Skip to main content
. 2021 Mar 25;9(1):e29. doi: 10.22037/aaem.v9i1.1059

Table 2.

Specificity and Sensitivity of different models (95% confidence interval)

Partial Data fields Model s Phase Specificity Sensitivity
RC-NN on Part1 Train 99.91 (97.95-99.93) 99.58 (97.62-100)
Test 99.37 (97.41-100) 100.00 (98.04-100)
RC-NN on Part2 Train 99.27 (96.92-100) 92.49 (90.13-94.84)
Test 99.51(97.16-100) 89.28 (86.93-91.63)
Neural Network Model Train 99.42 (97.26-100) 97.04 (94.88-99.19)
Test 99.37 (97.21-100) 96.57 (94.41-98.72)
Genetic Programming Train 99.51 (96.76-100) 90.53 (87.77-93.25)
Test 98.00 (95.26-99.65) 91.47 (88.72-94.21)
All Data fields Neural Network Model Train 93.54 (91.77-95.30) 100.00 (98.23-100)
Test 93.04 (91.27-94.80) 94.44 (92.67-96.21)
Random Forest Train 100.00 (97.35-100) 100.00 (97.15-100)
Test 99.24 (96.59-100) 90.24 (87.40-93.08)
Support Vector Machine Train 99.84 (97.64-100) 89.64 (87.44-91.83)
Test 99.69 (97.49-100) 83.12 (80.92-85.31)
Random Forest Train 99.98 (97.59-100) 100 (97.61-100)
Test 99.47 (96.82-100) 89.20 (86.55-91.84)
Support Vector Machine Train 99.84 (97.64-100) 90.49 (88.29-92.68)
Test 99.62 (97.42-100) 84.13 (81.93-86.32)
Ensembled Train 99.89 (98.32-100) 96.58 (95.01-98.15)
Test 99.54 (97.97-100) 90.21 (88.64-91.78)