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Various microorganisms and some mammalian cells are able to
swim in viscous fluids by performing nonreciprocal body defor-
mations, such as rotating attached flagella or by distorting their
entire body. In order to perform chemotaxis (i.e., to move toward
and to stay at high concentrations of nutrients), they adapt their
swimming gaits in a nontrivial manner. Here, we propose a com-
putational model, which features autonomous shape adaptation
of microswimmers moving in one dimension toward high field
concentrations. As an internal decision-making machinery, we
use artificial neural networks, which control the motion of the
microswimmer. We present two methods to measure chemical
gradients, spatial and temporal sensing, as known for swimming
mammalian cells and bacteria, respectively. Using the genetic
algorithm NeuroEvolution of Augmenting Topologies, surpris-
ingly simple neural networks evolve. These networks control the
shape deformations of the microswimmers and allow them to
navigate in static and complex time-dependent chemical environ-
ments. By introducing noisy signal transmission in the neural net-
work, the well-known biased run-and-tumble motion emerges.
Our work demonstrates that the evolution of a simple and
interpretable internal decision-making machinery coupled to the
environment allows navigation in diverse chemical landscapes.
These findings are of relevance for intracellular biochemical sens-
ing mechanisms of single cells or for the simple nervous system of
small multicellular organisms such as Caenorhabditis elegans.

low-Reynolds number swimming | chemotaxis | machine learning |
neural network | genetic algorithm

M icroorganisms possess a huge variety of different self-
propulsion strategies in order to actively swim through

viscous fluids such as water, which is realized by performing
periodic nonreciprocal deformations of their body shape (1–
4). In order to search for nutrients, oxygen, or light, they have
developed mechanisms to change their shape and, hence, their
swimming direction abruptly. An important example is the run-
and-tumble motion of various bacteria such as Escherichia coli
(5, 6) or of the algae Chlamydomonas (7). Bacteria use temporal
information of chemical field concentrations to perform chemo-
taxis. This process is mediated by a time-dependent response
function which suppresses tumbling when swimming upward
chemical gradients (CGs) (5, 8–10). Some bacteria follow more
diverse chemotactic strategies, which can be related to their spe-
cific propulsion mechanisms (11). In contrast to bacteria, many
eukaryotic cells such as Dictyostelium (12, 13), leukocytes (14),
or cancer cells (15) are able to perform chemotaxis by adapting
their migration direction in accordance with the CG by spatial
sensing with membrane receptors. From an evolutionary point
of view, it remains elusive how motility and chemotactic patterns
evolved together, bearing in mind that both different prokary-
otic and eukaryotic cells with diverse self-propulsion mech-
anisms developed surprisingly similar chemotactic machinery
(14, 16, 17).

In our work, we use machine learning (ML) techniques in
order to investigate how chemotaxis-based decision making can
be learned and performed in a viscous environment. During past
years, various ML approaches have become increasingly appeal-
ing in different fields of physics: for example, in materials science,

soft matter, and fluid mechanics (18–20). Unsupervised rein-
forcement learning (RL) has been used in various biologically
motivated active matter systems (21) to investigate optimum
strategies, used by smart, self-propelled agents; examples are to
navigate in fluid flow (22–25) and airflow (26), in complex envi-
ronments, external fields (27), and potentials (28). Notably, two
contributions have taken the viscous environment into account,
namely one applying Q-learning to a three-bead-swimmer (29)
and one using deep learning to find energetically efficient col-
lective swimming of fish (30). Experimental realizations of ML
applied to self-propelled objects are navigation of microswim-
mers on a grid (31) or macroscopic gliders learning to soar in the
atmosphere (32).

Here, we address the problem of how a microswimmer is able
to make decisions by adapting its shape in order to perform
chemotaxis. To use adaptive swimming behavior, microswim-
mers need to be—to a certain extent—aware of both their
environment and their internal physiological state. Substituting
the complex biochemical sensing machinery of unicellular organ-
isms, or real sensory and motor neurons of small multicellular
organisms such as Caenorhabditis elegans, we therefore use the
evolution of a simple artificial neural network (ANN), which is
able to sense the environment and proposes actions to deform
the body shape accordingly. We introduce both spatial and tem-
poral CG sensing leading to different decision-making strategies
and dynamics in chemical environments.

Results
Microswimmer Model. As a simple model, we use the so-
called three-bead swimmer introduced originally by Najafi and
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Golestanian (33). It swims in a viscous fluid of viscosity η via
periodic, nonreciprocal deformations of two arms, connecting
three aligned beads of radius R, located at positions xi , i =
1, 2, 3 (Fig. 1, Upper Left). The central bead is connected to
the outer beads by two arms; their variable lengths L1 and L2

are extended and stretched by time-dependent forces Fi(t) act-
ing on the hydrodynamically interacting beads, which determine
the bead velocities vi(t) (34) (SI Appendix). In this manner,
a force-free microswimmer (i.e.,

∑
i Fi = 0) is able to perform

locomotion via nonreciprocal motions of the beads, resulting in
a directed displacement of the center of mass (COM) position
xc = (x1 + x2 + x3)/3 (33). We choose as basic units the bead
radius R, the viscosity η, and the maximum force on a bead
F0 such that |Fi |<F0. Hence, the unit of time is T0 = ηR2/F0.
In previous studies of this model, either the forces or the lin-
early connected bead velocities vi(t) have been prescribed via a
periodic, nonreciprocal motion pattern (33–35). Alternatively, a
Q-learning procedure (29) has been applied (Discussion). In our
ML approach, the swimmer does not follow a prescribed motion
but is able to move forward after sufficiently long training and to
respond to chemical fields autonomously by a continuous change
of the arm lengths.

Phase 1: Learning Unidirectional Locomotion. We start by demon-
strating that a microswimmer is able to learn swimming in
the absence of a chemical field with the help of a simple
genetic algorithm. This is achieved by applying RL (36) using
a reward scheme, which optimizes the microswimmer’s strategy
of locomotion along a prescribed direction within a viscous fluid
environment.

RL algorithms are designed to optimize the policy of a so-
called agent during training: In general, the policy is a highly
complex and task-specific function that maps the state of an envi-
ronment (i.e., everything the agent can perceive [input]) onto
actions, which the agent can actively propose (output) in order
to maximize an objective (or reward) function (Fig. 1). Such
rewards might be related to maximize the score of a computer
game (37), to minimize the (free) energy when folding pro-
teins (38), or—as in our case—to maximize the distance that a
microswimmer actively moves along a certain direction.

In our approach, the agent represents the internal decision-
making machinery responsible for the deformations of the
microswimmer. The agent takes as input (i.e., as information it
needs to decide about future actions) the state of the environ-
ment given by the instantaneous arm lengths L1(t) and L2(t) and

arm velocities Vi(t) = dLi(t)/dt , i = 1, 2. In addition, we use
the total length LT(t) =L1(t) +L2(t) and the velocity VT(t) =
V1(t) +V2(t) as input. The arm lengths are normalized by the
default length L0 = 10R and subjected to restoring forces act-
ing when L1,L2 are > 1.3L0 or < 0.7L0 in order to limit the
extent of L1 and L2 (SI Appendix). With this information, the
agent proposes actions, which in our case, are the forces F1(t)
and F3(t) that determine the dynamics of the swimmer. The
full hydrodynamic environment, including the three-bead model
of the microswimmer, represents the (interactive) environment,
whose state is updated after the agent has actively proposed its
actions (Fig. 1, Left). In an effort to train unidirectional motion,
we choose the COM position xc of a microswimmer to be max-
imized after a fixed integration time TI; xc thus represents the
cumulative reward of this training process. In this manner, we
achieve positive reinforcement when the swimmer moves to the
right (positive x direction) and negative reinforcement when it
swims to the left (negative x direction).

In order to approximate the analytically unknown optimum
policy of the microswimmer, we use ANNs where the output neu-
rons are connected to the input vector, either directly or through
emergent hidden neurons, using nonlinear activation functions
whose arguments depend on the weights of the connections (Fig.
1, Lower Left and Materials and Methods). In our case, the inter-
nal structure of the ANN (weights and topology) is successively
optimized using the NeuroEvolution of Augmenting Topologies
(NEAT) genetic algorithm to maximize the reward (details are
in Materials and Methods and SI Appendix).

The training of the swimmer agent is performed over multi-
ple RL steps, which correspond to successive NEAT generations.
At each step, an ensemble of N = 200 ANNs (representing one
generation) controls the swimming gaits of an ensemble of N
independent microswimmers. The cumulative reward xc(TI) is
evaluated separately for each microswimmer trajectory defin-
ing the fitness v̄ = xc(TI)/TI of the related ANN-based agent,
which is simply the mean swimming velocity (i.e., reward per
unit time). To start the training, we initialize N ANNs where
input neurons are only sparsely connected to output neurons by
using random weights. The NEAT algorithm then dynamically
produces ANN solutions, which differ in number of connections
and values of the weights and may contain hidden neurons. We
use the hyperbolic tangent—tanh(x)—as output activation func-
tions. ANN solutions with large fitness values are retained and
are preferentially selected for reproduction to form the next gen-
eration of ANNs. Thus, good traits of the controlling networks

Fig. 1. Schematic representation of the RL cycle for a three-bead swimmer moving in a viscous environment (Upper Left) controlled by an ANN-based agent
(Lower Left). Reward is maximized during training and is granted either for unidirectional locomotion—phase 1—or for chemotaxis (Upper Right)—phase
2. (Lower Right) Typical NEAT training curves showing the maximum (blue), the mean (black), and the SD (gray) of the fitness (i.e., of the cumulative reward)
of successive NEAT generations each covering 200 neural networks when learning unidirectional locomotion.
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will prevail over time, directing thereby the entire ensemble of
ANNs to the desired solution. In order to capture the possible
diversity of genetic pathways, we have performed 10 independent
training runs. A typical evolution of the fitness values of the ANN
ensemble is shown in Fig. 1, Lower Right, highlighting the maxi-
mum fitness per generation (blue curve), which converges to v̄→
1.36 · 10−3R/T0. Similar maximum fitness curves are obtained
from the other training runs (SI Appendix, Fig. S1). Interest-
ingly, our NEAT training procedure reveals a broad spectrum
of network topology solutions (typical time evolution is shown

in Movie S1 and SI Appendix, Fig. S2), differing in number of
connections and hidden neurons. Various solutions have high fit-
ness v̄O≈ 1.33− 1.36 · 10−3R/T0, which we refer to as optimal
swimmer action layer (O-SAL) solutions, and two of them illus-
trated in Fig. 2 A, Upper Inset: The simplest O-SAL solution does
not use any hidden neurons and consists of a sparse architecture
containing only four connections (O-SAL-1; thin black connec-
tions). Increasing the number of connections or including hidden
neurons only slightly helps to improve the fitness (by ∼ 2%)
(SI Appendix, Fig. S3). The fittest solution we have found

A

B

C

Fig. 2. Trajectories of the three-bead swimmer after training. (A) Swimming in the absence of a chemical field. (Left) Time evolution of the COM xc for
optimum (O-SAL-1 [black] and O-SAL-2 [gray]) and minimal complexity (MC-SAL; blue) ANN solutions. Insets show the corresponding topologies. Time t is
shown in units of the MC-SAL stroke period TS = 217T0. (Center) Corresponding arm length solutions, L1(t) and L2(t), and arm forces, F1(t) and F3(t), shown
for MC-SAL. (Right) Phase-space curves (L1, L2) and (F1, F3) for O-SAL-1 (black), O-SAL-2 (gray), and MC-SAL (blue). (B) Similar to A but for an MC-SAL swimmer
in a linear chemical field (first panel on the left), c(x) = max(0, a− k|x− x0|) for an amplitude a = 100c0, slope k = c0/R, and peak position x0 = 2R, with
temporal (red and blue trajectories of xc) and spatial (black dashed trajectory of xc) CG sensing (Fig. 3 shows ANN solutions). Temporal sensing trajectories
and phase-space plots are color coded by the currently estimated gradient direction (blue: rightward, red: leftward). The lengths Li(t) and forces Fi(t) are
shown for the time domain highlighted by a gray area in the left trajectory plot. Blue and red background colors correspond to gradient direction estimation
(rightward and leftward, respectively). Arrows in phase space indicate locomotive strategy change (gait adaptation) due to gradient estimation (change
from rightward to leftward locomotion: blue to red and vice versa). (C) Same as in B but for a swimmer in a Gaussian chemical field (the first panel on the
left) c(x) = a exp(−|x− x0|2/2σ2) for a = 10c0, σ= 5R, and x0 = 2R.
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(O-SAL-2; thick gray connections) uses one hidden neuron and
eight connections. We note that more O-SAL solutions exist,
again of different topology but of very similar fitness, demonstrat-
ing the various possible ANN topologies to obtain maximum fit-
ness (SI Appendix, Fig. S4). The resulting back-and-forth motion
of the corresponding swimmer’s COM positions xc(t) obtained
after training is shown in Fig. 2 A, Left. The learned optimum pol-
icy describes a square-like shape in (F1,F3) action space, while
the shape of the (L1,L2) curve is nontrivial (Fig. 2 A, Right).
Again, all O-SAL solutions feature similar trajectories xc(t) and
a robust swimming gait (Fig. 2A and SI Appendix, Fig. S4).

Strikingly, the algorithm identified intermediate, nonoptimum
but extremely simple solutions, which can be easily interpreted
and consist of as few as two connections (SI Appendix, Figs.
S3 and S4). The best of those solutions identified during the
NEAT training (Fig. 2 A, Lower Inset) still has good fitness,
v̄MC = 0.95 · 10−3R/T0, and we refer to this solution as
the minimal complexity swimmer action layer (MC-SAL):
F1 =F0 tanh(w1L2 + b1) and F3 =F0 tanh(w2L1 + b2), with
weights w1 = 20.2/L0, w2 = 5.7/L0, b1 =−18.6, and b2 =−5.4.
Here, the simple topology, together with the sign and strengths
of the weights, allows us to interpret the occurrence of the phase-
shifted periodic output of the arm lengths and the forces (Fig. 2A,
Movie S2, and SI Appendix, Supporting Information Text). Finally,
alternative yet less efficient minimal complexity strategies are
also possible (SI Appendix, Fig. S4).

Phase 2: Learning Chemotaxis in a Constant Gradient—Spatial Vs.
Temporal Gradient Detection. Now, we proceed to the challeng-
ing problem of finding a policy that allows the microswimmer
to navigate on its own within a complex environment such as a
chemical field, c(x ) (cf. Fig. 1, Upper Right), and perform positive
chemotaxis [i.e., motion toward local maxima of c(x )].

We first extend the agent’s perception of the environment such
that it is able to sense the field c(x ) (which we normalize by an
arbitrary concentration strength c0) and which we use as an addi-
tional input for a more advanced chemotaxis agent. We expect
that such an agent is able to evaluate the CG ∇c(x ) in order to

conditionally control the lengths of its arms in a way to steer its
motion toward maxima of c(x ). Compared with phase 1, we pro-
pose a slightly more complex cumulative reward scheme for the
training phase: We use rc =

∑NI
i=1[xc(ti)− xc(ti−1)]D(ti) where

D(ti) = sign[∇c(xc(ti))] =±1 represents the sign of the gradi-
ent at instant ti = iT 0; thus, rc measures the total distance that
the swimmer moves along an ascending gradient during the total
integration time TI =NIT0.

Prior to applying any RL scheme, we decompose the prob-
lem of chemotaxis into two tasks. First, we require a mechanism
that allows the agent to discern the direction D of the gradi-
ent (i.e., D = 1 for ascending or D =−1 for descending); we
introduce this tool as a CG block in the ANN of the chemo-
taxis agent (Fig. 3A) as described below. Second, we identify a
pure locomotive part of the agent that can be rooted on already
acquired skills—i.e., the unidirectional motion learned in phase
1 (and covered by the above-mentioned swimmer action layer
[SAL] solutions)—and on the inherent symmetries of the swim-
mer model: Swimming to the left and swimming to the right are
symmetric operations. Based on the actual value of D , condi-
tional directional motion (i.e., either to the left or to the right)
can be induced by introducing two permutation control layers
(PCLs) to the ANN (Fig. 3A and SI Appendix have details).

In order to obtain chemotaxis strategies using NEAT, the
remaining task is to identify an (potentially recurrent) ANN
structure for the CG block (Fig. 3A) (i.e., an ANN that is able
to predict the sign D of the CG). For this purpose, we have
considered three different methods that allow the microswim-
mer to sense ∇c(x ). First, we assume that the chemotaxis agent
can directly measure the sign of the gradient at its COM posi-
tion xc(t); here, D is automatically known. Second, we allow the
swimmer to simultaneously evaluate the chemical fields ci(t) at
the bead positions xi(t) to predict the sign of the gradient via
D = sign(G) from the output G of the ANN (Fig. 3B), deter-
mined by NEAT during training (see below). Third, in an effort
to model temporal sensing of CGs, which is relevant for bacte-
rial chemotaxis, we consider recurrent ANNs (Fig. 3C). In this
case, we explicitly provide the CG agent with inputs that describe
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Fig. 3. (A) Schematic view of full ANN-based chemotaxis agent. A chemical field c(x), swimmer arm lengths (L1, L2, LT = L1 + L2), and respective arm
velocities (V1, V2, VT) are used as input. By measuring the CG through the CG block, the swimmer controls the forces F1 and F3 in order to perform directed
locomotion toward an ascending gradient of c(x). Directed locomotion is split into two PCLs, which permute input and output of the SAL (Fig. 2 A, Insets)
according to a predicted sign D of the CG. The prediction of D by the CG block (cyan) can be performed either by directly measuring D = sign(∇c(xc)), by (B)
spatial resolution of the chemical field, or by (C) temporal sensing at the COM position xc. The respective solutions for the ANNs (gray and dark gray) found
by NEAT are shown in D and E; details are in SI Appendix.
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the internal, physiological state (total arm length LT and veloc-
ity VT), as well as with the chemical field at the COM position
cc = c(xc) at each instance of time ti . To train the CG agent,
we subdivide its task into a block, which estimates the gradient,
and into another block that controls an internal memory of the
chemical field (i.e., the chemical memory control [CMC] cell).
The latter is inspired by the well-known long short-term memory
cell (39, 40).

The first block is trained using the NEAT algorithm: It takes
as input LT(ti) and VT(ti) as well as two recurrent variables
Cx (ti) and Gx (ti) and maps this information onto a control
output Cy(ti) and an estimated value of the instantaneous CG
Gy(ti), both to be processed by the CMC cell in the next time
step. The CMC cell temporally feeds back Gy as input to the
NEAT ANN as Gx (ti) =Gy(ti−1). Furthermore, the CMC cell
controls via the binary variable β= Θ(Cy(ti−1)) = {0, 1} [with
Θ(·) the Heaviside function], the state of an internal mem-
ory M (ti) = (1−β)M (ti−1) +β cc(ti)/c0, and the state of the
NEAT ANN input Cx (ti) = (1−β)Cy(ti−1) +β (cc(ti)/c0−
M (ti−1)). In that way, the CG agent can actively control the
time interval between successive measurements: An update of
M (ti) is performed whenever Cy(ti−1)> 0; otherwise, M (ti−1)
is maintained over time. Notably, the chemical field input of
the CG agent is directly forwarded to the CMC cell, and the
trained NEAT ANN operates on time-delayed gradients rather
than directly on the values of the chemical field cc . Whenever
Cy(ti−1)> 0, the CMC cell explicitly provides temporal gradient
information (cc(ti)/c0−M (ti−1)) to the NEAT ANN via Cx (ti)
and otherwise, feeds back Cy(ti−1). Eventually, the output of the
temporal CG agent is D = sign(Gy).

For spatial and temporal gradient sensing (Fig. 3 B and C),
training is necessary. For simplicity, we train the swimmer on a
piecewise linear field, c(x ) = max(0, a − k |x − x0|), with ampli-
tude a and slope k using the MC-SAL solution obtained in phase
1 (Movies S3 and S4 and SI Appendix, Supporting Information
Text and Figs. S9 and S12 have details).

Both for spatial and temporal sensing methods, the resulting
ANNs are strikingly simple, and their topology can be well inter-
preted: The NEAT ANN solution for spatial sensing, shown in
Fig. 3D, only requires a single neuron, which predicts D(t)≈
sign(c3(t)− c1(t)) (SI Appendix has details). During training of
the temporal gradient sensing ANN, we determine the precise
way that the output signals of the ANN Cy(ti) and Gy(ti) are
used as recurrent input signals in the next time step and how
Cy(ti) controls the way the chemical memory is updated. The
solution for temporal sensing is shown in Fig. 3E. The NEAT-
evolved ANN converts the recurrent inputs Gx (ti) and Cx (ti)
through a series of operations processed by four hidden neurons
(with intermediate outputs yI , yP , yR) (SI Appendix) into a pre-
diction of the spatial CG Gy(ti). Thus, the ANN output Gy(ti) is
a highly nonlinear function of the input. In contrast, the trained
ANN has learned to directly utilize the periodically changing
total arm length LT(ti) as a pacemaker to trigger measurements
of the chemical field: Cy(ti−1)> 0 whenever LT(ti−1)& 2.23L0,
inducing a chemical memory update in the CMC cell in the next
time step. In this case, time-delayed CG information Cx (ti) =
cc(ti)/c0−M (ti−1) is provided to the ANN; notably, these mea-
surement requests are triggered only occasionally. Furthermore,
the ANN has learned to exploit information of the total arm
length through Cx (ti) =Cy(ti−1) when no time-delayed gradient
information is being used [Cy(ti−1)< 0]. In this way, the tempo-
ral gradient sensing ANN enables the CG agent to correlate its
direction of propagation with the gradient of a chemical field.
Numerical details on the weights and biases and further inter-
pretation of the ANN solution depicted in Fig. 3E are provided
in SI Appendix.

In Fig. 2 B and C, we present typical trajectories after suc-
cessful training obtained for chemical fields of piecewise linear
shape and of Gaussian shape, respectively. In both cases, the

swimmer—controlled by spatial sensing—suddenly stops as soon
as its COM position xc is reasonably close to the maximum x0

of the chemical field (Movie S7). In contrast, the swimmer con-
trolled by temporal sensing performs oscillations around x0 due
to its time-delayed measurements of the chemical field and its
internal, recurrent processes (Fig. 3C and Movies S5 and S6).

We observe that the ANNs of both spatial and temporal sens-
ing methods are able to generalize their capability to predict the
CG over a much wider range of parameters (i.e., amplitude a and
slope k of a chemical field) than they were originally trained on
(Fig. 2 and SI Appendix, Supporting Information Text and Figs. S9
and S14).

Emergent Run-Reverse Motion from Noisy Memory Readings. Real-
istic chemotactic pathways are always influenced by thermal
noise. In our implementation, we apply stochastic memory read-
ings of the CMC cell for the temporally sensing swimmer, mim-
icking the fact that the chemotactic signal cannot be detected
perfectly. In this spirit, the swimmer measures a field, M (t) =
(cc(t) + δc)/c0, δc being a normal distributed random num-
ber with zero mean and SD ξ, which sets the strength of the
noise. We apply this feature to an ensemble of 100 noninter-
acting microswimmers moving in a constant CG c(x ) = kx but
that have learned chemotaxis in the absence of noise in phase 2.
Strikingly, a one-dimensional run-and-tumble (run-and-reverse)
motion emerges naturally, even in the absence of a chemical
field (k = 0). In Fig. 4A, we present typical trajectories both in
the absence and in the presence (k = 0.1c0/R) of a chemical
field (Movie S8). These trajectories consist of segments of right-
ward motion (over run times ∆tR), alternating with segments
of leftward motion (∆tL). The stochastic nature of the under-
lying process leads to approximately exponentially distributed
run times, ∼ e−∆tR/τR and ∼ e−∆tL/τL , following thus a similar
behavior as the one measured for microorganisms (5, 7, 41). As
expected, in the absence of a field, τR ≈ τL (Fig. 4B). In the pres-
ence of a field, the swimmer exhibits a tendency for longer run
times, moving the gradient upward (τR >τL) (Fig. 4C).

In general, the chemotactic performance, quantified by the
mean net chemotactic drift velocity vc (i.e., mean swimmer
velocity), depends on the gradient steepness k and is strongly
influenced by the noise level ξ as shown in Fig. 4D: As expected,
for very small noise the motion is almost ballistic, vc→ v̄MC ,
while biased run-and-reverse motion (0< vc < v̄MC ) emerges for
larger noise. Interestingly, for different values of k , this can
be quantified by the noise-to-signal ratio ξ/(kR), leading to a
universal chemotactic behavior for a large range of k values
(SI Appendix, Fig. S21). Note that there exists a noise-to-signal
regime where the chemotactic velocity becomes negative due
to the small bias of the microswimmer obtained during training
(SI Appendix).

Run-and-reverse behavior depends on the values of the chem-
ical field cc(tj ) and of the internal memory M (ti) at two distinct
points in time ti < tj the microswimmer chooses to perform
successive measurements. If the noise δc dominates in the swim-
mer’s input Cx (tj ) = (cc(tj )− cc(ti) + δc)/c0, the swimmer is
unable to correctly determine the time-delayed CG and moves
erratically. This happens either if measurements are performed
too frequently or if the noise-to-signal ratio is above a critical
value of ξ/(kR)& 10−2 (Fig. 4D). A detailed account of how and
when our solution performs a measurement of the chemical field
is in SI Appendix, Figs. S18 and S19.

Chemotaxis in Time-Dependent Chemical Fields. Eventually, we
study the dynamics of temporal gradient sensing microswimmers,
which perform noisy memory readings in a more complicated,
time-dependent chemical environment. Notably, the microswim-
mers have solely been trained in a constant CG as described
in phase 2. We now use time-dependent chemical fields of
the form c(x , t) = h+(t)c+(x ) + h−(t)c−(x ) where c±(x ) are of
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Fig. 4. Stochastic microswimmer dynamics from noisy memory readings for noise level ξ= 2 · 10−4c0. (A) Sample trajectories in the absence (blue) and in
the presence (green) of a linear chemical field. (B and C) Run time distributions for moving the field upward (∆tR) and downward (∆tL) in the absence
(B) and in the presence (C) of a field. Note that the run time axis starts at the minimal possible run time ∆t/T0 = 1 because of the used discretization.
(D) Chemotactic drift velocity vc as a function of noise-to-signal ratio ξ/(kR) for different values of gradient steepness k. Each data point corresponds to
a simulation time of 106T0. (E) Sample trajectories in time-dependent Gaussian profiles c(x, t) (see color bar) centered at x0± =±10R of width σ= 8R and
height a = 4c0 and modulated with period T = 461TS.

Gaussian shape with maximum height a and centered at peak
positions x0±. The peak amplitudes are modulated via h±(t) =∑

i=0 max[(1− |4(i − t/T )± 1|), 0] with period T ; in the con-
tour plot in Fig. 4E, we also show typical microswimmer tra-
jectories. Swimmers may explore consecutive peaks by hopping
between chemical sources of c+ and c− or may miss peaks by
residing in the vicinity of the previously visited chemical source.
Thus, the actual swimming paths strongly depend on prior deci-
sions of the chemotaxis agent. In field-free regions, microswim-
mers perform approximately unbiased run-and-reverse strate-
gies, and they use positive chemotaxis in regions featuring CGs.
Hence, the combination of chemotactic response and noise
enables useful foraging strategies in time-dependent fields.

Discussion
We modeled the response of a simple microswimmer to a viscous
and chemical environment using the NEAT genetic algorithm
to construct ANNs that describe the internal decision-making
machinery coupled to the motion of two arms. First, our model
microswimmer learned to swim in the absence of a chemical field
in a “1 step back, 2 steps forward” motion as it appears, for
example, for the swimming pattern of the algae Chlamydomonas.

In contrast to a recently used Q-learning approach, which uses
a very limited action space (29), we allow continuous changes
of the microswimmer’s shape and thus, permit high flexibility in
exploring many different swimming gaits during training. This
feature allowed us to find optimum swimming policies where
the forces on the beads are limited, in contrast to fixing arm
velocities (SI Appendix). Furthermore, the NEAT algorithm has
created surprisingly simple ANNs, which we were able to fully
understand and interpret, in contrast to often used complex deep
neural networks (42–45) or the lookup–table-like Q-learning
algorithm (45).

We used biologically relevant chemotactic sensing strategies,
namely spatial gradient sensing usually performed by slow-
moving eukaryotic cells and temporal gradient sensing per-
formed by fast swimming bacteria. We used the latter to explore
the influence of a single noisy channel, namely for the reading

of the value of the chemical concentration, on the chemotactic
response. Interestingly, we identified for different values of gra-
dient steepness a broad range of noise levels that give rise to
biased run-and-reverse dynamics with exponentially distributed
run times. The run times can be scaled onto a master curve
using the noise-to-signal ratio of the chemical field measure-
ment. However, this behavior depends on the specific network
solution obtained during training in phase 2 (SI Appendix, Fig.
S21). Indeed, for real existing signal sensing mechanisms in
microorganisms, the role of the noise and the precision of signal
detection are an active field of research (e.g., refs. 46 and 47).

The run-and-reverse behavior in our system is an emergent
feature, which sustains in the absence of a chemical field (as
observed, for example, for swimming bacteria) without explicitly
challenging the microswimmer to exploit search strategies in the
absence of a field during training. From an evolutionary point
of view, it makes sense that bacteria have learned this behavior
in complex chemical environments. We also find that individual
microswimmers performing run-and-reverse motion may show
a small bias to the left or to the right even in the absence of
a field due to the stochastic nature of the genetic optimization
(SI Appendix, Figs. S14 and S21).

The question of how single cells make decisions that affect
their motion in their environment is an active field of research
(48–51). For example, bacteria, protists, plants, and fungi make
decisions without using neurons but rather, use a complex
chemotactic signaling network (52). On the other hand, small
multicellular organisms such as the worm C. elegans use only a
small number of neurons in order to move and perform chemo-
taxis (53, 54). Our approach therefore offers tools in order to
investigate possible architectures, functionalities, and the nec-
essary level of complexity of sensing and motor neurons cou-
pled to muscle movement in silico by evolutionary developed
ANNs. In the future, our work can be extended to more specific
microswimmers moving in two or three dimensions, in order to
extract the necessary complexity of the decision-making machin-
ery used for chemotaxis, mechanosensing, or even more complex
behavioral responses such as reproduction.
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Materials and Methods
ANNs. An ANN is a set of interconnected artificial neurons that collect
weighted signals (either from external sources or from other neurons) and
create and redistribute output signals generated by a nonlinear activation
function (55) (SI Appendix has details). In that way, an ANN can process
information in an efficient and flexible way: By adjusting the weights
and biases of connections between different neurons or by adjusting the
network topology, ANNs can be trained to map network input to out-
put signals, thereby realizing task-specific operations, which are often too
complicated to be implemented manually (56).

NEAT Algorithm. NEAT (57) is a genetic algorithm designed for construct-
ing neural networks. In contrast to most learning algorithms, it not only
optimizes the weights of an ANN (in an effort to optimize a so-called tar-
get function) but moreover, generates the weights and the topology of
the ANN simultaneously (SI Appendix has details). This process is guided
by the principle of complexification (57): Starting from a minimal design of
the ANN, the algorithm will gradually add or remove nodes and connect-

ing neurons with certain probabilities according the evolutionary process
(schematically depicted by the gray dashed lines in Fig. 1 Lower Left) in
order to keep the resulting network as simple and sparse as possible.
The resulting ANN solutions can then be used to perform their target
task, even for situations that the ANNs never explicitly experienced during
training.

Data Availability. Computational protocols and numerical data that sup-
port the findings of this study are shown in this article and supporting
information.
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