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Abstract

The identification of an alternate extended form of angiotensin I composed of the first twelve 

amino acids at the N-terminal of angiotensinogen has generated new knowledge of the importance 

of noncanonical mechanisms for renin independent generation of angiotensins. The human 

sequence of the dodecapeptide angiotensin-(1-12) [N-Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-

His9-Leu10-Val1-Ile12-COOH] is an endogenous substrate that in the rat has been documented to 

be present in multiple organs including the heart, brain, kidney, gut, adrenal gland, and the bone 

marrow. Newer studies have confirmed the existence of Ang-(1-12) as an Ang II-forming substrate 

in the blood and heart of normal and diseased patients. Studies to-date document that angiotensin 

II generation from angiotensin-(1-12) does not require renin participation while chymase rather 

than angiotensin converting enzyme shows high catalytic activity in converting this substrate into 

angiotensin II directly.
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Introduction

It has been widely addressed in the literature that the central role of the circulating renin-

angiotensin system (RAS) is to maintain blood pressure and body fluid homeostasis (Yim 

and Yoo, 2008, de Souza, West, de Abreu et al., 2018). In addition to its role as an endocrine 

system, data demonstrates the presence of genes and proteins of the system within the 

interstitial spaces of the extracellular environment and the membranes, organelles and nuclei 

of the cells itself (Leung, 2010,Jessup, Brosnihan, Gallagher et al., 2008, Nehme, Zouein, 

Zayeri et al., 2019, Abadir, Walston and Carey, 2012, Kumar, Singh and Baker, 2008, 

Sherrod, Liu, Zhang et al., 2005). The presence of RAS proteins in tissue suggest that they 

are either locally synthesized and processed or represent precursors that are transported from 

the circulation and then processed locally (Ahmad and Ferrario, 2018, Ferrario, Ahmad, 

Varagic et al., 2016, Pendergrass, Averill, Ferrario et al., 2006, Whaley-Connell, Habibi, 

Nistala et al., 2012). Further, the processing mechanisms of the tissue RAS may differ from 

the circulating RAS and from one tissue type to another. For example, angiotensin II (Ang 

II) in the blood and the lungs is primarily generated by angiotensin converting enzyme 

(ACE) from angiotensin I (Ang I), whereas in tissues such as the bone marrow and the heart, 

chymase is the main Ang II-forming enzyme (Ahmad and Ferrario, 2018, Ferrario et al., 

2016, Ahmad, Simmons, Varagic et al., 2011, Ahmad, Varagic, Groban et al., 2014, Ahmad, 

Varagic, VonCannon et al., 2016, Ahmad, Wei, Tallaj et al., 2013, Yamashita, Ahmad, 

Wright et al., 2020). The discovery of chymase as an Ang II generating enzyme originated in 

studies performed at the Cleveland Clinic by Bumpus and colleagues (Hirakata, Fouad-

Tarazi, Bumpus et al., 1990, Kinoshita, Urata, Bumpus et al., 1991) three decades ago. 

Identification of angiotensin-(1-7) as a component of the RAS and the later demonstration of 

angiotensin converting enzyme 2 (ACE2) and the mas receptor (Mas-R) as constituents of 

the ACE2/Ang-(1-7)/Mas-R axis established the basis for a more insightful understanding of 

the system in the control of cell function and homeostasis. The current acceptance of the 

RAS as comprised by two intertwined biochemical arms with opposing functions [ACE/Ang 

II/AT1-R and ACE2/Ang-(1-7)/Mas-R axis], provides a more complete vision of how 

homeostasis is regulated and how an unbalance in the expression or activity of the opposing 

arms of the RAS can associate with or cause tissue remodeling, endothelial dysfunction, and 

cardiac/vascular fibrosis, as well as alter normal cell biology with attendant unregulated 

control of cell growth and altered immunity (McMaster, Kirabo, Madhur et al., 2015, 

Mikolajczyk and Guzik, 2019).

The main goal of this review is to highlight the importance of alternate non-canonical 

pathways in which intermediate substrates representing peptides with amino acid sequences 

shorter than angiotensinogen (AGT) constitute an alternate substrate for the generation of 

the biologically active peptides Ang II and Ang-(1-7). These alternate angiotensin substrates 

are -the dodecapeptide angiotensin-(1-12) [Ang-(1-12)] and ikosi pendi peptide 

angiotensin-(1-25) [Ang-(1-25)]. While both polypeptides were identified by Japanese 

researchers in Miyazaki, Japan (Nagata, Hatakeyama, Asami et al., 2013, Nagata, Kato, 

Sasaki et al., 2006), the bulk of the evidence for a biological role as a source of Ang II 

production is on Ang-(1-12) as no further data for Ang-(1-25) has been published since the 

original publication (Nagata et al., 2013). We also discuss the beneficial role of chymase 
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inhibition as a novel therapy in the treatment of progressive heart and kidney diseases, given 

chymase importance as an Ang-(1-12) degrading enzyme (Ahmad and Ferrario, 2018, 

Ansary, Urushihara, Fujisawa et al., 2018, Devarajan, Yahiro, Uehara et al., 2015, Duengen, 

Kim, Zahger et al., 2020, Dungen, Kober, Nodari et al., 2019, Kanefendt, Thuss, Becka et 

al., 2019). While the mechanisms that underlie the pathological effects of chymase at the 

cellular level are not yet well defined, new studies yield support to the use of novel chymase 

inhibitors in the management of human left ventricular dysfunction and heart failure 

(Duengen et al., 2020, Dungen et al., 2019, Kanefendt et al., 2019).

Ang-(1-12) and Chymase Role in RAS

The intracellular presence of the AGT protein along with its’ metabolic products [Ang I, 

Ang II and Ang-(1-7)] are documented, even though more work needs to done in terms of 

understanding their intracellular compartmentalization and the specific conditions for their 

expression in the cell nuclei and cytosolic organelles (Abadir et al., 2012, Kumar et al., 

2008,Barlucchi, Leri, Dostal et al., 2001, Gwathmey, Alzayadneh, Pendergrass et al., 2012, 

Sadoshima, Xu, Slayter et al., 1993, Singh, Le, Bhat et al., 2007).

Ang-(1-12) (aka proangiotensin 12) was first identified by Nagata et al. (Nagata et al., 2006) 

in 2006 from the blood and tissues of a japanese strain of Wistar rats. In this first study 

Nagata and co-workers (Nagata et al., 2006) demonstrated the ability of Ang-(1-12) to 

generate Ang II via angiotensin converting enzyme. In the pursuit of its potential role as an 

Ang II substrate, a series of studies from our laboratory showed the presence of 

immunoreactive (ir-) Ang-(1-12) products in the left ventricle and renal tubules of 

spontaneous hypertensive rats (SHR) (Jessup, Trask, Chappell et al., 2008) and rat cardio 

myocytes (isolated from 1-3 days old neonatal pups and adult hearts) (Ahmad et al., 2011, 

Ahmad, Varagic, Westwood et al., 2011). The potential contribution of Ang-(1-12) to 

cardiovascular regulation as an angiotensin peptide generating substrate was strengthened by 

additional studies showing that plasma membranes isolated from human normal left 

ventricular myocytes metabolized Ang-(1-12) into Ang II by chymase (Ahmad et al., 2013). 

Additional evidence was obtained from human biopsies of right and left atrial appendages of 

patients undergoing cardiac surgery for the treatment of resistant atrial fibrillation or left 

heart myocardial or valve disease (Ahmad et al., 2011, Wang, Varagic, Nagata et al., 2020, 

Wang, Varagic, Nagata et al., 2020). These studies showed a positive association among left 

atrial Ang-(1-12) expression, chymase gene transcripts, and chymase enzymatic activity 

levels in patients with enlarged left atria due to left heart disease (Wang et al., 2020a, Wang 

et al., 2020b). The increased activity of the Ang-(1-12)/chymase axis in these patients is in 

keeping with parallel demonstrations of a critical role of chymase in left atrial enlargement 

during volume overload (Dell’Italia, Collawn and Ferrario, 2018, Dell’Italia, Meng, Balcells 

et al., 1995, Powell, Wei, Fu et al., 2019) and in the evolution of primary mitral regurgitation 

(Butts, Ahmed, Bajaj et al., 2020).

It is generally accepted that hypertension, diabetes, aging, and oxidative stress stimulate the 

activity of the circulating and tissue-borne RAS (Chen, Juan and Chou, 2018, Conti, Cassis 

and Benigni, 2012, Ferrario, 2010, Ferrario, Ahmad, Joyner et al., 2010, Groban, Pailes, 

Bennett et al., 2006, Luo, Wang, Chen et al., 2015, Singh, Le, Khode et al., 2008). In 
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keeping with these findings, intracellular levels of endogenous Ang-(1-12) are higher in 

neonatal myocytes isolated from 1-3 days-old pups of SHR compared to normotensive 

Wistar-Kyoto rats (WKY) (Ahmad et al., 2011). In addition, intact Ang-(1-12) was 

incorporated within cultured neonatal myocytes in a time-dependent fashion in both WKY 

and SHR. Importantly, the rate of Ang-(1-12) uptake was significantly higher in SHR as 

compared to WKY myocytes at all-time points (Ahmad et al., 2011).

Figure 1 illustrates the metabolic pathways leading to Ang-(1-12) generation and processing. 

While metabolism studies demonstrate the ability of angiotensin converting enzyme (ACE) 

to hydrolyze Ang-(1-12) into Ang I, this enzymatic pathway seems to be primarily 

accounting for Ang-(1-12) metabolism in the circulation during exposure to the rich ACE 

contained within the surface area of the vascular endothelium (Moniwa, Varagic, Simington 

et al., 2013). On the other hand, studies of Ang-(1-12) metabolism in tissues such as the 

heart and the kidneys point toward chymase as the critical enzyme metabolizing Ang-(1-12) 

directly into Ang II. Chymase participation in the metabolism of the Ang-(1-12) substrate 

was first identified in heart tissue lysate and atrial cardiomyocytes (Ahmad et al., 2011, 

Ahmad et al., 2016). In human atrial tissue, chymase affinity for Ang-(1-12) is 25-fold 

higher than for ACE (Wang et al., 2020a, Wang et al., 2020b). Ang-(1-12) preference for 

chymase has been further confirmed in rat bone marrow. In this tissue, chymase-mediated 

Ang II formation from Ang-(1-12) substrate was approximately 1,000-fold higher than that 

of ACE (Yamashita et al., 2020). These findings further indicate that the RAS processing 

enzymes are regulated differently at the cellular level. Chymase expression in tissues and its’ 

deleterious effect in organ damage has been the topic of a recent review (Dell’Italia et al., 

2018).

Chymase participation as an Ang II forming enzyme originates in studies performed at the 

Cleveland Clinic thirty years ago. In pursuing the observation that Ang I exerted significant 

cardiac inotropism in the presence of captopril (Hirakata et al., 1990), chymase was 

identified as an Ang II forming enzyme from Ang I by Urata et al. (Urata, Kinoshita, 

Misono et al., 1990, Urata, Kinoshita, Perez et al., 1991, Urata, Nishimura and Ganten, 

1995). Additional novel contributions to chymase role in cardiovascular disease were done 

by Husain et al. (Husain, 1993, Ju, Gros, You et al., 2001, Murakami, Karnik and Husain, 

1995, Wasse, Naqvi and Husain, 2012) and Dell’Italia and colleagues (Dell’Italia et al., 

2018, Butts et al., 2020, Butts, Goeddel, George et al., 2017, Dell’Italia, Meng, Balcells et 

al., 1997, Pat, Chen, Killingsworth et al., 2010, Wei, Lucchesi, Tallaj et al., 2003).

The rich literature concerning chymase participation as an Ang II-forming enzyme, as 

reviewed recently (Dell’Italia et al., 2018), remains relegated as scientists and clinicians 

continue to ignore accumulating evidence of a high residual risk of cardiovascular events in 

patients medicated with ACE inhibitors (Ferrario et al., 2016, Ferrario and Mullick, 2017, 

Reyes, Cheng, Roberts et al., 2019, Reyes, Varagic, Ahmad et al., 2017). Limited acceptance 

of a critical contribution of chymase to human cardiovascular pathology is partly influenced 

by the existence of multiple isoforms expressed differently in rodents and humans. Of the 

five more prominent chymases found in rodents, mast cell protease 5 (MCP-5) is the most 

structurally and phylogenetically related to the human chymase encoded by the CMA1 gene 

(Rao and Hoidal, 2012).
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The human chymase gene (CMA1) has a significant association to immunity. A recent study 

showed significantly higher expression of CMA1 gene in gastric cancer tissues compared to 

adjacent normal tissues (Shi, Ye, Mao et al., 2020). The expression level of CMA1 (a key 

gene) in gastric cancer correlated with the levels of infiltrated CD4+, CD8+, neutrophils, 

macrophages, and dendritic cells (Shi et al., 2020). Past studies from Ferrario’s laboratory 

implicated the existence of an immunological imbalance during the development of 

experimental renal hypertension as revealed by biphasic changes in the thymus weight 

(Chatelain and Ferrario, 1978) and a reduced thymus T cell reactivity (Chatelain, Vessey and 

Ferrario, 1980). Since T lymphocytes are important regulators of immunological 

homeostasis, this reduction in T-cells suggested the existence of an immunological 

imbalance accompanying the development of experimental renal hypertension. The thymus 

and the bone marrow are key players in immunity in part explained by the fact that T cells 

migrate to the thymus to undergo further growth and differentiation (2009). Consequently 

the first demonstration of the existence of the genes and proteins of the RAS in the bone 

marrow, including evidence of de novo synthesis of Ang II by marrow stromal cells (MSC) 

(Strawn and Ferrario, 2008, Strawn, Richmond, Ann Tallant et al., 2004), provided initial 

clues as to the role of altered immunity in the pathogenesis of human hypertension. Since 

Ang II is expressed in the bone marrow where it functions as an autocrine-paracrine 

modulator of hematopoiesis, we further explored whether Ang-(1-12) and chymase may be 

present. This new study revealed the abundant presence of Ang-(1-12) in the bone marrow of 

Sprague Dawley rats; moreover, we found that chymase-mediated Ang II-formation from 

Ang-(1-12) was approximately 1,000-fold higher than ACE (Yamashita et al., 2020). These 

data are consistent with a hereto unknown role of the Ang-(1-12)/chymase axis in the 

modulation of hematopoiesis and inflammatory mechanisms associated with the 

pathogenesis of hypertension. In keeping with this interpretation, we now find a significant 

expression of Ang-(1-12) in the rat’s thymus (Figure 2).

Ang-(1-12) and Cellular Function

As of now, the two primary biologically active RAS components [Ang II and Ang-(1-7)] 

have been widely recognized for their direct cellular interactions and functionality. The most 

widely appreciated pathological function of the Ang II peptide is through its membrane 

receptor [Ang II type 1 receptor, AT1R] signaling pathways where it modulates the structural 

characteristic of the cells in various diseases (Mehta and Griendling, 2007, Wolf and 

Wenzel, 2004). Our recent compelling studies show that Ang-(1-12) functions as a tissue 

non-renin dependent alternate precursor for direct Ang II generation by chymase in the 

rodent and human heart (Ahmad et al., 2013, Ferrario, Varagic, Habibi et al., 2009, Trask, 

Jessup, Chappell et al., 2008). We examined that in vivo Ang-(1-12) induced alterations in 

global cardiac function in adult normal Sprague Dawley rats (Li, Zhang, Cheng et al., 2018), 

WKY (De Mello, Dell’Itallia, Varagic et al., 2016), transgenic hypertensive rats expressing 

the human AGT [TGR(hAGT)L1623] (Reyes et al., 2019), and SD rats with isoproterenol-

induced heart failure (HF) (Li, Zhang, Zhang et al., 2020). In all cases, Ang-(1-12) induces 

positive inotropic responses that are the result of intracellular Ca2+ mobilization (Reyes et 

al., 2019) and activation of K+ currents (De Mello et al., 2016). Ang-(1-12) contractile 

responses are reduced in rats with isoproterenol-induced HF (Li et al., 2020) and in the 
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hypertensive myocytes of TGR(hAGT)L1623 rats (Reyes et al., 2019). Ang-(1-12) inotropic 

responses in isolated cardiac myocytes are significantly inhibited in the presence of a 

chymase inhibitor (chymostatin). These findings suggest that the Ang-(1-12) responses are 

mediated by intracellular processing of the substrate by chymase, - directly generating Ang 

II from the Ang-(1-12) substrate.

Therapeutic Aspect of Intracellular Cardiac Chymase/ACE Inhibition

Cardiovascular diseases (CVDs) are the number one cause of death (31%) globally. 

Challenges remain in designing effective therapeutic agents to block intracellular sites of 

Ang II generation. Previous studies from Singh et al. (Singh et al., 2008) showed that 

neonatal rat ventricular myocytes synthesize and retain Ang II intracellularly, and that Ang 

II is redistributed to the nucleus under high-glucose conditions. Further, these authors noted 

that cardiac myocytes grown in a high-glucose environment increase intracellular 

concentrations of AGT and chymase. Markedly increased chymase expression in vascular 

smooth muscle cells in human diabetic nephropathy, and hypertensive nephropathy has been 

reported (Cristovam, Carmona, Arnoni et al., 2012, Huang, Chen, Truong et al., 2003). A 

major role of ACE-independent formation of intrarenal Ang II in diabetes (Singh et al., 

2007), and the involvement of renal mast cell chymase activity has been documented in 

patients with autosomal dominant polycystic kidney disease (McPherson, Luo, Brown et al., 

2004). These studies suggest that cellular RAS physiology is changed under high-glucose 

conditions, a finding that agrees with our studies in which chymase (not ACE) had a 

significant role in Ang-(1-12) processing to generate Ang II in human and rat heart tissues.

ACE inhibitors and AT1-R blockers are established as primary medications in the treatment 

of patients with hypertension and CVDs. While large well-conducted clinical trials 

demonstrate the beneficial effects of ACE inhibitors and ARBs in terms of blood pressure 

control and amelioration of target organ damage (Dusing, 2016), a more critical appraisal of 

their therapeutic efficacy in terms of reducing clinical events reveals an overall risk 

reduction of no more than 30% (Ferrario et al., 2016, Reyes et al., 2017, Ferrario, Ahmad, 

Nagata et al., 2014). Meta-analysis data from large clinical trials employing ACE inhibitors 

show a relatively small risk reduction of clinical cardiovascular endpoints (Reyes et al., 

2017). In a critical reappraisal of blood pressure lowering trials in hypertension, Zanchetti et 
al., (Zanchetti, Thomopoulos and Parati, 2015), reported an absolute risk reduction of 18% 

across all trials leaving a residual cardiovascular risk of 82%. Although ACE inhibitors and 

ARBs may effectively control blood pressure, the residual risk for cardiovascular events 

remains high. The presence of such a residual risk for cardiovascular events in the face of 

satisfactory blood pressure control may relate to the inability of these medications to reach 

intracellular sites at which Ang II exerts pathological actions (Kumar et al., 2008, Ferrario et 

al., 2016, Ferrario and Mullick, 2017). This hypothesis is supported by the failure of ACE 

inhibitors and/or ARBs to reduce the tissue expression of Ang II as demonstrated in the 

heart of normotensive (Ferrario, Jessup, Chappell et al., 2005) and hypertensive rat models 

(Jessup et al., 2008, Ferrario, VonCannon, Ahmad et al., 2019, Ferrario, VonCannon, Jiao et 

al., 2016, Jessup, Gallagher, Averill et al., 2006, Varagic, Ahmad, VonCannon et al., 2013). 

In keeping with these findings, intracrine effects of Ang II on cardiac myocyte growth and 

hypertrophy were not inhibited by the AT1-R antagonist, losartan (Baker and Kumar, 2006). 
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Further, these authors demonstrated that the intracellular effects of Ang II in isolated 

cultured myocytes is not inhibited by blocking the cell surface AT1-R. These data indicate 

the independence of the intracrine RAS from the external environment (Baker and Kumar, 

2006, De Mello, 1998).

Chymase inhibitors have been shown to protect diabetic rats from renal lesions (Maeda, 

Inoguchi, Takei et al., 2010, Zhang, Huang, Bai et al., 2016), cardiac dysfunction (Pat et al., 

2010), and cardiac arrhythmias (Jin, Takai, Sakaguchi et al., 2004, Tsai, Lai, Hwang et al., 

2008, Yahiro, Miura, Imaizumi et al., 2013). In mice, an orally active chymase inhibitor 

(TEI-F00806) showed antihypertensive effects that were associated with reduced renal AGT 

and Ang II content as well as chymase gene transcripts (Ansary et al., 2018). In 

ovariectomized, middle-aged Brown-Norway X Fischer344 rats, 4 weeks of treatment with 

the mast cell stabilizer cromolyn sulfate improved diastolic function and mitigated the 

adverse effects of estrogen loss on cardiac interstitial remodeling; effects associated with a 

reduction in cardiac Ang II immunoreactivity and a strong propensity for lessening of 

cardiac chymase activity (Wang, da Silva, Alencar et al., 2016). A recently completed safety 

and tolerability trial on adverse cardiac remodeling after acute ST-segment-elevation 

myocardial infarction (STEMI) with the orally active chymase inhibitor fulacimstat did not 

demonstrated superiority over standard care even though the medication was well tolerated, 

and devoid of negative effects on blood pressure and heart rate (Duengen et al., 2020, 

Dungen et al., 2019, Kanefendt et al., 2019).

Summary

Exploration of alternate renin-independent mechanisms for Ang II production are shedding a 

more precise view of the biochemical physiology of the RAS and its role in pathology. 

Ang-(1-12)’s function as a source for Ang II production in cardiovascular tissues may be 

more relevant than currently accepted. Buttressing this possibility, Ang-(1-12) role as a 

biomarker of worsening outcomes of the Acute Respiratory Distress Syndrome (ARDS) has 

now been revealed in a recently published study by Reddy et al. (Reddy, Asante, Liu et al., 

2019). This study employed a liquid chromatography-mass spectrometry-based 

metabolomics assay to determine how plasma angiotensins correlated with clinical and 

pulmonary measures in survivors and non-survivors. Median plasma Ang-(1-12) 

concentrations and the Ang-(1-12)/Ang I ratio were markedly elevated in patients 

succumbing to the disease at 72 h post admission to the intensive care unit (Reddy et al., 

2019).

A robust literature underscores the uniqueness of the AGT protein as the precursor substrate 

for the generation of angiotensin peptides in health and disease (Celerier, Cruz, Lamande et 

al., 2002, Clauser, Gaillard, Wei et al., 1989, Corvol and Jeunemaitre, 1997, Corvol, Persu, 

Gimenez-Roqueplo et al., 1999, Jeunemaitre, Charru, Chatellier et al., 1993, Jeunemaitre, 

Gimenez-Roqueplo, Celerier et al., 1999). While the first 10 amino acid sequence of from 

the N-terminus of AGT is conserved across species, the same is not true beyond position 10 

(leucine). In humans, the next four amino acids from the N-terminal of AGT are Val11-Ile12-

His13-Asn14 while the same sequence in the rat is Leu11-Tyr12-Tyr13-Ser14. These 

differences in the N-terminal sequence of AGT amino acids explains the selective catalytic 
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activity of human renin for human AGT (Ferrario et al., 2016,Ahmad et al., 2014, Ferrario, 

2010). Moreover, little is known about the biological activity of “extended forms of Ang I”. 

Extended forms of Ang I that are immunologically and pharmacologically comparable to 

[Ile5]-Ang I, and with molecular weights ranging between 1,300 and 2,200 daltons were 

identified in canine cerebrospinal fluid (Husain, Bumpus, Smeby et al., 1983). The function 

of the remaining 98% of the AGT protein [des-(Ang I)-AGT] remains to be fully 

investigated. Apparent independent functions not associated with Ang I activity and acting 

as an anti-angiogenic factor have been reported (Celerier et al., 2002, Corvol, Lamande, 

Cruz et al., 2003) while Lu and colleagues (Lu, Wu, Howatt et al., 2016, Tao, Rong, Lu et 

al., 2019) have linked des-(Ang I)-AGT to abnormalities in carbohydrate and lipid 

metabolism in mice. While research in Ang-(1-12) (Ferrario et al., 2016, Ferrario, 2016) and 

Ang-(1-25) (Nagata et al., 2013) has partially illuminated this issue much remains to be 

clarified. New research into the clinical significance of the Ang-(1-12)/chymase axis is of 

fundamental importance given the suggestion that inhibition of hepatic AGT using antisense 

oligonucleotides (Ferrario and Mullick, 2017, Mullick, Yeh, Graham et al., 2017, 

Ravichandran, Ozkok, Wang et al., 2015, Saigusa, Dang, Mullick et al., 2016) or small 

interfering RNAs (siRNAs) (Uijl, Mirabito Colafella, Sun et al., 2019) may constitute a 

novel approach to treat hypertension. At the 2020 virtual scientific sessions of the American 

Heart Association, Huang et al. (Huang, Taubel, Fiore et al., 2020) summarized in a poster 

the outcome of suppressing hepatic AGT synthesis with a subcutaneous investigational 

RNAi (ALN-AGT01) on the blood pressure in hypertensive patients. The data showed that 

ALN-AGT01 was effective in suppressing plasma AGT and dose-related decreases in blood 

pressure in the absence of hypotension and side-effects over an 8-week treatment period. 

However, the long-term consequences of suppressing at least 96% of the hepatic AGT to 

achieve a reduction in plasma Ang II and blood pressure remains a concern.

Uncovering the function of the Ang-(1-12) strengthens the urgency to explore the use of 

chymase inhibitors in cardiovascular pathology as exemplified by recent published results 

obtained in normal volunteers and patients post-myocardial infarction (Duengen et al., 2020, 

Kanefendt et al., 2019, Okamura, Okuda, Shirai et al., 2019). A more definitive 

characterization of the enzymatic pathway through which Ang-(1-12) is cleaved from AGT 

may project this alternate peptide as a more precise target to suppress Ang II pathological 

actions.
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Figure 1. 
Present view of the biochemical pathways involving the metabolism of angiotensin-(1-12) 

and angiotensin-(1-25) in the generation of angiotensins within the blood and tissues. 

Abbreviations as defined in text.
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Figure 2. 
Histological composite of immunoreactive expression of angiotensin-(1-12) in cardiac, 

renal, and thymus from a transgenic rat expressing the human angiotensinogen gene 

(Ferrario et al., 2019, Ferrario et al., 2016). As documented elsewhere, Ang-(1-12) localizes 

within cardiac myocytes, proximal and distal renal tubules, and shows a preferential 

presence in epithelial cells within the thymic medulla. The Ang-(1-12) staining is achieved 

Ferrario et al. Page 17

Mol Cell Endocrinol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with a highly specific monoclonal antibody directed against the human Ang-(1-12) amino 

acid sequence.
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