). The
tumor was positive for both GAB1 and YAP in more than
80% of cells. Due to her extremely young age, she
underwent genetic testing, which showed a de novo
heterozygous loss of exon 3 in the SUFU gene at the DNA
level. She was treated according to the ACNS 1221 protocol
(before suspension of enrolment) without intrathecal
chemotherapy. She is now 6 years and four months old, with
no evidence of relapse. She shows some residual mild ataxia
and dysmetria and attends a regular kindergarten. She has no
other physical findings of GS. 

Expression profiling of genes. Comparison of SUFU-MB
against PTCH1-MB detected 111 genes displaying different
expression levels. Of these 23 were up-regulated, and 88 were
down-regulated in SUFU-MB, compared to PTCH1-MB
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(Figure 2A). The up-regulated cluster was associated with
extracellular matrix organization and cell adhesion, while the
down-regulated cluster was associated with complement
activation (classical pathway) and immune system processes.

Of the MB-related genes, we detected a significantly lower
expression of OTX2 in the SUFU-mutated tumor. OTX2 plays
an essential role in normal cerebellar development (27) and
aberrant OTX2 expression is implicated in several malignancies
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Figure 1. (A) Sequence chromatograms, showing the heterozygous PTCH1 de novo germline mutation NM_000264.5(PTCH1): c.379G>T
(p.Glu127*) in patient 1 (p1), and the non-carrier mother (m) and father (f) of the patient, as well as a control from an unrelated individual (con).
(B-E) MRI images at diagnosis, showing the tumor (short, thick arrows) and severe hydrocephalus (long, thin arrows): (B-C) patient 1, PTCH-MB,
(D-E) patient 2, SUFU-MB. (B) Axial T2WI image and (C) sagittal T1WI post-Gadolinium image, showing a large 3.2×4.5×4.4 cm heterogeneous
mass in the cerebellar vermis on T2, invading the 4th ventricle. The mass is enhanced and has areas of restriction and necrosis with secondary
obstructive hydrocephalus. (D) Axial T2WI image and (E) sagittal T1WI post-Gadolinium image, showing extreme hydrocephalus caused by the
large 3.5×6×6 cm mass in the posterior fossa (PF) and surrounding edema. The tumor was localized centrally in the PF, with the involvement of
the superior portion of the 4th ventricle with cranial extension. The tumor is multicystic with multiple enhancing tumor nodules and restricted on
diffusion. (F-G) H&E preparation from the PTCH-MB tumor of patient 1 (F), showing nodular, reticulin-free zones surrounded by densely packed
undifferentiated cells with hyperchromatic nuclei producing a dense intercellular reticulin network. Macrophages and stroma were inconspicuous.
The preparation from the SUFU-MB tumor of patient 2 (G) shows a prominent lobular architecture, large reticulin-free zones, and is rich in neuropil-
like tissue. These zones showed population by cells with neurocytic differentiation. Macrophages and stroma were inconspicuous.



(28), including MB (29). Indeed, lower OTX2 expression is one
of the biomarkers used to differentiate SHH-MB from other MB
subgroups in a real-time PCR assay panel (30). In MB, the
effect of overexpressed OTX2 as an oncogene is predominantly

observed in Group 3/4, and participates in tumor localization
and migration (28). In contrast, in SHH tumors, overexpression
of OTX2 inhibits tumor progression (27). The lower expression
of OTX2 may contribute to the increased risk of local relapse

Gershanov et al: Transcriptome of PTCH1 and SUFU-mutated MB

339

Figure 2. (A) A Heatmap of 23 up-regulated genes (red) and 88 down-regulated genes (blue) in the SUFU-MB compared to the PTCH1-MB. Heatmap
was generated with heatmap3 (51) using complete as the linkage method, and Euclidean as the distance. (B) MicroRNAs expression in network no.
1 (Table III). (C) Gene and miR inverse expression in the SUFU-MB as compared with the PTCH1-MB. Green nodes represent decreased expression
and red nodes represent increased expression. White nodes represent no significant change in expression. Pink line indicates diseases or functions
related to the molecules. CO: Correlation, C: causation/leads. The figures were generated using Ingenuity® Pathway Analysis.



and, therefore, to poorer event-free survival which has been
found in SUFU-mutated patients (10). 

Recently, mTORC1 signaling was detected as a downstream
effector of OTX2 in Group 3 MB (31). A relationship between
mTOR pathway and SHH was also demonstrated for SHH MB
(32, 33). However, the mTOR signaling molecules did not show
differential expression between the two patients, demonstrating
that mTOR probably does not have a role in regulating the
pathophysiology differences of the two SHH tumors.    

We found a decreased expression of matrix metallopeptidase
11 (MMP11) in SUFU-MB, compared to PTCH1-MB. MMPs
are endopeptidases, responsible for the degradation of
extracellular matrix components (34) and play a significant role
in cancer (35). Increased expression of some MMPs, including
MMP11, are correlated with the tumor WHO-grading
classification of human malignant gliomas (36). It will be of
interest to test whether the expression of MMPs contributes to
the increased probability of local relapse in SHH tumors.

Immune signaling pathways dominated the list of genes
whose expression differed between the tumors from the two
patients (Table I).  

Over-represented diseases and biological functions
included skeletal and muscular disorders, cell death and
survival, embryonic development, and nervous system
development and function (Table II). 

Top associated network functions included cancer-related
functions, such as cellular development, DNA replication,
recombination, and repair (Table III). 

Genes belonging to these networks include OTX2 and
MYC, which are part of the expression panel used to
differentiate MB subgroups (30). The genes GSTM1 and
HLA-G, which belong to network number 2 (Table III), are
known to be associated with BCC. Genetic variants in
GSTM1 might contribute to the variation in the number of
BCC jaw cysts and its presentational phenotypes in patients
with PTCH-mutated as opposed to SUFU- mutated GS (37),
while the expression of the HLA-G gene is high in BCC and
decreases following radiotherapy (38). 

Expression profiling of microRNAs. Overall, 778 miRs were
expressed in both tumors, of which the expression level of 11

miRs was different between SUFU-MB and PTCH1-MB, three
miRs displayed higher expression and eight lower expression
levels (Table IV). IPA analysis of differentially expressed miRs
identified cancer-related functions, such as cell morphology,
cellular development, and cellular growth and proliferation as
top diseases and biological functions (Table V).  

Top network functions included RNA post-transcriptional
modification and cancer, cardiovascular diseases, and
connective tissue disorders (Table VI). Among the miRs that
showed a lower expression in SUFU-MB were miR-301a-3p
and miR-181c-5p. These miRs are related to early stages of
solid tumor processes and the processing of siRNA networks,
and they regulate, either directly or indirectly, the expression
of DICER1 (Figure 2B). 
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Table I. Top five canonical signaling pathways identified by the ingenuity pathway analysis (IPA) for the genes whose expression differs between
the two patients.

Canonical pathways                                                                                           p-Value                                                         Molecules

Communication between innate and adaptive immune cells                           <0.001                             HLA-G, IGHG3, IGHM, IGHG1, HLA-DRB5
Autoimmune thyroid disease signaling                                                             <0.001                                   HLA-G, IGHG3, IGHG1, HLA-DRB5
Primary immunodeficiency signaling                                                                <0.001                                  IGHG3, IGLL1/IGLL5, IGHM, IGHG1
Allograft rejection signaling                                                                              <0.001                                   HLA-G, IGHG3, IGHG1, HLA-DRB5
Hematopoiesis from pluripotent stem cells                                                       <0.001                                              IGHG3, IGHM, IGHG1

Table II. Top diseases and biological functions identified by the
ingenuity pathway analysis (IPA), for the genes whose expression differs
between the two patients.

                                                                              p-Value        Number of 
                                                                                                   molecules

Diseases and biological functions                                                       
Metabolic disease                                            0.039-<0.001          16
Neurological disease                                       0.045-<0.001          27
Skeletal and muscular disorders                     0.039-<0.001          27
Developmental disorder                                   0.046-<0.001          20
Hereditary disorder                                          0.043-<0.001          28

Molecular and cellular functions                                                         
Cell death and survival                                   0.041-<0.001            7
Cellular assembly and organization               0.035-<0.001          12
Cell cycle                                                          0.035-0.003             4
Cell morphology                                               0.029-0.003             3
Cellular function and maintenance                  0.035-0.003             9

Physiological system
development and function

Embryonic development                                   0.048-0.001           13
Nervous system development and function       0.048-0.001             7
Organ development                                          0.048-0.001            11
Organismal development                                  0.048-0.001           14
Tissue development                                          0.048-0.001            11



Integrated analysis of miRs and mRNA expression. Of the
111 differentially regulated genes, 16 are targets for the 11
miRs. Of these, nine target genes demonstrated an inverse
expression with six miRs (Table VII, Figure 2C). We found
that miR-301a-3p demonstrates lower expression levels in
SUFU-MB, compared to PTCH1-MB. miR-301a-3p acts as
an oncomiR (39, 40), as it down-regulates the expression of
the SMAD4 gene. Inhibiting miR-301a-3p reversed
gemcitabine treatment resistance in pancreatic cancer cells
in vitro by regulating the expression of PTEN (41). The role
of miR-301a-3p in MB is yet unclear, and it may have
different effects in different tissues. One of the target genes
of miR-301a-3p is GABRA4, which is downregulated in MB
(42). We found that the expression of GABRA4 was higher

in SUFU-MB, possibly resulting from the lower expression
of its regulator, miR-301a-3p. GABRA4 is a part of the
GABA receptor signaling pathway and, considering our
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Table III. Top five associated network functions identified by the ingenuity pathway analysis (IPA) for the genes whose expression differs between
the two patients.

ID             Network                                                                           Score          Molecules in network

1               Cellular development, reproductive system                    30            ATP2A3, CDH12, CHI3L1, COL1A1, CPM, CTNNB1, DLX2, EGFR, 
                 development and function, DNA replication,                                  FOS, FOXL2, FSH, GJA1, GRP, IGHG1, IL1B, LDLR, MAFF, 
                 recombination, and repair                                                                  MMP11, MT-CO2, MT-TE, MT-TY, MYC, NEB, NFATC2, OTX2, 
                                                                                                                             PCP4L1, PGR, PPP1R1A, PTGS2, SBDS, SMARCA4, SORCS1, 
                                                                                                                             SP1, STAT5A, YAP1
2               Endocrine system disorders, gastrointestinal                   27            ATP2A2, BMP2, BMP7, COL1A1, COL1A2, COL3A1, COL4A6, 
                 disease, metabolic disease                                                                 DLX5, FAP, GSTM1, HLA-G, Histone h3, IGHM, IGLL1/IGLL5, 
                                                                                                                             IL6, INS, Interferon alpha, LDLR, LOC102724428/SIK1, NKX2-2, 
                                                                                                                             NKX2-3, NRXN1, NUPR1, PLA2G2A, POU5F1, PPARG, S100A4, 
                                                                                                                             SHOX2, SLC6A3, TBX5, TFAP2A, TGFB1, TPM1, TTR, XIST
3               Cancer, cardiovascular disease, cardiovascular                2             AGTR1, IGKV1-5
                 system development and function
4               Dermatological diseases and conditions,                          2             GJB6, KRT14
                 developmental disorder, hereditary disorder
5               Antimicrobial response, carbohydrate metabolism,         2             DDX3Y, LDLR
                 cardiovascular disease

Table IV. MicroRNAs displayed different expression levels SUFU-MB
compared to those expressed in PTCH1-MB.

MicroRNA ID                     Log2 fold              p-Value          Regulation
                                               change

hsa-miR-301a-3p                   –7.674                   0.021                Down
hsa-miR-1307-5p                   –7.197                   0.028                Down
hsa-miR-4454                        –6.868                   0.041                Down
hsa-miR-99a-3p                     –6.789                   0.032                Down
hsa-miR-135a-3p                   –6.655                   0.039                Down
hsa-miR-4485-3p                   –6.577                   0.036                Down
hsa-miR-181c-5p                   –6.174                   0.048                Down
hsa-miR-4286                        –6.124                   0.050                Down
hsa-miR-379-5p                       6.329                   0.041                  Up
hsa-miR-129-5p                       8.066                   0.018                  Up
hsa-miR-7-5p                         10.602                   0.005                  Up

Table V. Top diseases and biological functions identified by the
ingenuity pathway analysis (IPA) for the miRs represented different
expression in our patients.

                                                                              p-Value        Number of 
                                                                                                   molecules

Diseases and biological functions                                                       
Cancer                                                              0.044-<0.001            5
Organismal injury and abnormalities              0.044-<0.001            5
Reproductive system disease                          0.003-<0.001            3
Gastrointestinal disease                                  0.033-<0.001            3
Respiratory disease                                         0.008-<0.001            4

Molecular and cellular functions                                                         
Cell morphology                                              0.007-0.001             1
Cellular function and maintenance                 0.007-0.001             1
Cellular development                                       0.016-0.002             4
Cellular growth and proliferation                    0.014-0.002             4
Cellular movement                                           0.037-0.002             3

Physiological system
development and function

Cardiovascular system development                     0.005                  1
and function 

Embryonic development                                        0.005                  1
Organismal development                                       0.005                  1
Tissue development                                                0.005                  1
Connective tissue development                             0.006                  1
and function 



findings; it may not be downregulated in all MBs as
previously thought. The specific role of GABRA4 in MB
tumorigenesis, in general, or in SUFU-mutated MB is yet to
be determined.

The expression level of miR-7-5p was higher in SUFU-MB
than in PTCH1-MB and, correspondingly, the expression of its
target gene, Connexin 30 (GJB6), was lower. Connexins play
a role in the gap-junction signaling pathway, and they function
as tumor suppressors (43). The expression of Connexin 30 in
human glioblastoma cells was found to reduce their growth in
vitro, but, at the same time, it made them resistant to the effects
of radiation therapy (44). Increasing the levels of Connexin 30
in SUFU tumors may serve as a therapeutic option to decrease
cell proliferation, while resistance to radiation therapy will be
irrelevant in these young patients, whose up-front treatment is
planned to be radiation-free.   

MiR-379-5p showed higher expression in the SUFU-MB,
compared to the PTCH1-MB, while its targeted gene, FOXL2,
demonstrated lower expression levels. FOXL2 is a
transcription factor involved in congenital disorders (45). It

directly modulates the expression of the estrogen receptor 2
(ESR2) (46). A recent study found that 17β-estradiol, via
ESR2, exerts chemoprotective effects in some MB cell lines
(47). In the SHH pathway, SUFU and GLI interact and bind to
PIAS1 (48), which activates estrogen receptors, including
ESR2 (49). It may be instrumental to try and decrease the
expression of miR-379-5p in SUFU-mutated tumors, which
would increase the expression of FOXL2 and, therefore, the
expression of ESR2, which may have chemoprotective effects.

Supporting evidence from an independent cohort. Since the
current study reports only two patients, it needs to be repeated
in a larger cohort. Larger independent SHH cohorts of tumors
with known germline mutations are not publicly available, but
we were able to detect an independent dataset of SHH tumors.
Although this independent dataset does not show which
patients have a germline mutation (i.e., Gorlin’s syndrome), it
does include important phenotypic data, such as age and
chromosomal deletions. We know from the literature that the
majority of SHH MBs occur in infants younger than 3 years

CANCER GENOMICS & PROTEOMICS 18: 335-347 (2021)

342

Table VI. Top three associated network functions identified by the ingenuity pathway analysis (IPA) for the miRs represented different expression in
our patients.

ID                            Network                                                                                          Score                                      Molecules in network

1                               RNA post-transcriptional modification, cancer,                             9                              AGO2, DICER1, estrogen receptor, 
                                organismal injury and abnormalities                                                                       EZH2, miR-301a-3p, miR-181a-5p, miR-7-5p
2                               Cardiovascular disease, connective tissue disorders,                      3                                           IL17A, miR-129-5p 
                                dermatological diseases and conditions
3                               Respiratory disease, organ morphology,                                         3                                           ILF3, miR-135a-3p 
                                organismal injury and abnormalities

Table VII. MicroRNAs and their targeted genes that exhibit inverse expression, predicted by ingenuity pathway analysis (IPA).

MicroRNAs                Expr. Log                   Target                  Expr. Log                                                          Pathwayb
                                       Ratio                        genea                              ratio

miR-301a-3p                 –7.674                    GABRA4                     5.644                GABA receptor signaling, neuroinflammation signaling pathway
miR-301a-3p                 –7.674                     GSTM1                       5.21                         Aryl hydrocarbon receptor signaling, glutathione redox 
                                                                                                                                        reactions i, glutathione-mediated detoxification, LPS/IL-1 
                                                                                                                                  mediated inhibition of RXR function, NRF2-mediated oxidative 
                                                                                                                             stress response, PXR/RXR activation, xenobiotic metabolism signaling
miR-301a-3p                 –7.674                       NPNT                       5.567                                                                      
miR-379-5p                    6.329                       FOXL2                     –5.821                                                                     
miR-4286                      –6.124                     PCP4L1                      5.89                                                                       
miR-4454                      –6.868                        GRP                        8.817                              GPCR-mediated integration of entero-endocrine 
                                                                                                                                                           signaling exemplified by an L cell
miR-7-5p                       10.634           GJB6 (Connexin30)           –6.186                                                  Gap junction signaling
miR-7-5p                       10.634                      PVALB                     –5.306                                                                     
miR-99a-3p                   –6.789                     CHI3L1                      6.471                                                  Oncostatin M signaling

aTarget association based on Ingenuity "target filter" annotation, where only "highly predicted" and "moderate predicted" targets were used.
bPathways according to Ingenuity core analysis of the targets.



(8). We chose to analyze data from these infants with tumors
who carry a deletion in 10q or 9q (which include SUFU and
PTCH1, respectively), adding significant support to our results.
We assumed that the PTCH1- and SUFU-loss tumors will have
a genetic expression similar to that in our patients. Of the 111
differentially expressed genes that we detected in our patients,
54 were also included in the microarray used in the GSE85217
dataset (available upon request). Of these, the expression of six
genes (11%) was significantly different between PTCH1- and
SUFU-loss tumors. These six genes are upregulated in the
SUFU-loss tumors, which is in agreement with their expression
in our SUFU-MB patient. Three of the six genes (GABRA4,
NPNT, and PCP4L1) are targets that demonstrated an inverse
expression with miRs in our patients (Figure 3).

In vitro validation. To validate our findings, we utilized short
interfering RNA (siRNA) to knockdown SUFU or PTCH1
expression on a Daoy MB cell line, and we tested the effect
of the expression of selected genes that were differentially
expressed between PTCH1- and SUFU-loss tumors. To test

knockdown efficiency, we quantified the PTCH1 and SUFU
expression in transfected cells. The expression of PTCH1 and
SUFU was reduced by 60% and 80%, respectively, in siRNA
transfected cells (Figure 4A). Five genes were selected and
their expression following PTCH1 and SUFU down-
regulation was tested. The direction of change observed in the
in vitro model was consistent with their change expression as
observed in the PTCH1- and SUFU-loss tumors.  

Conclusion

Most MBs are thought to develop sporadically, but inherited
forms also exist, most often in children with SHH MB. Due
to the rarity of germline mutations that predispose to MB our
knowledge of heritable predisposition is incomplete. Indeed,
while 30% of all MB patients belong to the SHH subgroup,
only 2% are defined as having Gorlin syndrome and show
germline mutations in the SHH pathway. Hence, it is
inherently difficult to collect samples from a large number of
patients with such mutations. However, despite this caveat, by
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Figure 3. Box plots of differentially expressed genes in patients under the age of three, who carry a deletion in 10q, which includes the SUFU gene
(n=3), or in 9q, which contains the PTCH1 gene (n=13), according to the independent GSE85217 dataset (23). t-Test statistical significance:
*p≤0.05, **p≤0.01, ***p≤0.001.



the detection of molecular differences between two SHH-MB
tumors having different germline mutations, this study
contributes to our understanding of the biology of heritable
MB and suggested potential drug targetable pathways.  

Treatment of MB usually involves chemotherapy and
craniospinal irradiation with severe long-term effects on
memory and cognition, growth and development, hearing
and the risk of secondary malignancies. Much research is
devoted to finding more successful and less damaging
treatments for this disease. There are four subgroups of MB
but the commonest in infancy is the SHH subgroup (50) of
which approximately 20% will have germline mutations in
PTCH1 or SUFU (Gorlin syndrome) (9). Children with GS
should not receive radiation and general protocols omit/
delay radiation for infants until they reach three years of age.
Alternative treatments for infant with MB and in particular
in the context of GS are desperately needed. Children with
GS-SUFU differ phenotypically from those with GS-PTCH1
and even their MB differ with a poorer prognosis noted in
the former and a higher rate of secondary malignancies (10). 

Herein we explored the differences between the tumors
from two infants both with SHH-MB that bear different
germline mutations causing GS, and we used an unbiased
whole-transcriptome sequencing to identify previously
undetected potential therapeutic targets. Often the study of a
rare genetic disease can have implications for research and
treatment of a wider cohort of patients such as SHH-MB as a
whole. In the same way that targeted therapy has been
developed for PTCH1-mutated tumors (although, at the
moment, relevant only for skeletally mature patients), we hope

that a suitable target will be found for those with downstream
mutations, such as SUFU and GLI and for infant with MB in
general. This report may stimulate interest among the MB
community and hopefully result in international collaborations
for further delineating the unique features of different groups
within MB and the SHH group in particular. 
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