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Abstract

Background: The tumor microenvironment acts a pivotal part in the occurrence and development of tumor.
However, there are few studies on the microenvironment of papillary renal cell carcinoma (PRCC). Our study aims
to explore prognostic genes related to tumor microenvironment in PRCC.

Methods: PRCC expression profiles and clinical data were extracted from The Cancer Gene Atlas (TCGA) and Gene
Expression Omnibus (GEO) database. Immune/stromal scores were performed utilizing the ESTIMATE
algorithm. Three hundred fifty-seven samples were split into two groups on the basis of median immune/stromal
score, and comparison of gene expression was conducted. Intersect genes were obtained by Venn diagrams. Hub
genes were selected through protein-protein interaction (PPI) network construction, and relevant functional analysis
was conducted by DAVID. We used Kaplan–Meier analysis to identify the correlations between genes and overall
survival (OS) and progression-free survival (PFS). Univariate and multivariate cox regression analysis were employed
to construct survival model. Cibersort was used to predict the immune cell composition of high and low risk group.
Combined nomograms were built to predict PRCC prognosis. Immune properties of PRCC were validated by The
Cancer Immunome Atlas (TCIA).

Results: We found immune/stromal score was correlated with T pathological stages and PRCC subtypes. Nine
hundred eighty-nine differentially expressed genes (DEGs) and 1169 DEGs were identified respectively on the basis
of immune and stromal score. Venn diagrams indicated that 763 co-upregulated genes and 4 co-downregulated
genes were identified. Kaplan-Meier analysis revealed that 120 genes were involved in tumor prognosis. Then PPI
network analysis identified 22 hub genes, and four of which were significantly related to OS in patients with PRCC
confirmed by cox regression analysis. Finally, we constructed a prognostic nomogram which combined with
influence factors.

Conclusions: Four tumor microenvironment-related genes (CD79A, CXCL13, IL6 and CCL19) were identified as
biomarkers for PRCC prognosis.
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Introduction
The incidence of renal cell carcinoma (RCC) is approxi-
mately 431,288 in 2020, accounting for 2.2% of common
malignant neoplasm on a global scale [1]. Clear cell,
papillary, and chromophobe renal cell carcinoma are
three main histologic subtypes of RCC. Study reported
papillary renal cell carcinoma (PRCC) is the second most
common type [2]. Clinicopathological features are the
main diagnostic criteria for PRCC, but their predictive
outcome is not accurate because of the lack of consistent
standards [3]. Surgery is the primary choice of treatment
for early stage PRCC, and comprehensive therapeutic
approaches which include surgery, and immunotherapy
are applied for advanced stage patients [4]. However, the
prognosis for PRCC is various on account of tumor me-
tastasis and complications. The World Health
Organization (WHO) classification (2016), according to
different clinicopathological and immunohistochemical
features, split PRCC into two subtypes: type 1 and type 2
[5]. In general, the prognosis of type 2 PRCC was poorer
than type 1 [6].
Tumor microenvironment (TME) is an intricate sys-

tem comprised of tumor cells, surrounding immune and
inflammatory cells, tumor-related fibroblasts and nearby
stromal tissues, and varieties of cytokines and chemo-
kines [7]. Relevant studies have indicated macrophages
play a crucial part in tumor initiation and invasion of ad-
jacent tissues [8]. Tumor-related fibroblasts, a kind of
stromal cell, affect cancer progression partly by interact-
ing with tumor cells and immune regulation [9]. Studies
have demonstrated the highly enriched CD8+ T cells in
PRCC are significantly connected with tumor develop-
ment, progression, and mortality [10]. Yoshihara et al.
put forward the ESTIMATE algorithm that utilizes gene
expression patterns to calculate the immune/stromal
scores in different tumor tissues [11]. Accumulating evi-
dence showed ESTIMATE helped to clarify the import-
ance of TME in numerous cancers [12–14].
In this study, we extracted PRCC datasets from TCGA

and GEO and obtained relevant immune and stromal
score calculated by ESTIMATE. After a series of bio-
informatics analyses, several tumor microenvironment-
related genes in connection with the prognosis of PRCC
patients were selected and validated, and were used to
establish nomograms as potential tools to evaluate the
outcomes of PRCC.

Materials and methods
Data preparation
Level_3 gene expression patterns for PRCC was down-
loaded from TCGA via UCSC Xena (http://xena.ucsc.
edu/). Another dataset (GSE2748) was obtained from
the GEO database. And corresponding clinical informa-
tion including overall survival (OS) time and status was

extracted from the ONCOMINE database (www.
oncomine.org/). Immune and stromal scores were calcu-
lated by ESTIMATE packages of R.

Screening of differentially expressed genes (DEGs)
PRCC samples were split into high and low groups on
the basis of median immune/stromal score, limma pack-
age of R was utilized to compare DEGs, |Log2FC| > 1
and FDR < 0.05 were deemed significant. Volcano plot
was drawn by the ggplot2 package of R.

Survival analysis
We have adopted Kaplan–Meier analysis to evaluate the
relations between DEGs and OS. And Tarone-Ware test
was applied for comparing the differences. P < 0.05 was
considered statistically significant.

PPI construction and hub genes selection
The String database (https://string-db.org/) was used to
analyze the molecular interactions of DEGs and con-
struct a PPI network visualized by Cytoscape (v3.7.2).
Then we used the MCODE tool to find densely con-
nected hub genes based on topology.

Functional enrichment analysis
Gene ontology (GO) analysis was performed by DAVID
(http://david.abcc.ncifcrf.gov), comprising three aspects:
biological process, cellular component, and molecular
function. And Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) analysis was applied for searching func-
tional pathways of hub genes. P < 0.05 was deemed
statistically significant.

Abundance analysis of tumor-infltrating immune cells and
immunophenoscore (IPS) analysis
CIBERSORT algorithm (http://cibersortx.stanford.edu)
was used to estimate the composition of 22 immune cell
types of PRCC. The percentages of these types were vi-
sualized in a bar graph by using ggplot2 package of R.
Immunophenogram of TCIA (https://tcia.at/), influenced
by four factors: MHC molecules, immunomodulators, ef-
fector cells and suppressor cells, was applied to evaluat-
ing the immune properties of PRCC. And IPS scores are
positively associated with the immunogenicity.

Nomogram building
To construct a nomogram to predict patients’ OS and
PFS of PRCC, the C index was used to evaluate the dis-
criminating ability, and the calibration chart was drawn
to evaluate the accuracy of the nomogram. The rms
package of R was used to build the nomogram.
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Statistical analysis
Statistical differences between 2 groups were identified
by unpaired Student’s t test or Mann Whitney U test. 1-
way ANOVA test and Kruskal-Wallis test were applied
when more than 2 groups were compared. Based on ac-
cessible clinical data, we used univariate and multivariate
cox regression analysis to identify the prognostic values
of certain hub genes. Kaplan–Meier analysis was used to
estimate the OS and PFS. All statistical analysis was con-
ducted by software packages of R (v3.6.3).

Results
Immune/stromal score were significantly associated with
T pathological stage and PRCC subtypes
We downloaded 323 and 34 PRCC samples from the
TCGA and GEO database. Gene expression patterns and
clinical characteristics were included. Based on the ESTI
MATE algorithm, immune score (− 1952.04 to 3372.51)
and stromal score (− 1821.04 to 1469.55) of 291 samples
of TCGA and 34 samples of GEO were calculated. We
attempted to analyze the relations between immune/
stromal score and TNM, stage, subtype and grade
(Fig. 1a-e). Results showed the differences in the stromal
score of T pathological stages were significant (T3–4 >
T1–2, P < 0.05). And the average immune scores of type
2 were higher than type 1 (P < 0.05). Similarly, type 2
had higher stromal scores compared to type 1 (P < 0.05,
Fig. 1f, g). Finally, we divided the samples into two
groups on the basis of median immune/stromal score,
and revealed stromal score was significantly associated
with PFS (P = 0.021, Fig. 1h). However, no significant dif-
ferences were found in OS via Kaplan–Meier analysis.

Identification of DEGs with immune/stromal score
To determine whether all genes were associated with
immune/stromal score, gene expression profile of 291
patients were analyzed. We mapped volcano plots with
the cutoffs of |Log2FC| > 1 and FDR < 0.05 (Fig. S1A, B).
Nine hundred eighty-three upregulated and 6 downregu-
lated genes were screened by comparing the high and
low immune scores. Meanwhile, we compared 2 groups
of cases dichotomized by high and low stromal scores,
and extracted 1142 upregulated and 27 downregulated
genes. Venn diagrams identified 763 upregulated com-
mon genes and 4 downregulated common genes (Fig.
S1C, D, Supplementary Table S1). GO analysis showed
763 common upregulated genes were mostly associated
with immune and inflammatory response, chemokine
activity, IgG binding and cell adhesion molecule binding
(Fig. S1 E-G).

Association of upregulated common genes with OS
In order to obtain the relationships between each gene
and OS, Kaplan–Meier was applied for survival analysis

of 763 upregulated genes, and the impact of 120 genes
(Supplementary Table S2) on OS was statistically
significant.

Selection of molecular complexes from protein
interaction networks
To study protein interactions of 120 genes, String tool
was performed to structure a PPI network comprised of
84 nodes and 297 edges. Then we used MCODE to se-
lect prominent modules: module 1, composed of 17 hub
genes (CXCR5, CD19, PDCD1, IL21R, GZMB, TNFR
SF9, CD38, CXCL10, SELL, LAG3, CD44, CD80,
CCL21, ITGA4, CCL19, IL6, and CXCL13, Fig. S2A)
and module 2, including 5 hub genes (BLK, CD79A,
FCRLA, MS4A1 and POU2AF, Fig. S2B), which were
strongly associated with other genes, suggesting that
they might play an important role in PRCC.

Functional enrichment analysis of valuable genes
To understand whether 22 genes have an impact on the
TME, we performed KEGG analysis by DAVID, and the
results showed that these genes mainly participated in
the following pathways: cytokine-cytokine receptor inter-
action, chemokine signaling pathway and primary im-
munodeficiency (Fig. S2C).

Construction and validation of a survival model to predict
prognosis of PRCC patients
Three hundred twenty-three PRCC samples from TCGA
and 34 samples from GEO were used as train and test
group. Univariate cox regression analysis has approved
all of 22 genes were significantly with OS (Supplemen-
tary Table S3). Then, we applied multivariate cox regres-
sion analysis to confirm 4 genes (CD79A, CXCL13, IL6
and CCL19) significantly related with patients’ prognosis
(Supplementary Table S3 and S4) and constructed a for-
mula for risk score calculation after extracting the coeffi-
cients from the results: expression level of CD79A * (−
0.24020) + CXCL13 * 0.22031+ IL6 * 0.12025+ CCL19 *
0.17997). According to median risk score, 323 PRCC
samples from TCGA were divided into high and low risk
group, Kaplan–Meier survival curves both indicated pa-
tients’ OS and PFS in high risk group were worse than
that in low risk group (p < 0.05, Fig. 2a, c). And area
under curve (AUC) related to OS and PFS was 0.76 and
0.745 (Fig. 2b, d). Similarly, 34 samples from GEO were
analyzed, and AUC was 0.708 (Fig. 2e, f). We depicted
ROC curves to discuss the predictive ability of this gene
model in different subgroups of PRCC, such as subtype,
grade, pathologic stage, gender and age. And the results
demonstrated the immune signature well performed in
age > =65, female and type 1 PRCC (Fig. S3A-D). Com-
pared with clinical characteristics (age, gender, TNM,
grade and stage), the 4-genes model showed a great
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Fig. 1 The correlations between the stromal score and clinical characteristics, and OS analysis. a–e. The relationship between stromal score and T
stage, N stage, M stage, clinical stage and grade. f, g. The relationship between immune/stromal score and PRCC subtypes. h. Kaplan-Meier
analysis of stromal score with PRCC patients
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Fig. 2 Kaplan-Meier survival and ROC analysis.. OS and PFS were compared respectively between low and high risk group of TCGA samples (a, c),
OS was compared between low and high risk group of GEO samples (e), ROC of 4-gene model of OS (c) and PFS (d) analysis of TCGA samples
and OS analysis of GEO samples (f)

Fig. 3 Immune cell composition analysis and the difference analysis of IPS. a Box plot of 22 immune cells proportion between low and high risk
group of 4-gene model. b the difference analysis of IPS between low and high risk group of 4-gene model
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performance in PRCC prognosis (Fig. S3E, F). Then, the
relationship between the TMB-signature and clinico-
pathological factors were analyzed, and the results indi-
cated significant differences were observed in gender,
TNM, stage and type (Fig. S4).

Immune infiltration and IPS analysis
In order to predict the composition of immune cells in
TCGA samples, we divided patients into low and high
risk group based on median risk score. The composition
of 22 types of immune cells in 2 groups was depicted in
the bar graph (Fig. 3a) which indicated low risk group
was connected with recruitment of plasma cell, resting
memory CD4+ T cell, macrophage M0/2, and resting
mast cell (P < 0.05). We used IPS to predict the potential
response of ICI (immune checkpoint inhibitors) for
PRCC patients and investigated the association between
IPS and 4-genes model of PRCC. Statistical analysis

indicated that the IPS of low risk group was higher than
high risk group (Fig. 3b). Conclusively, low risk group of
immune-associated signature might have stronger
immunogenicity.

Construction of predictive nomogram
By comparing the C-index and removing invalid vari-
ables, we constructed a nomogram to predict patients’
OS and PFS of PRCC which combined with two inde-
pendent factors including stage and risk score (Fig. 4).
The calibration curve showed the nomogram had the
best performance with the C-index of 0.855 and 0.834.
Conclusively, this nomogram could be a potential tool to
evaluate the outcomes of PRCC.

Discussion
Recently, TME has been identified to have profound sig-
nificance and effect on the occurrence, progression, and

Fig. 4 Nomogram for predicting OS (a) and PFS (c) for PRCC patients of TCGA based on risk score and stage. The calibration plot for internal
validation of the nomogram (b, d)
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treatment of tumors, and it is extremely necessary to
study its related mechanism. Study has shown changes
in mesenchymal stromal cell differentiation promoted
the progression of multiple tumors by altering the tumor
microenvironment [15]. Maeda-Otsuka et al. demon-
strated hypoxia could accelerate the proliferation and
migration of angiosarcoma by regulating tumor micro-
environment [16]. Bader et al. reported that TME was
closely linked to immunotherapy, and the understanding
of TME could better guide treatment and achieve preci-
sion therapy [17]. Meanwhile, study indicated that im-
munotherapy was one of the promising options for
advanced stage PRCC patients [18]. This study aimed to
identify genes in connection with tumor microenviron-
ment and significantly with OS in PRCC patients.
Firstly, we discovered that the differences in the stromal

score of T pathological stages were statistically significant, in-
dicating that stromal cells of TME were meaningful in the
correlation of T pathological stages. Relevant study has dem-
onstrated that changes in stromal components, such as the
presence of myofibroblasts, initiated tumor invasion, and me-
tastasis [19]. Delahunt reported type 1 PRCC inclined to be
localized in kidney whereas type 2 generally tended to invade
the surrounding organs and had a poor prognosis [20]. Re-
sults showed the mean immune/stromal scores of type 2
PRCC cases were significantly higher than type 1, which indi-
cated higher immune/stromal scores were associated with
type 2 PRCC, and might be connected with more aggressive
biological behaviors. GO analysis of genes co-upregulated in
the immune/stromal groups indicated that they were in-
volved in immune and inflammatory responses, suggesting
that most of the genes were related to TME. Then, Kaplan–
Meier analysis of 763 upregulation genes showed that 120
genes were associated with PRCC prognosis. Combined with
PPI network construction and significant modules extraction,
we obtained 22 hub genes. Then KEGG enrichment analysis
showed that they were active in immune-related pathways,
such as cytokine-cytokine receptor interaction, chemokine
signaling pathway and primary immunodeficiency. Univariate
and multivariate regression analysis put forward a four-genes
(CD79A, CXCL13, IL6 and CCL19) survival model based on
323 PRCC samples from the TCGA database, of which AUC
was 0.76 of OS and 0.745, and confirmed by a set of GEO
data, with the AUC of 0.708. Based on risk score and patho-
logic stage, we constructed two nomograms separately asso-
ciated with patients’ OS and PFS. According to IPS program,
results showed IPS was significantly higher in low risk group,
which indicated lower expression level of 4 immune-related
genes were connected with weaker immunogenicity.
Among the 4 genes, Certain studies have demon-

strated that CCL19 could act as an immunomodulator
by activating dendritic cells, T and B cells in secondary
lymphoid tissue to modulate primary (or secondary)
adaptive immune responses [21]. Besides, overexpression

of CCL19 was discovered to be implicated in tumor pro-
gression in cervical cancer, but might be contribute to
anti-vascular treatment in colorectal cancer through
inhibiting angiogenesis [22, 23]. Numerous studies have
shown that CXCL13, as a chemokine secreted by stro-
mal cells was implicated in the occurrence, invasion, and
lymph node metastasis of tumors by binding to its re-
ceptor CXCR5 [24–27]. Rachana et al. reported it could
be a novel and compelling target for prostate cancer
therapy [28]. Several studies indicated that CD79A was
connected with aggressive hematological malignancy,
could be a popular marker in the detection and treat-
ment of hematopathy such as Hodgkin’s lymphoma and
B-cell lymphoma [29–31]. IL6, a proinflammatory cyto-
kine, has been reported to be influenced by cancer-
associated fibroblasts (CAFs) in TME, and participated
in the process of human tumor immunity improvement,
tumor metastasis and colonization [32–34].
The interaction of PRCC and its TME affected the

whole process from tumor occurrence and progress to
metastasis and recurrence, which created plenty of op-
portunities for diagnosis, treatment and prognosis of
PRCC patients. In present study, we attempted to find
tumor microenvironment-genes associated with PRCC
patients’ survival. Our results may provide some related
data to future research on the relations of PRCC and
TME. However, the mechanism of PRCC and its micro-
environment could be extremely complex, our analysis
based on the TCGA and GEO database and bioinfor-
matic tools is only one part of it. Further research and
analysis based on large samples will be essential.

Conclusion
By analyzing the TCGA and GEO database and applying
ESTIMATE algorithm and a series of bioinformatic methods,
we obtained tumor microenvironment associated genes
(CD79A, CXCL13, IL6 and CCL19), which were related to
the clinical outcome of PRCC patients. These genes could be
used as biomarkers for predicting PRCC prognosis.
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