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Fungi are prolific producers of natural products, compounds which
have had a large societal impact as pharmaceuticals, mycotoxins, and
agrochemicals. Despite the availability of over 1,000 fungal genomes
and several decades of compound discovery efforts from fungi, the
biosynthetic gene clusters (BGCs) encoded by these genomes and the
associated chemical space have yet to be analyzed systematically.
Here, we provide detailed annotation and analyses of fungal biosyn-
thetic and chemical space to enable genome mining and discovery of
fungal natural products. Using 1,037 genomes from species across the
fungal kingdom (e.g., Ascomycota, Basidiomycota, and non-Dikarya
taxa), 36,399 predicted BGCswere organized into a network of 12,067
gene cluster families (GCFs). Anchoring these GCFs with reference
BGCs enabled automated annotation of 2,026 BGCs with predicted
metabolite scaffolds. We performed parallel analyses of the chemical
repertoire of fungi, organizing 15,213 fungal compounds into 2,945
molecular families (MFs). The taxonomic landscape of fungal GCFs is
largely species specific, though select families such as the equisetin
GCF are present across vast phylogenetic distances with parallel di-
versifications in the GCF and MF. We compare these fungal datasets
with a set of 5,453 bacterial genomes and their BGCs and 9,382 bac-
terial compounds, revealing dramatic differences between bacterial
and fungal biosynthetic logic and chemical space. These genomics and
cheminformatics analyses reveal the large extent to which fungal and
bacterial sources represent distinct compound reservoirs. With a >10-
fold increase in the number of interpreted strains and annotated
BGCs, this work better regularizes the biosynthetic potential of fungi
for rational compound discovery.
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Fungi have been an invaluable source of bioactive compounds
with a wide variety of societal impacts. Mycotoxins such as

aflatoxin, ochratoxin, and patulin, pharmaceuticals including
penicillin, cyclosporine, and lovastatin, and agrochemicals like
paraherquamide and strobilurin are all derived from fungi (1, 2).
Recent genome sequencing efforts have revealed that <3% of the
biosynthetic space represented by fungal genomes has been linked
to metabolite products (3). In both bacteria and fungi, secondary
metabolic pathways are typically encoded by biosynthetic gene
clusters (BGCs). BGCs encode for backbone enzymes responsible
for creating the core metabolite and tailoring enzymes that modify
this scaffold along with regulatory transcription factors and trans-
porters that transport metabolites and necessary precursors (4). In
fungi, the most common backbone enzymes include nonribosomal
peptide synthetases (NRPSs), polyketide synthases (PKSs), dime-
thylallyltransferases (DMATs), and terpene synthases.
Over the last decade, genome mining has emerged as an ap-

proach that utilizes genome sequencing and bioinformatics for
targeted compound discovery based on genes of interest or
biosynthetic novelty. Natural product discovery is poised to ex-
pand from using a single or few genomes to using many genomes
interpreted together using increasingly sophisticated tools (5–9).
The interpretation step can infuse knowledge of BGC phyloge-
netic distribution, inferences about the molecules encoded (e.g.,

prevalence and structural variance), and avoidance of known
compounds (dereplication). To date, the application of such
large-scale genome mining approaches to fungi has been largely
limited to individual biosynthetic enzymes (10) or datasets
of <100 genomes from well-studied taxonomic groups (11–15).
The concept of a gene cluster family (GCF) has emerged as an

approach for large-scale analysis of BGCs (5–8). The GCF ap-
proach involves comparing BGCs using a series of pairwise dis-
tance metrics, then creating families of BGCs by setting an
appropriate similarity threshold. This results in a network struc-
ture that dramatically reduces the complexity of BGC datasets and
enables automated annotation based on experimentally charac-
terized reference BGCs. Depending on the similarity threshold,
BGCs within a family are expected to encode identical or similar
metabolites and therefore serve as an indicator of new chemical
scaffolds. The use of GCFs represents a logical shift from a focus
on single genomes of interest to large genomics datasets, providing
a means of regularizing collections of BGCs and their encoded
chemical space (Fig. 1A). The use of GCF networks has been
utilized for global analyses of bacterial biosynthetic space (6),
bacterial genome mining at the >10,000 genome scale (9, 16), and
integrated with metabolomics datasets for large-scale compound
and BGC discovery (5, 7). Together with advances in large-scale
metabolomics data analysis such as molecular networking (17), the
GCF paradigm has helped in the modernization of natural
products discovery.
Application of GCFs to fungal genomes has been largely

limited to datasets of <100 genomes from well-studied genera
such as Aspergillus, Fusarium, and Penicillium (13–15). Despite
the availability of thousands of genomes representing a broad
sampling of the fungal kingdom, global analyses of the BGC
content of these genomes are lacking. As such, our knowledge of
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the overall phylogenetic distribution of GCFs in fungi is limited,
and many taxonomic groups have no experimentally character-
ized BGCs. Therefore, we performed a global analysis of BGCs
and their families from a dataset of 1,037 genomes from across
the fungal kingdom. Across fungi, the vast majority of GCFs are
species specific, indicating that species-level sampling for ge-
nome sequencing and metabolomics will yield significant returns
for natural products discovery.
To relate this now-available set of fungal GCF-encoded me-

tabolites to known fungal scaffolds, we performed network analysis
of 15,213 fungal compounds, organizing these into 2,945 molecular
families (MFs) (Fig. 1A). Analysis of this joint genomic–chemical
space revealed dramatic differences between both major fungal
taxonomic groups, as well as between bacteria and fungi. This lays
the groundwork for systematic discovery of new compounds and
their BGCs from the fungal kingdom.

Results
A Reference Set of Fungal Biosynthetic Gene Clusters. Despite the
availability of thousands of fungal genomes, the biosynthetic space
represented within them has yet to be surveyed systematically. To
address this gap, we curated a dataset of 1,037 fungal genomes,

covering a broad phylogenetic swath (SI Appendix, Table S1 and
Dataset S1). This selection includes well-studied taxonomic groups
such as Eurotiomycetes (Aspergillus and Penicillium genera), Sor-
dariomycetes (Fusarium, Cordyceps, and Beauveria genera), and
taxa in which little is known about their BGCs, such as Basidio-
mycota or Mucoromycota. This genomic sampling likewise covers
a large swath of ecological niches, from forest-dwelling mush-
rooms to plant endophytes and extremophiles (18).
Each of the 1,037 genomes was analyzed using antiSMASH

(19), yielding an output of 36,399 BGCs ranging from 5 to 220 kb
in length. As has been previously observed (20), the number of
BGCs per genome varies dramatically across fungi (Fig. 1B and SI
Appendix, Table S1). Eurotiomycetes average 48 BGCs per ge-
nome, with 25% of organisms within this class possessing >60
BGCs. Organisms outside of Pezizomycotina possess significantly
fewer BGCs, with organisms from the non-Dikarya phyla aver-
aging <15 BGCs per genome. The distribution of biosynthetic
classes across the fungal kingdom also varies dramatically and
unexpectedly. Organisms within the Pezizomycotina classes Euro-
tiomycetes, Dothideomycetes, Leotiomycetes, and Sordariomycetes
average approximately five each of NRPS, hybrid NRPS–PKS,
NRPS, HR–PKS, terpene, NRPS-like, and NR–PKS and two

Fig. 1. Organizing BGCs from 1,037 fungal genomes. (A) Exploring fungal diversity using networks of GCFs and MFs. A GCF is a collection of similar BGCs
aggregated into a network and predicted to use a similar chemical scaffold and create a family of related metabolites. An MF is a collection of metabolites
that likewise represent chemical variations around a chemical scaffold. This networking approach enables hierarchical analysis of BGCs and their encoded
metabolite scaffolds from large numbers of interpreted genomes. (B) Distribution of BGCs across the fungal kingdom. The BGC content of fungal genomes
varies dramatically with phylogeny. Organisms within Pezizomycotina have more BGCs per genome and a greater diversity of biosynthetic types than or-
ganisms in Basidiomycota and non-Dikarya phyla.
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DMAT BGCs per genome (Fig. 1B). Basidiomycota have far
fewer BGCs that together encode a relatively limited chemical
repertoire, with terpene BGCs being the most abundant in
Agaricomycotina as previously suggested (10).

Organizing Gene Clusters into Families to Map Fungal Biosynthetic
Potential. To further assess the ability of fungi to produce new
chemical scaffolds, we grouped BGCs into families using the
pairwise distance between BGCs and a clustering algorithm to
yield GCFs. BGCs from antiSMASH were converted to arrays of
protein domains then compared based on the fraction of shared
domains and backbone protein domain sequence identity (7, 8).
Density-based spatial clustering of applications with noise
(DBSCAN) clustering was performed on the resulting distance
matrix, resulting in a set of 12,067 GCFs (Fig. 2A) organized into
a network (Fig. 3A). This total number allows hybrid BGCs to be
present in more than one family, an approach used in previous
GCF analyses (7, 21). Restricting hybrid BGCs to only a single
GCF resulted in 3,556 nonredundant families, indicating a large
amount of mixing of biosynthetic logic in fungi. Across the fungal
kingdom, the distribution of GCFs shows a clear relationship
with phylogeny (yellow streaks in Fig. 2A and SI Appendix, Figs.
S1–S5). Evidence from studies of well-characterized strain sets of
Aspergillus and Penicillium has suggested that GCFs are largely
genus or species specific (13, 22, 23); however, here we show that
several GCFs span entire subphyla or classes (Fig. 2A). The
fraction of GCFs that two organisms share is likewise correlated
with phylogenetic distance, evidenced by sets of shared GCFs
between closely related taxonomic groups (SI Appendix, Fig. S6).
In order to facilitate visualization of these phylogenetic patterns,
we created Prospect, a web-based application for hierarchical
browsing of fungal GCFs, BGCs, and proteins as well as MFs and
compounds (prospect-fungi.com). Additional details of the site
are available in SI Appendix, Methods.
We then sought to quantify the relationship between phylog-

eny and shared GCF content. To accomplish this, we used the
protein sequence identity of 290 shared single-copy orthologous
genes from the fungal BUSCO dataset (24) as a proxy for whole-
genome distance, then we counted the fraction of GCFs shared
within each genome in pairwise comparisons (Fig. 2B). A result
was a clear relationship between genomic distance and shared
GCF content, with an average of 75% shared GCFs at the spe-
cies level but less than 5% shared GCFs at taxonomic ranks
higher than family (Fig. 2C). A similar trend exists for individual
phyla and taxonomic classes (SI Appendix, Fig. S7). Across the
fungal kingdom, 76% of GCFs are species specific, and only 16%
are genus specific (SI Appendix, Fig. S8), supporting the hy-
pothesis that most BGCs enable fungi related at the species level
to secure their respective ecological niches with highly special-
ized compounds (4).

GCF-Enabled Annotation of Fungal Biosynthetic Repertoire Anchored
by Known BGCs. Identifying BGCs that have known metabolite
products is an important component of genome mining, enabling
researchers to prioritize known versus unknown biosynthetic
pathways for discovery (25, 26). These “genomic dereplication”
efforts have been bolstered by the development of the Minimum
Information about a Biosynthetic Gene Cluster (MIBiG) reposi-
tory (27), which contains 213 fungal BGCs with known metabolites
(at the time of these analyses, June 2019). When anchored with
known BGCs, the GCF approach enables large-scale annotation
of unstudied BGCs based on similarity to reference BGCs, iden-
tifying clusters likely to produce known metabolites or derivatives
of knowns.
Within our dataset, 154 GCFs contained known BGCs from

MIBiG, ∼1% of the 12,067 total GCFs reported here (SI Appendix,
Fig. S9). These families collectively include a total of 2,026 BGCs
(SI Appendix, Fig. S9) whose approximate metabolite products can

now be inferred, a ∼10-fold increase in the number of annotated
BGCs over the experimentally characterized clusters available in
MIBiG (27). To make this expanded set of annotated BGCs and
their families available for routine genome mining, we created a
section within the Prospect website that highlights these newly
annotated BGCs.

Large-Scale Comparison of GCFs and Fungal Compounds. To assess
the relationship between GCFs and their chemical repertoire, we
next compared GCF-encoded scaffolds to a dataset of known fungal
scaffolds. Analogous to our GCF analysis, we utilized network
analysis of fungal metabolites, organizing these compounds into
molecular families (MFs) based on Tanimoto similarity, a com-
monly used metric for determining chemical relatedness (28, 29).
To directly relate GCF- and MF-encoded metabolite scaffolds, we
determined the relationship between chemical similarity and BGC
similarity for a set of 154 fungal GCFs with known metabolite
products (SI Appendix, Fig. S10). We chose a MF similarity
threshold that resulted in similar levels of chemical similarity rep-
resented by GCF and MF metabolite scaffolds.
Using this compound network analysis strategy, we organized

a dataset of 15,213 fungal metabolites from the Natural Products
Atlas (30) into 2,945 MFs (Fig. 3A). We annotated each com-
pound within this network with chemical ontology information
using ClassyFire, a tool for classifying compounds into a hier-
archy of terms associated with structural groups, chemical moi-
eties, and functional groups (refer to SI Appendix, Fig. S11 for a
breakdown of this chemical ontology analysis for fungal metab-
olites) (31). The number of MF scaffolds (2,945) is only 25% the
number of GCF-encoded scaffolds (12,067) in our 1,000-genome
dataset. This suggests that even this small genomic sampling of
the entire fungal kingdom, estimated to have >1 million species
(32), possesses biosynthetic potential that significantly dwarfs
known fungal chemical space—not only in terms of individual
metabolites but also in terms of metabolite scaffolds. In this joint
GCF–MF dataset, MFs and GCFs represent complementary
approaches for representing the same metabolite scaffold, such
as the tenellin/desmethylbassianin structural class, whose GCF
and MF contains both BGCs and compounds, respectively
(Fig. 3 A, Middle) (33, 34). Exploring such pairings of GCF and
MFs is a proven strategy for large-scale assignment of BGCs to
their metabolite products (35), an activity that will provide a
basis for improved compound discovery and for identifying the
biosynthetic mechanisms fungi use for diversifying their bioactive
scaffolds. An example of the latter is described below.

Diversification of the Equisetin Scaffold Inferred from Gene Cluster
Families. To further explore the link between metabolite scaffolds
as represented by MFs and GCFs, we looked to the decalin–
tetramic acids, a structural class well represented in our BGC and
metabolite datasets. Containing a tetramic acid moiety commonly
found in both bacteria and fungi (36), decalin–tetramic acids such
as equisetin, altersetin, phomasetin, and trichosetin (SI Appendix,
Fig. S12) (37–39) have a wide range of reported biological activ-
ities, including antibiotic, anti-cancer, phytotoxic, and HIV inte-
grase inhibitory activity (40). We reasoned that further exploration
of the decalin–tetramic acid structural class would yield insights
into the biosynthetic mechanisms for variation of this bioactive
scaffold.
Using Prospect, we examined a GCF comprised of 81

decalin–tetramic acid BGCs which encode NRPS–PKS hybrids.
This family contains known BGCs responsible for biosynthesis of
equisetin (41), trichosetin (42), and phomasetin (43) as well as
BGCs from Alternaria spp. that are likely responsible for the
biosynthesis of altersetin (38, 44). While most fungal GCFs are
confined to single species or genera (Fig. 2), the equisetin GCF
has an exceptionally broad phylogenetic distribution, with clus-
ters found in the four Pezizomycotina classes: Eurotiomycetes,
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Fig. 2. The distribution of 12,067 GCFs across the fungal kingdom. (A) Heatmap of GCFs across Fungi. The phylogram to the left shows a Neighbor Joining
species tree based on 290 shared orthologous genes across 1,037 genomes; horizontal shaded regions across the heatmap correspond to each labeled tax-
onomic group. The order of GCF columns is the result of hierarchical clustering based on the GCF presence/absence matrix. Across Fungi, the distribution of
GCFs largely follows phylogenetic trends, with most GCFs confined to a specific genus or species. (B) Relationship between genetic distance and GCF content.
The dotted lines indicate median genetic distance values for organisms within the same species, genus, order, class, or phylum. Each point in the scatterplot
represents a pair of genomes and the fraction of the pair’s GCFs that are shared. (C) Relationship between taxonomic rank and shared GCF content across the
fungal kingdom. Violin plots show the fraction of GCFs shared between all pairs of organisms within our 1,000-genome dataset, with each pair classified
based on the lowest taxonomic rank shared between the two organisms.
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Fig. 3. Large-scale analysis of fungal genome-encoded and known metabolite scaffolds. (A) Colliding large-scale collections of fungal genetic content (Left)
and fungal natural products (Right) using a network of GCFs interpreted from 1,037 genomes (Left) and 15,213 metabolites arranged into 2,945 molecular
families based on their Tanimoto similarity score (Right). Note that 92% of these 12,067 GCFs remain unassigned to their metabolite products. (B) Variations in
adenylation domain substrate-binding residues and tailoring enzyme composition facilitate modifications to the equisetin GCF (Left) and MF (Right). The
phylogram to the left represents a maximum likelihood tree based on the hybrid NRPS–PKS backbone enzyme. All branches in this tree have >50%
bootstrap support.
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Dothideomycetes, Xylonomycetes, and Sordariomycetes (Fig. 3
B, Left). The associated equisetin MF is likewise found in a variety
of Dothideomycete and Sordariomycete species (Fig. 3 B, Right).
Filtering for biosynthetic class (NRPS versus PKS), this set of 81
BGCs grouped through automated analysis into 18 PKS families
but just two NRPS families (NRPS_138 and NRPS_101), indi-
cating a higher degree of similarity in their NRPS domains.
The equisetin biosynthetic pathway involves three major steps:

assembly of a decalin core via the action of PKS enzyme domains
and a Diels Alderase, formation of an amino acid–derived tetra-
mic acid moiety catalyzed by NRPS domains, and N-methylation
of the tetramic acid moiety (SI Appendix, Fig. S13) (43, 45). While
the domain structure of the PKS contained in the equisetin GCF
remains consistent across fungi, differences in backbone enzyme
amino acid sequence and the presence/absence of tailoring
enzymes mediate structural variations to the scaffold. The PKS
enzymes from Fusarium oxysporum and Pyrenochaetopsis sp.
RK10-F058 share 50% sequence identity, which likely result in the
additional ketide unit and C-methylation observed in equisetin
versus phomasetin (Fig. 3B). In the NRPS module of the hybrid
NRPS–PKS, changes to adenylation domain substrate-binding
residues are predicted to mediate incorporation of serine (tri-
chosetin, equisetin, and phomasetin) and threonine (altersetin).
The Aspergillus desertorum BGC contains adenylation domain
substrate-binding residues that are highly variant from those found
in other clusters within the GCF, indicating its tetramic acid
moiety is likely diversified with a different amino acid. The equi-
setin GCF contains additional variations in the number of enoyl
reductase enzymes (one additional in the uncharacterized Peni-
cillium expansum clade), indicating possible differences in the
degree of saturation, and a methyltransferase that is expected to
mediate changes in tetramic acid N-methylation.
This pattern of biosynthetic variation within a GCF resulting

in metabolite diversification suggests that exploring such pairs of
GCFs and MFs with knowledge of their taxonomic distribution
will be valuable to guide genome mining in the identification of
new analogs of compounds with proven therapeutic or agro-
chemical value. The equisetin GCF is one of only 90 GCFs
(representing 0.75% of total GCFs) within our dataset that
spanned multiple taxonomic classes (SI Appendix, Table S2).
This includes bioactive scaffolds such PR-toxin, swainsonine,
chaetoglobosin, and cytochalasin (SI Appendix, Fig. S14) which
contain variations in tailoring enzyme composition expected to
diversify these scaffolds. Given the observed biosynthetic diver-
sity within such “multi-class” GCFs, exploring such pairs of
GCFs and MFs represents an attractive approach for discovering
new analogs of bioactive metabolites.

A “Bird’s Eye” View of Fungal versus Bacterial Biosynthetic Space.
Having surveyed GCFs across the fungal kingdom, we sought to
compare and contrast this genomic and chemical repertoire to
the well-established bacterial canon. We gathered 5,453 bacterial
genomes whose BGCs were publicly available in the antiSMASH
bacterial BGCs database (46), resulting in a dataset of 24,024
bacterial BGCs to compare to our dataset of 36,399 fungal
BGCs. To visualize the biosynthetic space encompassed by these
BGCs, we determined the frequency of protein domains within
BGCs for each major taxonomic group (SI Appendix, Methods).
Principle component analysis (PCA) of these encoded BGCs
showed a phylogenetic bias in this biosynthetic space, with bac-
teria and fungi occupying distinct regions (Fig. 4A).
We quantified the dramatic differences in bacterial versus

fungal NRPS and PKS assembly line logic. Bacterial and fungal
PKS enzymes are known to differ in aromatic polyketide assembly
logic (47, 48), and the vast majority of characterized fungal PKS
enzymes are iterative (49). This iterative PKS pattern observed in
characterized fungal PKS enzymes holds true across this dataset,
with fungal PKSs most often encoding a single-backbone PKS

enzyme, compared to bacterial PKS BGCs which contain a me-
dian of 1.7 PKS backbone enzymes per cluster (Fig. 4 B, Right).
Fungal NRPS BGCs also usually encode single-backbone proteins,
compared to the multiple-backbone enzymes more typically ob-
served in bacterial systems (Fig. 4 B, Left). This observation is
consistent with those fungal NRPS proteins that have been char-
acterized (3), the majority of which have single-backbone enzymes.
Fungal NRPS and PKS enzymes also average ∼150% the size of
bacterial backbones (SI Appendix, Fig. S15). In addition to these
contrasting backbone enzyme compositions, we observed system-
atic differences in the most common NRPS domain organizations
(SI Appendix, Fig. S16), particularly in NRPS termination domains
(Fig. 4C). The most common fungal NRPS termination domains
are C-terminal condensation domains, recently found to catalyze
release of peptide intermediates via intramolecular cyclization
(50–52). The next most common are terminal thioester reductase
domains that perform either reductive release to aldehydes or
alcohols or release via cyclization (53). This is in stark contrast to
bacterial NRPS BGCs, which most commonly terminate with type
I thioesterase domains that release intermediates as linear or
cyclic peptides (Fig. 4C).
These collective differences between fungal and bacterial

BGCs show systematic differences in NRPS biosynthetic logic
between these two kingdoms. In bacterial NRPS canon, a path-
way is comprised of multiple NRPS genes whose chromosomal
order (and the order of catalytic domain “modules” within the
encoded polypeptide) corresponds to the order of amino acid
monomers in the metabolite product (Fig. 4 D, Right) (54). In the
field of bacterial natural products, the use of this “collinearity
rule” to predict metabolite scaffolds is commonplace (19, 55,
56); however, the large number of exceptions to this rule reduces
the accuracy of these predictions. The prototypical fungal NRPS
(Fig. 4D, Left) primarily involves the action of biosynthetic do-
mains within the same backbone enzyme rather than multiple
NRPS backbones acting in concert. This suggests that future
efforts to predict fungal NRPS scaffolds will be able to largely
bypass the need to account for permutations of multiple NRPS
genes, raising the possibility of increased predictive performance
compared to bacteria.

Uncovering Distinct Natural Product Reservoirs. Having shown that
fungi and bacteria are distinct biosynthetically, we sought to
compare these genomics-based insights to the chemical space of
known metabolites. We added 9,382 bacterial compounds to our
dataset of 15,213 fungal metabolites, analyzing these bacterial
compounds using the same network analysis and chemical on-
tology workflow described above. We performed PCA to visu-
alize the chemical space of major fungal and bacterial taxonomic
groups within this compound dataset (further described in SI
Appendix, Methods).
PCA of bacterial and fungal compounds (Fig. 5A) revealed a

trend that parallels our analysis of fungal and bacterial biosyn-
thetic space (Fig. 4A). Bacteria and fungi occupy separate re-
gions of chemical space, differing dramatically in terms of
chemical ontology superclass, a high-level descriptor of general
structural type (Fig. 5B). Fungi have twice the frequency of lipids
and nearly twice the frequency of heterocyclic compounds, a
structural group that includes aromatic polyketide-related moi-
eties such as furans and pyrans. Many of the chemical moieties
and structural classes that are highly enriched in bacteria or fungi
are vital in bioactive scaffolds. This includes moieties such as the
bacterial aminoglycoside antibiotics (57), thiazoles present in the
bacterial anti-cancer bleomycin family (58), and the steroid ring
that forms the core scaffold of steroid drugs such as the fungal
metabolite fusidic acid (59) (Fig. 5B). PCA loading plots similarly
reveal differences between bacterial and fungal chemical space,
including a high prevalence of peptide-associated chemical on-
tology terms in bacteria and lipid and aromatic polyketide terms in

6 of 9 | PNAS Robey et al.
https://doi.org/10.1073/pnas.2020230118 An interpreted atlas of biosynthetic gene clusters from 1,000 fungal genomes

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020230118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020230118


fungi (SI Appendix, Fig. S17). While there are known cases of shared
compounds between bacteria and fungi (several highlighted in SI
Appendix, Fig. S18), similar compounds (i.e., Tanimoto similarity >
0.6) between bacteria and fungi were completely absent from our
dataset, reinforcing the rarity of such shared chemical space.
Within the fungal kingdom, PCA revealed differences in the

chemical repertoire of major taxonomic groups (SI Appendix,
Fig. S19). Pezizomycotina classes grouped together in chemical
space, largely due to a higher proportion of polyketide- and
peptide-related chemical moieties (SI Appendix, Fig. S20).
Basidiomycota are distinct chemically, possessing a much higher
proportion of chemical moieties and descriptors associated with
terpenes and other lipids. These observations based on chemical
space are consistent with the higher proportion of NRPS and
PKS BGCs within Pezizomycotina and the prevalence of terpene
BGCs within Basidiomycota groups such as Agaricomycotina
(Fig. 2B) and further supported by PCA of fungal BGCs, in
which fungal phyla represent distinct groups (SI Appendix, Figs.
S21 and S22).

Discussion
A Framework for Exploring Fungal Scaffolds Using Gene Cluster
Families. The GCF approach enables the systematic mapping of
the biosynthetic repertoire encoded by large groups of fungal
genomes. The fungal kingdom is a wealth of untapped biosyn-
thetic potential, with the 1,000 genomes analyzed here repre-
senting a reservoir of >12,000 GCF-encoded scaffolds. This
genome dataset is only a small subset of the >1 million predicted
fungal species (32), indicating that the total biosynthetic potential
of the fungal kingdom far surpasses that assembled here.
By organizing biosynthetically related BGCs into families, the

GCF approach provides a means of cataloguing and dereplicating
genome-encoded MFs. In the field of bacterial natural products
discovery, this GCF paradigm has been expanded for automated

linking of GCFs to MFs detected by metabolomics and molecular
networking analysis, enabling high-throughput genome mining from
industrial-scale strain collections (5, 7, 32, 35). Establishing the GCF
approach for fungal genomes lays the groundwork for similar GCF-
driven large-scale compound discovery efforts from fungi.

Data-Driven Prospecting for Fungal Natural Products. Large-scale
genome sequencing projects such as the 1000 Fungal Genomes
project, whose stated goal is sampling every taxonomic family
within fungi (60), will uncover a large amount of biosynthetic and
chemical novelty. However, as 76% of fungal GCFs are species-
and 16% are genus specific, such genome sequencing efforts fo-
cused on taxonomic families will miss the majority of GCFs. Ad-
ditional large-scale efforts to sample this biosynthetic space based
on “depth” rather than “breadth” is suggested to more efficiently
access these genomes; indeed, a recent report on metabolic di-
versity of just two clinical isolates of the model fungus Aspergillus
nidulans revealed six novel clusters (61). Future “1,000-genome”
projects, now feasible for academic research groups due to ever-
decreasing genome sequencing costs, should focus on expanding
this dataset with species-level sequencing of taxonomic groups.
The GCF approach provides a means of selecting fungi for

compound and BGC discovery via approaches such as heterolo-
gous expression (21) based not on taxonomic or phylogenetic
markers but with a strategy that focuses on efficient sampling of
biosynthetic pathways. The distribution of GCFs shows groups of
organisms with shared GCFs (SI Appendix, Fig. S6), and sampling
based on these organism “groups” reduces the number of ge-
nomes required to capture the majority of fungal biosynthetic
space. Our simulated sampling based on shared GCFs indicated
that 80% of GCFs from the 386 Eurotiomycete genomes are
represented in a sample of only 145 genomes. By contrast, to
represent the same number of GCFs, species-level sampling re-
quired 189 genomes and random sampling required 263 genomes

Fig. 4. Fungal BGCs are distinct from their canonical bacterial counterparts. (A) PCA of 36,399 fungal and 24,024 bacteria BGCs, with points sized according
to the number of BGCs analyzed. Fungal and bacterial taxonomic groups occupy distinct regions of this biosynthetic space. (B) Fungal and bacterial BGCs
differ in backbone enzyme composition, with fungal NRPS and PKS clusters typically encoding only a single backbone, compared to multiple-backbone
enzymes found in bacterial BGCs. (C) Fungal and bacterial NRPS BGCs differ dramatically in their use of termination domains for release of peptide inter-
mediates. (D) Fungal NRPS logic is distinct from bacterial canon. Most fungal NRPS pathways involve a single NRPS enzyme that utilizes a terminal con-
densation domain to produce a cyclic peptide. In contrast, bacterial NRPS enzymes contain multiple NRPS enzymes that operate in a colinear fashion and
typically utilize thioesterase domains to produce linear or cyclic peptides.
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(SI Appendix, Fig. S23). This indicates that the GCF approach can
be used as a roadmap for systematic characterization of new
fungal biosynthetic pathways and their compounds.

Unearthing New Medicines. These analyses of both chemical and
biosynthetic space show that bacteria and fungi represent chemically
distinct sources for natural products discovery. Interestingly, fungal
compounds are closer to US Food and Drug Administration–
approved compounds than bacterial compounds in terms of several
chemical properties, including three out of four “Lipinsky Rule of
Five” properties often used as guidelines for predicting oral bio-
availability (SI Appendix, Fig. S24) (62). While many of the most
successful natural products violate these rules of thumb, these data
suggest that fungal metabolites may be more “druglike” than those
occupying bacterial chemical space.
Major compound discovery campaigns can be initiated with the

understanding that different biological sources will enrich for
different types of metabolite scaffolds. The fungal kingdom is rich
in aromatic polyketides, while bacteria harbor a higher proportion
of peptidic scaffolds. Within the fungal kingdom, Basidiomycota is
a rich reservoir of terpenes, while BGC-rich Pezizomycotina

classes bias toward polyketides and peptides. In sum, an atlas like
that assembled here allows quantification of previously anecdotal
trends about the phylogenetic distribution of metabolite subtypes
and taxonomy-informed mining of specific scaffolds with thera-
peutic potential (SI Appendix, Fig. S25).

Conclusion
We have mapped the landscape of 12,067 GCFs across 1,037
fungal genomes, revealing the phylogenetic distribution of these
families and establishing a framework for high-throughput ge-
nome mining from fungi. This framework introduces a funda-
mental biosynthetic unit—the gene cluster family—for cataloguing
and annotating the rapidly increasing number of fungal genomes
available. Network analysis at the GCF level advances the field of
fungal genome mining with an approach scalable to industrial-
scale strain collections, providing an approach for systematically
mapping known and unknown fungal biosynthetic space and as-
sociated metabolite scaffolds. The GCF paradigm further provides
an atlas for exploring metabolite scaffolds and their derivatives,
enabling targeted genome mining focused on scaffolds with
proven value. These collective analyses reveal that genomes across

Fig. 5. Bacteria and fungi are distinct sources for natural product scaffolds. (A) PCA of 24,595 known bacterial and fungal compounds, with points sized
according to the number of compounds. Fungal and bacterial taxonomic groups occupy distinct regions in this representation of chemical space for natural
products. (B) Quantitative comparison of structural classifications in bacterial versus fungal compounds. (C) Bacteria and fungi represent distinct pools for
bioactive compounds and scaffolds. Selected chemical moieties enriched and characteristic of each taxonomic group are highlighted in yellow. The fold
enrichment of the chemical moiety is indicated in green, with P values from a chi-squared test indicated.
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the fungal kingdom represent a rich resource for discovery of
natural products. In both under-explored and well-studied fungal
taxa, a wide variety of metabolite scaffolds awaits discovery, and
the ever-decreasing cost of genome sequencing will help usher in a
wave of large-scale fungal genome mining efforts that rival those
currently underway in bacteria.

Materials and Methods
Methods and additional necessary information are available in SI Appendix,
Methods. This includes descriptions of genome dataset curation, gene

cluster family network analyses, web portal creation, phylogenetic trees,
cheminformatics analyses, and principal component analysis.

Data Availability. All study data are included in the article and/or supporting
information.
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