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Salmonella is an intracellular pathogen of a substantial global health
concern. In order to identify key players involved in Salmonella infec-
tion, we performed a global host phosphoproteome analysis subse-
quent to bacterial infection. Thereby, we identified the kinase SIK2 as
a central component of the host defense machinery upon Salmonella
infection. SIK2 depletion favors the escape of bacteria from the
Salmonella-containing vacuole (SCV) and impairs Xenophagy, result-
ing in a hyperproliferative phenotype.Mechanistically, SIK2 associates
with actin filaments under basal conditions; however, during bacterial
infection, SIK2 is recruited to the SCV together with the elements of
the actin polymerization machinery (Arp2/3 complex and Formins).
Notably, SIK2 depletion results in a severe pathological cellular actin
nucleation and polymerization defect upon Salmonella infection. We
propose that SIK2 controls the formation of a protective SCV actin
shield shortly after invasion and orchestrates the actin cytoskeleton
architecture in its entirety to control an acute Salmonella infection
after bacterial invasion.

Salmonella | actin cytoskeleton | Arp2/3 complex | host–pathogen
interactions | Salmonella-containing vacuole

Salmonella enterica is a gram-negative, facultative intracellular
human pathogen, annually causing more than 100 million

food- and waterborne infections worldwide. Salmonella Typhi-
murium causes severe gastroenteritis, which could turn into a
systemic infection in children, immune-compromised, or elderly
people (1, 2). Concurrently, multidrug resistant bacteria are
globally emerging and threatening our health systems, calling for
a better understanding of the underlying virulence mechanism
and host response.
Pathogenic bacteria have evolved the inherent ability to infect

and to establish their niche within host cells. For colonizing non-
phagocytic cells such as epithelial cells, Salmonella uses a trigger
mechanism–based entry mode. Bacterial virulence factors are then
injected via a Type III-secretion system (T3SS) into the host cell to
induce cytoskeletal rearrangements leading to membrane ruffling
and macropinocytosis-driven internalization into a sealed phag-
osome (3, 4). This specialized compartment is referred to as the
Salmonella-containing vacuole (SCV) and serves as the intracel-
lular replicative niche by hiding the bacteria from the humoral and
cell-autonomous immune response (5). Salmonella invasion re-
quires a cooperative action of several bacterial effector proteins
hijacking multiple host targets. One of the main targets forcing
Salmonella´s uptake is the actin cytoskeleton by subverting the
host Rho GTPases system. Bacterial effector proteins such as
SopE/SopE2 mimic host nucleotide exchange factors (GEFs) to
stimulate Rac1 and CDC42 activity (6, 7). Once GTP-activated,
Rho GTPases stimulate downstream pathways to drive actin fila-
ment (F-actin) assembly and rearrangement.
The actin cytoskeleton network is regulated by actin-binding

proteins (ABPs), which orchestrate assembly and disassembly of
actin in higher networks (8). Monomeric, globular actin (G-actin)
is nucleated into new actin filaments, or the existing F-actin is

elongated, stabilized, or disassembled by ABPs. The major actin
nucleation factor is the multimeric Arp2/3 complex, which generates
branched actin filament networks. Formins generate long un-
branched actin filaments and represent another actin nucleation
family. Together with actin nucleation-promoting factors, small Rho
GTPases control ABPs in a spatiotemporal manner. Actin poly-
merization and membrane ruffling are necessary for Salmonella
invasion. Following Salmonella internalization, the SCV undergoes
SPI-1–dependent biogenesis and is transported to a juxtanuclear
position at 1 to 2 h postinfection (pi). At later time-points (4 to 6 h
pi), SPI-2–dependent effector proteins are expressed to further
mature the SCV, allowing bacterial proliferation. Pioneering work
described that, at later stages of the infection (≥6 h pi), an actin
meshwork around the SCV stabilizes and protects the vacuolar
niche (9–13).
Here, we report SIK2 as a Salmonella resistance factor and a

regulator of the actin cytoskeleton. SIK2 belongs to the AMPK
kinase family and was named after its homolog SIK1, found to be
expressed upon high-salt diet-induced stress in rats (14, 15). SIK2
has been implicated into multiple biological roles including mela-
nogenesis, cancer progression, and gluconeogenesis (16–18). SIK2
depletion results in a loss of SCV integrity and bacterial escape into
the host cytosol, causing intracellular Salmonella hyperproliferation.
Notably, SIK2 depletion results in a severe pathological cellular
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actin nucleation and polymerization defect upon Salmonella infec-
tion. Hence, SIK2 may represent a cellular safeguard, which con-
trols the actin cytoskeleton and SCV integrity, thereby serving as a
prime regulator of Salmonella proliferation subsequent to cellular
internalization.

Results
Quantitative Phosphoproteomics in Salmonella-Infected Epithelial
Cells. In order to shed light on the signaling pathways underlying
the Salmonella infection, we performed quantitative phosphopro-
teomics. HCT116 cells were metabolically labeled with stable iso-
tope labeling of amino acid in cell culture (SILAC), allowing the
relative quantification of peptides by high-resolution mass spec-
trometry (MS). To this end, we used a triple-SILAC labeling in
which “light”-labeled cells were left uninfected and “heavy”- and
“medium”-labeled cells were infected with Salmonella and subse-
quently analyzed (30 min or 2 h pi) (Fig. 1A). In total, we quan-
tified around 17,900 phosphosites from 4,200 proteins that were
modified in minimum two out of four experimental replicates. At
30 min pi, the up-regulation of phosphorylation events was most
pronounced (Fig. 1 B and C). Across all experimental replicates,
we mapped 964 phosphosites displaying log2 (heavy:light) ratios
of ≥0.58 indicating a 1.5-fold increase; 626 proteins and 742
phosphosites with log2 (heavy:light) ratios of ≤0.58 indicating a 1.5-
fold decrease; and 481 proteins at 30 min pi (Fig. 1B). Significant
log2 values represent a P value of ≤ 0.05. To obtain a general
understanding of the host phosphoproteome changes upon Sal-
monella infection, we standardized the data set (z-score) and dis-
played relative changes of phosphopeptides in a heatmap (Fig. 1D).
Our data indicates an acute modulation of phosphorylation events
in various signaling pathways shortly after a Salmonella infection
(Fig. 1E). Pathway analyses of the up-regulated functional inter-
action network 30 min pi revealed extensive remodeling of Rho

GTPases, like CDC42- and/or Rac1-signaling (Fig. 1E). Among
these, we identified over 20 proteins belonging to the Rho GTPase
network (e.g., ARHGAP5 and ARHGEF2/11/12), confirming this
distinct signaling network as a major target of Salmonella at early
time points pi (19, 20). An additional functional analysis exhibited
a direct association between bacterial invasion and the Rho
GTPase pathway as a major cluster in our phosphoproteome data
set (SI Appendix, Fig. S1A). Members of tumor necrosis factor
(TNF)- and nucleotide-binding oligomerization domain (NOD)-
like receptor signaling were also overrepresented pi (Fig. 1E) (SI
Appendix, Fig. S1A). Among them were several components of the
MAPK/IKK-pathway, followed by pattern recognition receptor
activation. We validated the key phosphosites of these pathways
using phospho-specific antibodies against components of the
MAPK-signaling cascade (SI Appendix, Fig. S1 B and C). NOD-like
receptors are intracellular PPRs, which recognize bacterial pepti-
doglycan and SopE-mediated Rho GTPase activation and repre-
sent one of the main proinflammatory pathways activated by
Salmonella infection (21, 22). Our MS data confirm previously
published results, indicating that NF-κB-signaling sets a proin-
flammatory state to dampen bacterial proliferation in host
cells (23).

SIK2 Signaling Network Is Triggered upon Salmonella Infection. An-
alyzing the reproducible and significantly regulated phosphorylation
sites 30 min pi, we identified and confirmed the innate immunity
kinase TAK1 (MAP3K7) as a central target of Salmonella-induced
phosphosite modulation (24, 25). Strikingly, we identified the
AMPK-related kinase SIK2 as a target of potential similar impor-
tance (Fig. 1F). We found SIK2 to be phosphorylated at S117,
which represents a phosphorylation site within the kinase domain.
Since AMPK-related kinases are poorly characterized and SIK2 has
not yet been associated with Salmonella infection, we focused on the
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SIK2-associated functional network in the same dataset (Fig. 1G).
In this cluster, we identified several constituents of the Rac1-
signaling network (Cofilin-1, PAK2, LIMK1, STAT3, and p38a)
(Fig. 1G) (SI Appendix, Fig. S1D). Rac1-signaling is one of the
major pathways targeted by SPI-1 Salmonella effector proteins to
establish an intracellular niche within the host cell, enabling pro-
tected proliferation of bacteria (6, 7). This prompted us to further
investigate the role of SIK2 during Salmonella infection.

SIK2 Is Essential for Restriction of Intracellular Salmonella Proliferation.
To test whether SIK2 is required for antibacterial defense in epi-
thelial cells, we used short interfering RNAs (siRNA) to deplete
cells of SIK2 (SI Appendix, Fig. S2A). Cells lacking SIK2 failed to
restrict proliferation of bacteria within the SCV (Fig. 2A). This
phenotype was characterized by bacterial hyperproliferation rather
than bacterial hyper-invasion (Fig. 2B). The hyperproliferation of
intracellular Salmonella was already evident at 6 h pi and increased
further at 8 h pi. The phenotype was confirmed by an alternative
second siRNA targeting SIK2, which depletes SIK2 protein levels
as well (SI Appendix, Fig. S2B). To further characterize the phe-
notype, we generated a functional HA-SIK2 doxycycline-inducible
HeLa cell line, resistant to anti-SIK2 siRNAs. To obtain SIK2

expression levels mimicking endogenous levels, we titrated the
doxycycline concentration (SI Appendix, Fig. S2C). Using a low
concentration of doxycycline, we observed a full phenotypic rescue
by re-expressing SIK2 wild-type levels (Fig. 2C). Thus, wild-type
SIK2 controls Salmonella infection and functions as a central host
defense kinase. Next, we investigated whether besides SIK2 ex-
pression, SIK2 kinase activity is required for restricting Salmonella
proliferation. To this end, we generated a HeLa cell line expressing
an inducible and SIK2-siRNA–resistant kinase-inactive (K49A)
HA-SIK2. Again, we titrated the doxycycline concentration to
mimic endogenous protein levels (SI Appendix, Fig. S2D). Ex-
pression of the kinase-inactive mutant failed to restrict bacterial
proliferation (Fig. 2D). Therefore, the kinase activity of SIK2 is
mandatory to limit bacterial proliferation during an acute infection.
By using Phos-Tag gels, we were able to validate the phosphory-
lation of SIK2 directly following bacterial infection at 15 min pi and
at 30 min at endogenous levels (SI Appendix, Fig. S2 E and F). The
phosphorylation of SIK2 appeared independent of its kinase ac-
tivity, suggesting a transphosphorylation event of SIK2 by an un-
identified up-stream kinase, which was not investigated further (SI
Appendix, Fig. S2E). Notably, we observed at 2 h pi an increase in
the phosphorylation status of the wild-type kinase, in contrast to
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the kinase-inactive version, indicating a cis-phosphorylation (SI
Appendix, Fig. S2E). By using a SPI-1 deletion Salmonella strain, we
showed that the phosphorylation depends on SPI-1 effector proteins
(SI Appendix, Fig. S2F). To further investigate SIK2 phosphoryla-
tion, we made use of GFP-SopA– and GFP-SopE–inducible HeLa
cell lines to test whether these SPI-1 effector proteins mediate SIK2
activation (SI Appendix, Fig. S2G). Our data indicates that SIK2 is
being phosphorylated in a SopE-dependent manner and activated
further during the early phase of a Salmonella infection.

SIK2 Controls SCV Integrity and Bacterial Evasion. To understand the
SIK2 depletion phenotype, we studied the fate of intracellular
bacteria using confocal microscopy. The autophagy modifier
LC3B selectively targets autophagic cargo (such as bacteria) to
the autophagosome to promote it’s autophagic degradation.
Therefore, we monitored endogenous LC3B recruitment to
Salmonella 1 h pi. In accordance with literature (26), siCTRL-
transfected cells showed an LC3B–Salmonella colocalization rate
of ∼15%. In contrast, cells depleted of SIK2 showed a signifi-
cantly higher percentage of LC3B-positive Salmonella (close to
40%) (Fig. 2 E and H). Using Galectin-8 as a marker of vesicle,
endosomal, or lysosomal integrity revealed a significant increase
in Galectin-8–positive Salmonella after depleting SIK2 from cells
(Fig. 2 F and H). Using ubiquitin as an alternative damage
marker, we confirmed this finding (Fig. 2 G and H). Thus, SIK2
depletion causes SCV damage, enabling enhanced bacterial ac-
cess to the host cytosol. To study the fate of cytosolic bacteria, we
used a Salmonella strain expressing green fluorescent protein
(GFP) only, when exposed to the host cytosol, controlled by a
glucose-6-phospate–inducible promoter (27). By studying en-
dogenous LC3B and LAMP1 recruitment at 4 h pi, we found
significant less colocalization of both markers on cytosolic bac-
teria after SIK2 depletion (Fig. 2I). SIK2 ensures the integrity of
the SCV, thus preventing Salmonella from entering the host
cytosol in HeLa cells, in which bacterial hyperproliferation oc-
curs (28). Furthermore, SIK2 is required for autolysosome for-
mation and therefore for the degradation of cytosolic bacteria
via the autophagy–lysosomal system (Fig. 2J).

Recruitment of SIK2 upon Infection to Actin Cytoskeleton Network.
To understand the role of SIK2 during the course of a Salmonella
infection, we tagged endogenous SIK2 with an HA tag at its C
terminus in a HeLa cell line, using CRISPR/Cas12–assisted PCR-
tagging (29). This cell line was used for immunoprecipitation and
subsequent quantitative TMT-based mass spectrometry (IP-MS)
(Fig. 3A). Under basal, noninfected conditions we were able to
identify 21 significant interaction partners of SIK2, which fulfilled
our stringent criteria (Fig. 3B). As expected, the bait SIK2 was the
most enriched protein. Among the SIK2-interacting partners were
the Rho GTPase CDC42, ACTBL2 encoding kappa-actin, CLTB/
Clathrin light chain B, TPM2/Tropomyosin-beta, MYL3/Myosin
light chain 3, and CORO1C/Coronin-1C, pointing toward a po-
tential role in the basal cytoskeleton dynamics (Fig. 3B). Upon
Salmonella infection, the SIK2 interactome profile changed to a
much higher degree of complexity, and we observed 175 cointer-
acting partners of SIK2. This indicates that SIK2 is recruited to a
larger protein interactome at 1 h pi (Fig. 3C). To rule out technical
reasons for this increased complexity, we plotted the fold-changes of
uninfected versus infected samples on a scatter plot. Our data
demonstrated equal immunoprecipitation of SIK2 in both settings
and a pronounced shift in the interactome triggered by Salmonella
infection (SI Appendix, Fig. S3C). Functional pathway analysis of
the SIK2 interactome upon infection revealed strong enrichment of
bacterial/Salmonella infection pathway components, such as Rho
GTPases and the regulation of the actin cytoskeleton (Fig. 3D) (SI
Appendix, Fig. S3A). The hits from both categories were clustered
hierarchically, revealing that SIK2 is interacting with the entire
Arp2/3 complex (Arp2/ACTR2, Arp3/ACTR3, p41/ARPC1A&B,

p34/ARPC2, p21/ARPC3, p20/ARPC4, and p16/ARPC5) and ad-
ditional known modulators of this complex, such as CDC42, CTTN/
Cortactin, and IQGAP1 (Fig. 3E) (SI Appendix, Fig. S3B) (30).
Arp2/3 complex represents the main F-actin nucleation factor
generating branched actin networks (31, 32). We also identified the
Formin FMNL2 as another actin nucleation factor, required for
linear actin polymerization (33). Additionally, several factors
encoding type II myosin like MYH9, MYH11, MYH14, and mo-
lecular constituents involved in actin stress fiber formation (e.g.,
ACTN1&4/α-actinin, FLNA/Filamin-A, CALD1/Caldesmon and
Tropomyosin) were identified (Fig. 3E) (SI Appendix, Fig. S3 A and
B) (34). Together with F-actin bundles, myosins form actin stress
fibers, which are stabilized by α-actinin (35).
Functional pathway analysis revealed SIK2 recruitment to well-

known Salmonella targets, such as the Arp2/3 complex, Filamin-A,
or type II myosin (MYH9 and MYH10), forming the basis for
functional categorization, such as “Salmonella infection (K)”
(Fig. 3D) (SI Appendix, Fig. S3A). Upon Salmonella infection, SIK2
is recruited to a central actin hub and to a large number of essential
factors for Salmonella colonization within the host cell (36, 37). To
verify the IP-MS results, we used the same set-up as described be-
fore and performed a hemagglutinin (HA) immunoprecipitation
(IP), followed by sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS-PAGE) and Western blot. We were able to
confirm the Salmonella-dependent recruitment of SIK2 to actin,
cortactin, and the Arp2/3 complex (ARPC2) under endogenous
settings (Fig. 3F). In additional IP results, we demonstrated the
interaction of SIK2 with FMNL2 and actin under basal, noninfected
conditions.

Impact of SIK2 on the Actin Cytoskeleton during Infection. Since the
SIK2 kinase activity is required to rescue the siRNA-mediated
hyperproliferative phenotype, we explored pathways/networks reg-
ulated by SIK2 upon Salmonella infection. To this end, we estab-
lished a SIK2-dependent TMT-based phosphoproteome screen in
HeLa cells, in which siRNA-transfected cells were lysed at 30 min
pi. Extracted proteins were digested, TMT 16–plexed and used for
iron-nitrilotriacetic acid complex (Fe-NTA) phosphopeptide en-
richment (Fig. 4A). A principal component analysis (PCA) showed
clustering of the respective replicates, which was further analyzed by
a Pearson-based column correlation (SI Appendix, Fig. S4 A and B).
To illustrate changes in the phosphoproteome under basal and in-
fection conditions, we calculated z-scores and hierarchically clus-
tered the ANOVA-significant phosphopeptides fulfilling our
stringency criteria (Fig. 4B). The data showed a strong effect of
SIK2 depletion in the global phosphoproteome, as already evident
in the PCA (SI Appendix, Fig. S4A). Since the endogenous SIK2
interactome already revealed significant changes upon Salmonella
infection, we were looking for an infection- and SIK2-dependent
cluster in the phosphoproteome (Fig. 4B). Cluster I identifies
peptides exhibiting reduced phosphorylation status, whereas cluster
II exhibits those with an increased phosphorylation status upon
Salmonella infection after SIK2 depletion. The overall cluster pro-
file, however, did not change and was not significantly different
from control settings (SI Appendix, Fig. S4C). To understand the
infection-induced phosphorylation events, we performed a func-
tional pathways cluster analysis (Fig. 4C). Most strikingly, the sec-
ond most pronounced functional cluster was composed of a major
fraction of genes regulating the actin cytoskeleton, which runs in
parallel to the cluster “signaling by RhoGTPases (R)” (Fig. 4C).
Given the background of the endogenous, infection-triggered SIK2
interactome, we filtered cluster I and II to identify all cytoskeleton
components. From this information we were able to construct a
dense protein–protein network centered around the cytoskeleton
elements (Fig. 4D). To narrow down the impact of SIK2 on the
cytoskeleton, we calculated the intersection between phosphopro-
teome clusters I and II and the endogenous SIK2 interactome at 1 h
pi (Fig. 4E). Notably, almost one-third of the whole interactome
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could be assigned to these phosphoproteome clusters. The
cytoskeleton-associated intersection was then clustered hierarchi-
cally (Fig. 4F). These proteins showed a significantly altered phos-
phorylation pattern compared to control infection settings. Among
these proteins, we found a cluster of proteins required for building
up and stabilizing F-actin, including lamellipodia and stress fibers
(e.g., ACTN4, FLNA, FNLB, ARPC1B, CTTN, MYO9, MYO10,
CALD1/Caldesmon, EMD/Emerin, PDLIM1/Elfin, and LIMA1/
EPLIN). Taken together, we identified a SIK2-interacting, actin
cytoskeleton–centered network, which shows pronounced changes
in the phosphorylation pattern upon SIK2 depletion and Salmonella
infection.

Endogenous SIK2 Is Colocalized with Actin Filaments and the SCVs. To
validate MS and biochemical data, we performed microscopic
analysis of cells (MEFs) with a focus on endogenous localization
of SIK2 (Fig. 3 E and F). SIK2 showed a localization in the cell
periphery, forming foci with a linear arrangement (Fig. 5A). By
costaining with Phalloidin, we found SIK2 to colocalize with
F-actin–rich regions in MEFs. Thereby, SIK2 decorates poly-
merized actin fibers with distinct SIK2 foci in MEFs (Fig. 5A). The
data showed SIK2 colocalizes with F-actin within the areas un-
dergoing pronounced remodeling and/or de-novo assembly of the
actin cytoskeleton under basal, noninfected conditions (Fig. 5 A
and B). This finding raised the questions of the localization of
SIK2 under an infection scenario. Therefore, we infected MEFs

with Salmonella and stained for endogenous SIK2. Most strikingly,
we found SIK2 to be recruited to Salmonella at 30 min pi, deco-
rating the SCV (Fig. 5B) (SI Appendix, Fig. S5 A and B). The
endogenous SIK2 localization was verified by two different anti-
SIK2 antibodies (Fig. 5B) (SI Appendix, Fig. S5A). Quantitative
analysis showed that more than 50% of the intracellular Salmo-
nella colocalized with SIK2 at early time-points pi (SI Appendix,
Fig. S5C). The SIK2 interactome revealed interactions with actin
nucleation factors such as the Arp2/3 complex or well-established
modulators of this complex, such as cortactin. Accordingly, we
were able to show by microscopic analysis that these factors also
colocalized with the SCV (SI Appendix, Fig. S5D and E). This is in
accordance with SIK2 being recruited to the SCV directly after
cellular invasion and corecruitment to the actin network.

SIK2 Impacts Actin Nucleation and Polymerization during Salmonella
Infection. To address the role of SIK2 in regulating the actin
cytoskeleton, we depleted SIK2 by an siRNA approach in HeLa
cells and stained for F-actin using Phalloidin. Under noninfected
conditions, changes in the structure of the actin cytoskeleton
compared to control cells are readily visible (SI Appendix, Fig.
S5F). In contrast, after Salmonella infection, we observed sig-
nificantly less F-actin in SIK2-depleted cells, suggesting a
breakdown of actin polymerization upon infection (SI Appendix,
Fig. S5G). Overall, cortical actin structures and actin stress fibers
were dramatically reduced in SIK2-depleted cells; however, the
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microtubules (visualized by tubulin staining) remained unaf-
fected (SI Appendix, Fig. S5H). To corroborate the observed
defects in actin polymerization, we were able to mimic the mi-
croscopic phenotype of SIK2 depletion after Salmonella infection
by using 2 μM of the actin polymerization inhibitor Cytochalasin B
for 30 min (SI Appendix, Fig. S5I). Using a confocal microscopic
quantitative image cytometer platform and subsequent automated
analysis, we were able to validate these findings (Fig. 5C). Further
biochemical analysis by separating G- and F-actin showed higher
levels of G-actin after SIK2 depletion in cells (SI Appendix, Fig.
S5J). This indicates that SIK2 depletion under basal conditions
and particularly in combination with Salmonella infection pheno-
copies a strong actin nucleation and polymerization defect. By
using the inducible HA-SIK2 HeLa cell line, resistant to SIK2
siRNAs, we tested whether we can phenotypically rescue the actin
polymerization defect upon Salmonella infection. In accordance
with the Salmonella proliferation assay, we were only able to
phenotypically rescue actin polymerization with HA-SIK2 wild
type, whereas the kinase inactive mutant failed to rescue the
phenotype (Fig. 5D). Thus, SIK2 kinase activity is controlling
F-actin formation and rearrangements. Overall, our data show
that SIK2 is an actin cytoskeleton–modulating effector protein,
which is activated upon Salmonella infection and recruited to the
actin hub centered around the Arp2/3 complex to control F-actin
formation in the cell and especially around the SCV in an early
phase of Salmonella infection.

Discussion
The actin cytoskeleton is central to cell-autonomous immunity
during bacterial infections (22). In the present study, we identified
a role of SIK2 as a host-defense kinase, regulating the actin cyto-
skeleton upon Salmonella entry into the host cell and restricting the
intra-SCV proliferation of Salmonella. Our data from cell systems,

working at the endogenous protein levels, indicate that SIK2 rep-
resents a central orchestrator of the actin regulatory network, co-
ordinating SCV stability and cellular actin assembly, in order to
limit the acute phase of the infection.
To gain access into epithelial cells, Salmonella injects effector

proteins via its T3SS to modulate the host cytoskeleton by in-
ducing membrane ruffling, resulting in bacterial uptake. SopE
and SopE2 are central to Salmonella-induced activation of Rac1
and CDC42 by molecularly mimicking host GEFs (7, 38). In
addition, SopB, a phosphoinositide phosphatase, is essential for
Salmonella invasion and activation of RhoG (20). Activated
Rac1 and CDC42 recruit the WAVE-regulatory complex to in-
duce the Arp2/3 complex–dependent F-actin polymerization (39,
40). Notably, two Salmonella effectors (SipA and SipC) are di-
rect actin-binding proteins, which results in the nucleation and
bundling of the actin filaments (41, 42). To ensure spatiotem-
poral actin rearrangements, Salmonella reverses the effects of
SopE via the GTPase-activating protein (GAP) SptP, thus nor-
malizing the actin cytoskeleton (43). This study identifies SIK2 as
an actin effector protein, controlling F-actin polymerization and
limiting the intracellular proliferation of bacteria by restricting it
to the SCV. We show that SopE mediates SIK2 phosphorylation
and activation. However, it remains unknown how SopE exactly
activates SIK2, probably through the exploitation of anther host
kinase. Given the high similarity with SopE, it is certainly pos-
sible that SopE2 might as well trigger SIK2 phosphorylation.
Both effector proteins activate directly Rac1 and CDC42, al-
though with different GEF activities and stimulate p21-activated
kinase (PAK) signaling, which might be upstream of SIK2
activation.
During a Salmonella infection, the SIK2 interactome profile

dramatically changes and recruits SIK2 to a dense actin-regulating
network, centered around CDC42, the Arp2/3 complex, and actin
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stabilization factors. The Arp2/3 complex, Formins, type II myo-
sins, IQGAP, and CDC42 are all required for the efficient Sal-
monella invasion (37, 44, 45). This event was not affected by SIK2
depletion. In contrast, we were able to demonstrate that SIK2 acts
at a later stage of infection.
It is intriguing to recognize that SIK2 takes on a central role in

the Salmonella invasion–associated network, in which it assumes a
different function acting on the SCV postinvasion. This is sup-
ported by our findings, which show that SIK2 depletion is causing
bacterial hyperproliferation rather than bacterial hyper- or hypo-
invasion. SIK2 is recruited to the SCV shortly after the invasion, in
which it colocalizes with the elements of the actin machinery.
Based on our data, we propose a model of SIK2-induced actin de
novo synthesis around the SCV, which may establish a protective
shield to prevent the evasion of bacteria out of the SCV and into
the cytosol or SCV fusion that may establish a larger intracellular
compartment for bacterial proliferation. Furthermore, SIK2 de-
pletion impairs fusion of the autolysosome with cytosolic bacteria.
The combination of enhanced SCV escape into the cytosol and the
impaired lysosomal degradation of cytosolic bacteria leads to a
fatal cellular outcome, resulting into hyperproliferative Salmonella.

Strikingly, SIK2 is not acting exclusively on the local actin assembly
associated with SCV but impacts the actin cytoskeleton architec-
ture in its entirety (SI Appendix, Fig. S6). We demonstrated that
SIK2 binds actin under the basal conditions and decorates fila-
mentous actin in fibroblasts and in the areas undergoing rear-
rangements (e.g., Lamellipodia or actin stress fibers). In this
process, FMNL2 (FHOD2) may represent, along with FHOD1,
the second Formin playing a crucial role in Salmonella infection
process (46). FMNL2 is critical for Lamellipodia and stress fiber
formation and may act cooperatively with the Arp2/3 complex in
the analogy to previous reports for other Formins (47, 48). SIK2
deletion results in reduction of filamentous actin, an effect which
becomes even more pronounced upon Salmonella infection,
resulting in a major defect in actin polymerization.
SIK2 is a central regulator/modulator of actin assembly and

polymerization, with its role becoming most prominent upon
Salmonella infection. Our work provides mechanistic insights into
the regulation of the actin cytoskeleton and its role in controlling
the acute Salmonella infection (Fig. 5E).
These results provide a solid foundation for the future work

that will focus on understanding the molecular dynamics of the
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Fig. 5. SIK2 is required for the actin cytoskeleton integrity. (A) Immunofluorescence of MEFs stained for endogenous SIK2, Phalloidin, and DAPI. (B) Im-
munofluorescence of MEFs infected with Salmonella 30 min pi and stained for endogenous SIK2, Salmonella (anti-Salmonella CSA antibody), Phalloidin, and
DAPI. (C) Quantification of Phalloidin-stained F-actin length. HeLa cells were siRNA transfected and infected with Salmonella 1 h pi and stained with
Phalloidin, Tubulin, Salmonella, and DAPI and quantitively analyzed. Cells transfected with control siRNA were treated with Cytochalasin B (2 μM) for 30 min
where indicated. Data presented as mean + SEM, n = 3, > 500 cell counts per condition, **P ≤ 0.01, and *P ≤ 0.05 as analyzed by Student’s t test. (D)
Quantification of phenotypic analysis of cells showing defective actin polymerization. HeLa cells expressing HA-SIK2 wild type or SIK2 K49A under a
doxycycline-inducible promotor were transfected with siCTRL or siSIK2, −/+ doxycycline, and infected with Salmonella 1 h pi. Cells were stained with Phalloidin
and DAPI and phenotypically analyzed by confocal microscopy. Data presented as mean + SEM, n = 3, 100 cell counts per condition, ***P ≤ 0.001, and **P ≤
0.01 as analyzed by Student’s t test. (E) Proposed functions of SIK2 upon Salmonella infection. (A and B) Images are maximum intensity projections of confocal
z-stacks. (Scale bar, 10 μm.)
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protein–protein interaction, in order to precisely delineate and
define the temporal regulation of the early SIK2-controlled
events of the intracellular propagation of Salmonella. What re-
mains to be defined are the direct substrates of SIK2 and how
these substrate interactions relate to the observed, here de-
scribed, effects on actin assembly/formation.
It is unknown whether SIK2 activation also protects against

other intracellular intruders. Upon Chlamydia infection, the cy-
toskeletal network surrounding and stabilizing the bacterial
vacuole hours after the invasion has been reported (49). After
Salmonella infection, an actin meshwork around the SCV as-
sembles in a SPI-2 (SteC)–dependent manner (≥6 h pi) (9–13).
Here we report that SIK2 acts directly postinvasion in a SPI-1
(SopE)–dependent way to build up an actin shield around the
SCV. In addition, the more recent work reported an analogous
actin network, which builds up a cocoon-like actin structure after
Shigella infection. The Shigella-triggered actin network (e.g.,
Arp2/3 complex, CDC42, and Cortactin) protects the bacterial
vacuole and seems to function as a gatekeeper (50, 51). In
contrast to Salmonella, Shigella actively destabilizes the SCV to
help escape into the host cytosol <10 min pi (52, 53). It may be
interesting to analyze the role of SIK2 upon Shigella infection
and compare the sequence of molecular events in the early
process pi between Salmonella and Shigella. This may help to
obtain insights into potential targets valuable for therapeutic
strategies and anti-bacterial defense of intracellular bacteria/
parasites in general.
Studying the cellular host response to Salmonella infection

identified SIK2 as a critical host defense kinase, which modulates
a fundamental cellular process (e.g., F-actin polymerization) in a
way that it limits intracellular proliferation of bacteria, may
provide an exciting starting point for those future studies.

Materials and Methods
Bacterial Strains. S. enterica serovar Typhimurium strain SL1344 (gift from
David Holden, Imperial College London), SL1344 ΔSPI-1 described earlier (54)
(gift from Jorge Galan, Yale School of Medicine), SL1344 puHpT-GFP (SFH2)
expressing GFP when exposed to the host cytosol, controlled by a glucose-6-
phospate–inducible promoter described earlier (27) (gift from Dirk Bumann,
Biozentrum, University of Basel), and S. Typhimurium 12023 pFPV25.1-
mCherry described earlier (55) (gift from Felix Randow, LMB) were used in
this study.

Salmonella Culturing and Infections. Single Salmonella colonies were picked
from a lysogeny broth (LB) Agar plate and inoculated into 1 mL LB medium
(plus the respective antibiotic) and grown overnight to a stationary phase at
37 °C. Next day, Salmonella was diluted 1:33 and grown for 3.5 h at 37 °C
before infection. Cells were infected in antibiotic-free medium with a mul-
tiplicity of infection of 100 for 10 min and washed afterward twice with
phosphate-buffered saline (PBS). Subsequently, cells were cultured further in
medium containing 100 μg/mL Gentamycin for 1 h and thereafter reduced to
20 μg/mL Gentamycin for the remaining time of the experiment.

Cell Lines. HeLa, HCT116, HEK293T, MEFs, and HeLa Flp-In T-Rex GFP-SopA or
GFP-SopE [described earlier (56, 57)] were grown in Iscove’s Modified Dul-
becco’s Media (IMDM) or Dulbecco’s Modified Eagle Medium (DMEM),
supplemented with 10% fetal calf serum (FCS) (heat-inactivated at 56 °C for
30 min) and 20 μg/mL Gentamycin at 37 °C and 5% CO2. All cell lines were
routinely checked for mycoplasma infections using MycoAlert (Lonza). The
cells were passaged two to three times a week and were used for experi-
ments at passages between 2 to 35.

Colony-forming unit (CFU) Assay. HeLa cells were seeded in triplicates with 2 ×
104 cells into a 24-well and siRNA-transfected in antibiotic-free medium. The
experiment was performed 48 to 72 h posttransfection. After the infection,
cells were washed with PBS and cultured with Gentamycin-containing me-
dium. At 1, 6, or 8 h pi, cells were lysed in 0.1% (vol/vol) Triton X-100 in PBS
and serial diluted in PBS. Diluted lysates were plated in technical duplicates
on Agar plates and incubated for colony formation overnight at 37 °C. The
number of colonies (within the linear range of the assay) was enumerated
using a colony counter apparatus and software (aCOLyte 3, Synbiosis).

SDS-PAGE and Immunoblotting. Cells were washed twice with cold PBS and
lysed in Lysis Buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM
EGTA, 1% Triton X-100, 25mMNaF, 5% glycerol, and 10 μMZnCl2) or SDS Lysis
Buffer (30 mM Tris·HCl, pH 7.4, 120 mM NaCl, 2 mM EDTA, 2 mM KCl, 0.5%
CHAPS, 1% SDS, 50 mM NaF, and 5 mM Na3VO4) supplemented with com-
plete protease inhibitors (cOmplete, EDTA-free; Roche Diagnostics) and
phosphatase inhibitors (P5726, P0044; Sigma-Aldrich). Cell lysates were cleared
by spinning at 20,000 g for 15 min at 4 °C in a centrifuge. Cell extracts were
incubated with SDS sample buffer (50 mM Tris·HCl, pH 6.8, 10% glycerol, 2%
SDS, 0.02% bromophenol blue, and 5% β-mercaptoethanol) and heated at
95 °C for 5 min. Samples were loaded onto 4 to 20% precast gradient Gels
(BioRad) or self-casted 8% or 10% acrylamide gels and separated by SDS-
PAGE. Proteins were plotted by wet-\ transfer onto a Nitrocellulose or PVDF
membrane and blocked with 5% low-fat milk or 5% bovine serum albumin
(BSA) in Tris-buffered saline (TBS) (150 mM NaCl, 20 mM Tris, and pH 8.0) for 1
h. Primary antibodies were diluted in 5% BSA in TBS-T (TBS + 0.1% Tween 20)
and secondary antibodies in 5% low-fat milk in TBS-T.

Protein Immunoprecipitation. Following cell lysis under nondenaturing condi-
tions, cleared cell extracts were incubated with Lysis Buffer–equilibrated
antibody-coupled resin. Therefore, HA agarose beads (Sigma-Aldrich) were
used and incubated with lysates for 2 h at 4 °C on a rotating platform. Protein-
bound beads were washed four times with Lysis Buffer. Immunoprecipitated
and input samples were reduced in SDS sample buffer and heated at 95 °C for
5 min.

G-Actin/F-Actin Fractionation. G-actin and F-actin fractions were extracted
from HeLa cell lysates by ultracentrifugation at 100,000 rpm using the G-actin/
F-actin in vivo assay biochem kit (Cytoskeleton, Inc., BK037) according to the
manufacture protocol. The levels of G-actin and F-actin were quantified by
Western blotting using the anti-actin antibody provided in the kit.

Immunofluorescence, Confocal Microscopy. Cells were seeded on glass cover-
slips and washed after the treatment twice with PBS before fixation with 4%
paraformaldehyde in PBS for 10 min. Cells were permeabilized with 0.2% (vol/
vol) Triton X-100 in PBS for 10 min and blocked with 5% BSA in PBS for 1 h.
Primary and secondary (including 4′,6-diamidino-2-phenylindole [DAPI] and
Phalloidin) antibodies were incubated in 5% BSA in PBS for 1 h with three PBS
washes in between. Before mounting in Mowiol (Sigma), cells were washed
three times and once with distilled water. Images were acquired on a Leica TCS
SP8 microscope with a 63× oil immersion objective. For an automatic quanti-
tive analysis, images were taken using the Yokogawa CQ1 confocal quanti-
tative image cytometer platform (63× magnification). Cells were seeded onto
black, clear flat-bottom 24-well plates and stained with indicated antibodies.
The images were analyzed using the CQ1 Yokogawa CellPathfinder, high-
content analysis software with the built-in plugin for cytoskeleton fiber de-
tection. DAPI and Tubulin staining were used for determining the cell body of
each cell.

CRISPR/Cas12-Assisted PCR Tagging. Endogenous tagging was performed as
described (29) and on http://www.pcr-tagging.com. Briefly, the PCR cassette
was amplified from pMaCTag-P27 (1 × HA) plasmid in combination with
M1_SIK2_fwd and M2_SIK2_AsCpf1_TATV_rev primer using a Velocity po-
lymerase (Bioline) and High-Fidelity (HiFi) buffer (20 mM Tris·HCl, pH 8.8,
10 mM [NH4]2SO4, 50 mM KCl, 0.1% [vol/vol] Triton X-100, 0.1 mg/mL BSA,
and 2 mMMgCl2) on a gradient PCR cycler. The PCR product was gel purified
with GeneJET Gel Extraction Kit. HeLa cells were transiently transfected with
1 μg of the PCR cassette and 1 μg pcDNA3.1-hAsCpf1(TATV) (pY220) using
GeneJuice (Merck Millipore) according to the manufacture protocol and
selected with 0.5 μg/mL Puromycin 72 h posttransfection.

Lentiviral Transduction and Cell Line Generation. HEK293T cells were cotrans-
fectedwith the lentiviral plasmid (pLTDN-termHA clonedwith SIK2WT or SIK2
K49A) together with the packaging vectors pPAX2 and pMD2. The medium
containing the lentivirus was exchanged after 24 h, and after another 24 h,
medium was collected for transduction of the recipient cells. Recipient cells
were transduced with 1 mL of the virus containing medium with polybrene (8
μg/mL; Sigma-Aldrich, H9268-5G). Cells were selected 48 h posttransduction
with 1 μg/mL Puromycin.

RNA Interference. Cells were transfected 24 h postseeding with 20nM siRNA
(ON TARGETplus anti-SIK2 siRNA [Horizon Discovery] and AllStars Negative
Control siRNA [Qiagen]) using Lipofectamine RNAiMAX (Life Technologies)
according to the manufacture protocol. Experiments were performed 48 to
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72 h posttransfection. Transfection efficiency was verified by
Western blotting.

Phos-Tag Gels. Phos-tag acrylamide (Wako) gels were prepared and used
according to manufactures protocol. Gels were prepared with 6% acrylam-
ide, 25 μM Phos-tag reagent, and 100 μM MnCl2. Cells were lysed in SDS
Lysis Buffer.

SILAC-Based Phosphoproteomics. HCT116 cells were grown in SILAC-DMEM
(arginine and lysine-free medium), supplemented with dialyzed FCS (10%) and
lysine (74 μg/mL) and arginine (42 μg/mL) as “light K0, R0,” “medium K4, R6,”
or “heavy K8, R10.” Cells were lysed in 6 M Guanidinhydrochlorid buffer
(100 mM Tris HCL pH 8.5, 5 mM TCEP, and 10 mM chloracetamide), heated at
95 °C for 15 min, and sonicated with Sonics Vibra-Cell (1 s ON/1 s OFF pulse for
30 s using 30% amplitude). Phosphoproteomic analysis was performed as
previously described (58). The cell lysates were diluted to 2 M guanidium hy-
drochloride with 50mMHepes buffer at pH 8.5 and incubated with Lys-C (1 ug
for 100 ug protein lysate) for 2 h followed by further dilution to 1 M guani-
dium hydrochloride and overnight digestion with Trypsin (1 ug for 100 ug
protein lysate). Peptides were desalted and quantified using bicinchoninic acid
assay (BCA) assay. Equal peptide amounts from the three SILAC states were
mixed at 1:1:1 ratio and dried down. This was followed by fractionation on a
high-pH gradient into a total of 12 fractions. TiO2-based phospho-enrichment
was performed, followed by data acquisition on a Q Exactive HF instrument.

TMT Labeling. After tryptic digestion peptides were cleaned up using Sep-Pak
tC18 (Waters, 50 mg) according to the manufactures protocol. Peptides were
resuspended into TMT-labeling buffer (0.2 M EPPS pH8.2 and 10% Acetoni-
trile) and peptide concentration determined by μBCA-assay (Thermo Fisher
Scientific). Peptides were labeled with a 1:2 ratio (1mg peptide and 2 mg TMT
reagent) with TMT reagents (Thermo Fisher Scientific, 90110 and A44520) for
1 h at room temperature (RT). The reaction was quenched with 0.5% (final
concentration) hydroxylamine for 15 min at RT. Samples were multiplexed
with equimolar ratios (unless stated otherwise) and cleaned up using Empore
C18 (Octadecyl) resin material (3M Empore) as described earlier (59).

TMT-Based Phosphoproteomics. HeLa cells were lysed in (2% SDS, 50 mM
Tris·HCl pH8, 150 mM NaCl, 10 mM TCEP, and 40 mM chloracetamide), heated
at 95 °C for 10 min, and sonicated with Sonics Vibra-Cell (1 s ON/1 s OFF pulse
for 30 s using 30% amplitude). Protein lysates were precipitated by methanol/
chloroform using four volumes of ice-cold methanol, one volume of chloro-
form, and three volumes of water. The mixture was centrifuged at 20,000 g for
30 min, and the upper aqueous phase was removed and three volumes of ice-
cold methanol added. Proteins were pelleted by centrifugation and washed
twice with one volume of ice-cold methanol and air dried. The resulting
protein pellet was resuspended in 8 M urea with 10 mM EPPS pH 8.2. Protein
concentration was determined by Bradford assay. For digestion, 300 μg pro-
teins were diluted to 1 M urea and incubated 1:50 with LysC (Wako Chemicals)
for 3 h and 1:100 with sequencing grade trypsin (Promega) overnight. The
reaction was acidified using TFA (0.5%) and purified using Sep-Pak tC18
(Waters, 50 mg) according to manufacturer’s protocol. A total 100 μg of
peptides were TMT labeled and channels adjusted to equimolar ratios as
jugged by single-injection measurements by liquid chromatography (LC)-mass
spectrometry (MS). Ratio-adjusted peptides were multiplexed and used for
phosphopeptide enrichment using High-Select Fe-NTA Phosphopeptide En-
richment Kit (Thermo Fisher Scientific) according to manufactures protocol.
Phosphopeptides were cleaned up by C8 stage tip and fractionated using C18
stage tips. After washing (80% acetonitrile) and equilibration step with 0.1%
TFA, peptides were loaded on C18 stage tips in 0.1% TFA solution and washed
twice with 0.1% TFA in water. Peptides were fractionated into 16 fractions
with an acetonitrile gradient from 2.5 to 50% in 0.1% Triethylamine and cross-
concatenated into eight fractions. Samples were vacuum dried for LC-MS
measurements.

HA-IP, On-Bead Digest, and TMT Labeling. Cells were lysed in 1% Triton X-
100–based Lysis Buffer and incubated with HA agarose beads (Sigma) for 2 h
at 4 °C on a rotating platform. Protein-bound beads were washed three times
with Lysis Buffer and three times with Lysis Buffer without detergents. Samples
were incubated with 25 μl SDC buffer (2% sodium deoxycholate [SDC], 1 mM
TCEP, 4 mM chloracetamide, and 50 mM Tris pH 8.5) and heated at 95 °C for
10min. Samples weremixed 1:1 with 500 ng LysC and 500 ng Trypsin (50mM Tris
and pH 8.5) and digested overnight at 37 °C. Reaction was stoppedwith 150 μl of
isopropanol with 1% TFA. Peptides were cleaned up by loading them onto
styrenedivinylbenzene-reverse phase sulfonate (SDB-RPS) (Empore) stage tips.
After one wash with 1% TFA in isopropanol and one wash with 0.2% TFA in

water, peptides were eluted using 80% acetonitrile and 1.25% ammonia. Eluted
peptides were dried, TMT labeled, and processed for LC-MS measurements.

Liquid Chromatography MS. For Q Exactive HF: Peptides were separated on an
easy nLC 1200 (Thermo Fisher) and a 15 cm long, 75 μm inner diameter (ID)-
fused silica column, which has been packed in house with 1.9 μm C18 particles
(ReproSil-Pur, Dr. Maisch), and kept at 45 °C using an integrated column oven
(Sonation). Peptides were eluted by linear gradient from 5 to 38% acetonitrile
over 120 min and directly sprayed into a Q Exactive HF mass spectrometer
equipped with a nanoFlex ion source (Thermo Fisher Scientific) at a spray
voltage of 2.3 kV. Full-scan MS spectra (350 to 1,400 m/z) were acquired at a
resolution of 120,000 at m/z 200, a maximum injection time of 100 ms and an
automatic gain control (AGC) target value of 3 × 106 charges. Up to 10 most
intense peptides per full scan were isolated using a 1 Th window and frag-
mented using higher-energy collisional dissociation (normalized collision en-
ergy of 35). MS/MS spectra were acquired with a resolution of 60,000 at m/z
200, a maximum injection time of 128 ms, and an AGC target value of 1 × 105.
Ions with charge states of 1 and >6 as well as ions with unassigned charge
states were not considered for fragmentation. Dynamic exclusion was set to
20 s to minimize repeated sequencing of already acquired precursors. Enriched
phosphopeptides were analyzed on a Q Exactive HF instrument coupled to nLC
1200. A 15 cm column was used as described above. For SILAC phosphopro-
teome analysis, the MS parameters are as follows: MS1: 60,000 resolution,
AGC: 3e6, and injection time: 20 ms and MS2: resolution: 30,000, AGC: 1e5,
injection time: 110 ms, and TOP N: 12.

Data were acquired in centroid mode on an Orbitrap Fusion Lumos mass
spectrometer hyphenated to an easy nLC 1200 nano high-performance liquid
chromatography (HPLC) system using a nanoFlex ion source (Thermo Fisher
Scientific) applying a spray voltage of 2.6 kV with the transfer tube heated to
300 °C and a funnel radio frequency (RF) of 30%. Internal mass calibration was
enabled (lock mass 445.12003 m/z). Peptides were separated on a self-made,
32 cm long, 75 μm ID-fused silica column, packed in house with 1.9 μm C18
particles (ReproSil-Pur, Dr. Maisch), and heated to 50 °C using an integrated
column oven (Sonation). HPLC solvents consisted of 0.1% formic acid in water
(Buffer A) and 0.1% formic acid, 80% acetonitrile in water (Buffer B). For
phosphopeptide analysis, each peptide fraction was eluted by a linear gradient
from 5 to 32% B over 120 min followed by a step-wise increase to 95% B in
8 min which was held for another 7 min. Full-scan MS spectra (350 to 1,400 m/
z) were acquired with a resolution of 120,000 at m/z 200, maximum injection
time of 100 ms, and AGC target value of 4 × 105. The 20 most intense pre-
cursors per full scan with a charge state between 2 and 5 were selected for
fragmentation (“Top 20”), isolated with a quadrupole isolation window of 0.7
Th, and fragmented via high energy collision-induced dissociation (HCD) ap-
plying an normalized collision energy (NCE) of 38%. MS2 scans were per-
formed in the Orbitrap using a resolution of 50,000 at m/z 200, maximum
injection time of 86ms, and AGC target value of 1 × 105. Repeated sequencing
of already-acquired precursors was limited by setting a dynamic exclusion of
60 s and 7 ppm, and advanced peak determination was deactivated.

MS Data Analysis. Raw files were analyzed using Proteome Discoverer (PD) 2.4
software (Thermo Fisher Scientific). Spectra were selected using default settings
anddatabase searches performedusing SequestHTnode in PD.Database searches
were performed against trypsin-digested Homo Sapiens SwissProt database and
Salmonella typhimurium (strain LT2/SGSC1412/ATCC 700720) database. Static
modifications were set as TMT6 at the N terminus and lysines and carbamido-
methyl at cysteine residues. Search was performed using Sequest HT taking the
following dynamic modifications into account: Oxidation (M), Phospho (S,T,Y),
Met-loss (N-term), Acetyl (N-term), and Met-loss acetyl (N-term). For whole-cell
proteomics, the same settings were used, except phosphorylation was not
allowed as dynamic modification. For phosphoproteomics, all peptide groups
were normalized by summed intensity normalization and then analyzed on
peptide level. For whole-cell proteomics, normalized peptide-spectrum matches
(PSMs) were summed for each accession and data exported for further use. For
SILAC phosphoproteomics data, MaxQuant was used with default SILAC pa-
rameters. Methionine oxidation, N-terminal acetylation, and phosphorylation
(pSTY) were used as the variable modifications.

Significance Testing. Statistical significance was assessed with two-sided
Student’s t test. P values ≤ 0.05 were considered as significant. Adjusted P
values were corrected by Benjamini–Hochberg false discovery rate (FDR).
Differences with P ≤ 0.05 are annotated as *P ≤ 0.01, **P ≤ 0.01, and ***P ≤
0.001. P > 0.05 are annotated N.S. (not significant) Data are presented as the
mean of replicates with error bars indicating the SD or SEM. For clustering
and enrichment analyses (see below), q-value cutoffs of 0.001 were used for
significance definition. N represents number of independent replicates.
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Hierarchical Clustering. Hierarchical cluster analysis was performed using
Perseus software (version 1.6.5.0) with default settings after centering and
scaling of data (z-scores).

Interaction Network and Pathway Enrichment Analysis. Identified genes were
analyzed with Cytoscape with plugins for ReactomeFI, STRING, and Omics-
Visualizer. Pathway enrichment analysis was performed by ReactomeFI
Cytoscape plugin. Networks were generated with ReactomeFI or STRING
(confidence cutoff of 0.9), as indicated.

Data Availability. The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (60) partner repository (https://
www.ebi.ac.uk/pride/archive) with the dataset identifier PXD023703 (Fig. 1)
and PXD021859 (Figs. 3 and 4).
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