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X-ray micro-tomography systems often suffer severe ring artifacts in

reconstructed images. These artifacts are caused by defects in the detector,

calibration errors, and fluctuations producing streak noise in the raw sinogram

data. In this work, these streaks are modeled in the sinogram domain as additive

stationary correlated noise upon logarithmic transformation. Based on this

model, a streak removal procedure is proposed where the Block-Matching and

3-D (BM3D) filtering algorithm is applied across multiple scales, achieving

state-of-the-art performance in both real and simulated data. Specifically, the

proposed fully automatic procedure allows for attenuation of streak noise and

the corresponding ring artifacts without creating major distortions common to

other streak removal algorithms.

1. Introduction

Ring artifacts are ubiquitous in computed tomography (Jha

et al., 2013; Artul, 2013; Boas & Fleischmann, 2012); they

originate from angular streak noise in measured raw sinogram

data used to reconstruct a tomographic volume (Croton et al.,

2019) and appear as darker or lighter circles or arcs centered

on the axis of rotation for data acquisition. Streak noise can

be caused by mis-calibration of detector linear response, beam

fluctuations, beam hardening, or dusty or damaged scintillator

screens (Haibel, 2008; Vidal et al., 2005; Anas et al., 2010).

Minimization of ring artifacts by using adequate scanning

protocols (Pelt & Parkinson, 2018), high quality scintillator

screens and detectors is possible. It is, however, difficult to

completely avoid such artifacts and therefore achieve highest

quality reconstruction solely by experimental measures.

Several algorithms have been proposed to reduce ring artifacts

in tomographic imaging, including wavelet-FFT filters (Münch

et al., 2009), combinations of polynomial smoothing filters and

careful calibration of the detector response function (Vo et al.,

2018; Croton et al., 2019), or iterative algorithms (Paleo &

Mirone, 2015) that combine regularized reconstruction with

denoising.

In this work, we model the streak noise as a spatially

correlated noise in the sinogram domain, and propose a

denoising procedure aiming to remove the streak noise before

reconstruction. The denoising procedure is based on colla-

borative filtering, which employs both non-local self-similarity

and transform-domain shrinkage to denoise a noisy signal

through jointly transformed grouped blocks. In particular, we

use the image denoising algorithm BM3D (Dabov et al., 2007,

2008), leveraging the recent inclusion of exact transform-

domain noise variances (Mäkinen et al., 2020), which allow for

accurate modeling of long noise correlation within the jointly

transformed blocks.
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Noting that some streaks may be too wide to be adequately

captured by a group of standard-sized BM3D blocks, we

further propose multiscale streak removal with BM3D. The

proposed procedure is fully automatic and includes self-cali-

bration of the filtering strength. We demonstrate the superior

performance of the proposed approach on real data from

the table-top Prisma XRM microCT at Sigray, and from the

synchrotron-based microCT at the Advanced Photon Source

(APS) in Argonne, available through Tomobank (De Carlo

et al., 2018).

2. Transform-domain collaborative filtering of
correlated noise

In this section, we interpret sinogram streaks as spatially

correlated noise, formalizing streak removal as filtering of

correlated noise where the streaks follow a basic stationary

model. As a powerful tool to deal with this model, we adopt a

recent BM3D designed for dealing with long-range correlation

such as that which characterizes the streaks. This constitutes

the denoising module at the core of a multiscale and nonsta-

tionary filtering architecture that will be presented in Section 3

for the more general case of real-world streak noise.

2.1. Correlated noise model

We consider a noisy input z :X!R to be a combination of

underlying data y and additive stationary spatially correlated

noise � to be filtered,

zðxÞ ¼ yðxÞ þ �ðxÞ; x 2 X; ð1Þ

where x2X�Z2 is the coordinate in the finite two-dimen-

sional image domain X (representing angles and displace-

ments when z is a sinogram) and

� ¼ ��� g; � �ð Þ � N 0; 1ð Þ; ð2Þ

with � being the zero-mean independent and identically

distributed (i.i.d.) Gaussian noise with unit variance, and ‘�� ’

denoting 2-D convolution with the kernel g. The kernel g

defines the spatial correlation of the noise as well as the noise

strength, with kgk2 ¼ stdð�Þ. An equivalent way of repre-

senting correlated noise is by its power spectral density

(PSD) �,

� ¼ E F �½ �
�� ��2n o

¼ var F �½ �
� �

¼ Xj j F g½ �
�� ��2; ð3Þ

with F being the 2-D Fourier transform and |X | denoting the

cardinality (i.e. number of elements) of X. Equivalently, a

kernel g satisfying (2)–(3) can be defined from � as

g ¼ jXj�1=2
F
�1
�
std F �½ �ð Þ

�
¼ jXj�1=2

F
�1

ffiffiffiffi
�
ph i

: ð4Þ

2.1.1. Basic model for constant stationary streaks.
Although the streaks are originally multiplicative in nature,

sinogram data are considered upon a logarithmic transfor-

mation and therefore the streaks can be modeled by the

additive noise � in (1). The sinogram streak noise is fairly

constant in the angular dimension, presenting very long-range

correlation in the noise along this dimension. Treating angle

as the vertical dimension and displacement as horizontal, we

consider the basic case of horizontally white and vertically

constant streak noise. Such noise can be modeled through (2),

when setting g as a vertically constant line. This simple kernel

as well as the corresponding PSD � are demonstrated in

Figure 1; an example of real streak noise viably approximated

through this model is shown in Figure 2.

In practice, the above simple model cannot be used but for

small segments of the sinograms, as streak noise can often

feature horizontal correlation, vertical variations, or nonsta-

tionarities that are not described by the model. In Section 3, a

complete processing pipeline is further proposed to allow

modeling more complex cases of streak noise through (1)–(4),

enabling their attenuation through the collaborative filter.

2.2. Transform-domain collaborative filtering and BM3D

The rationale of transform-domain filtering is to work with

a representation of the signal where most of the signal is

compacted to only a few coefficients, whereas the remaining

coefficients mostly comprise noise. Hence, by attenuating the

coefficients with a non-linear shrinkage operator, it is possible

to attenuate noise while keeping most of the signal intact.

Nonlocal collaborative filters utilize this property in the

context of collective transform coefficients of groups of similar

blocks extracted from the image. In all of the following

sections, we consider the recently proposed variant (Mäkinen

et al., 2020) of BM3D for correlated noise denoising where the
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Figure 1
Example noise � ¼ ��� g, � �ð Þ � N 0; 1ð Þ, the corresponding correlation
kernel g, and PSD �. For the kernel and the PSD, black pixels of the
image correspond to value 0 in the data.

Figure 2
Example of streak noise in a sinogram (a fragment of Fly) that can be
seen as well approximated by the model in Figure 1.



input is z and the goal of denoising is to estimate y based on

the statistics of � or equivalently knowledge of � or g.

In BM3D, all operations are made with regard to a refer-

ence block moving through the image. For each position of the

reference block, the following steps are executed:

(i) Collect similar blocks into a group through block-

matching.

(ii) Obtain the 3-D transform spectrum by collectively

transforming the obtained blocks.

(iii) Perform shrinkage.

(iv) Transform the shrunk spectra back to block estimates

and aggregate them to the original locations from which they

were collected.

The 3-D transform spectrum of the grouped noisy blocks is

obtained through first applying a 2-D transform T 2D locally to

each block, then a 1-D transform T NL through the ‘stack’ of

grouped blocks. Denoting by zx1
; . . . ; zxM

� �
a group of M

blocks of N pixels extracted from z at coordinates x1, . . . , xM ,

we obtain the T 2D spectrum coefficients as s
xt
i = zxt

; b2D
i

� 	
, for

i = 1, . . . , N, t = 1, . . . , M, where b2D
i is the ith basis function of

T
2D. The 3-D spectrum coefficients are calculated through

the direct tensor product of the T 2D and T NL transforms, as

s
x1;...; xM
i;j ¼ zx1

; . . . ; zxM

� �
; b2D

i 
 bNL
j

� 	
¼ s

x1
i ; . . . ; s

xM
i

� �
; bNL

j

� 	
¼
XM

t¼1

bNL
j ðtÞ s

xt
i ; ð5Þ

where bNL
j ðtÞ is the tth element of the jth basis function bNL

j of

T
NL, 
 denotes the tensor product, and � ; . . . ; �½ � denotes the

stacking of the blocks along the third dimension. The indexing

and notation of the transform spectrum coefficients are illu-

strated in Figure 3.

In each step of the algorithm, the variances of s
x1;...; xM
i;j play a

key role; we denote them by v
x1;...; xM
i;j . For their calculation, we

refer the reader to Mäkinen et al. (2020). Here, we provide a

summary of the macroscopic operations of the algorithm.

2.2.1. Block-matching. For each reference block, BM3D

defines a local neighborhood from which similar blocks are

collected. Each block in the neighborhood is ranked by

LxR
xj


 �
¼ zxR

� zxj

��� ���2

2
� 2�

XN

i¼1

v
xR; xj

i;2 ; ð6Þ

where zxR
is the reference block, zxj

is a potential match, v
xR; xj

i;2

is the ith coefficient of the block-pair transform-domain

variance corresponding to block difference, and � 2 R. The

common aim of block-matching is to find blocks which are the

most similar to the reference block in terms of the underlying

noise-free content. When only a noisy image is available, the

similarity is evaluated between noisy blocks and the term

scaled by � in (6) compensates for bias in the ranking caused

by noise correlation. Specifically, with �¼0 the matches would

be mainly guided by the strong vertical correlation of the

streak noise and thus be located along the streaks, largely

ignoring any similarity of the underlying signal; setting � > 0

mitigates this bias by promoting matching of blocks in which

the noise is not correlated with that of the reference block. In

particular, we employ �¼3 as proposed by Mäkinen et al.

(2020) for the general case of correlated noise, facilitating

further the matching of blocks which differ from the reference

block mainly due to the variance of the block difference.

The common design of BM3D includes two distinct stages

of denoising with different shrinkage operators, meaning that

the full image is processed twice. In the second stage, the

block-matching is commonly executed on the image estimate

produced by the first denoising stage. As this image can be

presumed noise-free, the second block-matching is executed

without any compensation for noise correlation.

2.2.2. Shrinkage of the 3-D spectra. The core of BM3D is

shrinkage performed on the 3-D transform spectrum of the

grouped noisy blocks. For a given transform-domain coeffi-

cient of the group, a generic shrinkage can be expressed as

s
x1;...;xM
i; j 7 �! �i; j s

x1;...;xM
i; j ; ð7Þ

where �i, j is a shrinkage attenuation factor which depends on

s
x1;...; xM
i; j , the noise statistics, and possible other priors.

BM3D utilizes two shrinkage operations: in the first

denoising stage, the denoising process performs shrinkage by

hard-thresholding; the second stage employs a Wiener filter,

utilizing the hard-thresholding image estimate as a pilot signal.

In hard-thresholding, the shrinkage is performed by setting

spectrum coefficients smaller than a threshold to zero, as they

are mostly composed of noise,

�HT
i;j ¼

1; if s
x1;...;xM
i; j

�� �� � v
x1;...;xM
i; j


 �1=2
�;

0; otherwise;


ð8Þ

where � � 0 is a fixed constant.

In Wiener filtering, the attenuation coefficients of the

transfer function are computed from the previous estimate,

used as pilot signal, and from the variance of the noise spec-

trum coefficients as

�wie
i; j ¼

�� ŷyHT
x1
; . . . ; ŷyHT

xM

� �
; b2D

i 
 bNL
j

� 	��2��� ŷyHT
x1
; . . . ; ŷyHT

xM

� �
; b2D

i 
 bNL
j

� 	���2

þ �2v
x1;...;xM
i; j

; ð9Þ

where ŷyHT is the estimate of y obtained from the hard-

thresholding stage, and �2 is a scaling factor included due to
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Figure 3
Notation and indexing of patch coordinates xl, patches zxl

, and
coefficients s

xl
i and s

x1;...;xM
i;j in the the corresponding T 2D spectra and

T
3D spectrum, reproduced with permission from Mäkinen et al. (2020).

The illustration is for a group of three blocks of size 2�2 at coordinates
x1¼ð4; 3Þ, x2¼ð7; 5Þ, x3¼ð8; 6Þ within a 10� 10-pixel image.



aggregation to influence the bias-variance ratio we wish to

minimize through the Wiener filter.

2.2.3. Aggregation. After calculating the attenuation factors

of the group, they can be applied to the 3-D transform spectra

to obtain estimates for the grouped blocks,

ŷyxj
¼ Q2D

n
�x1;...;xM

i;j s
x1;...;xM
i;j ; qNL

j

� 	o
; ð10Þ

where Q2D is the inverse transform of T 2D, and qNL
j is the jth

transform basis function of the inverse of T NL.

Hence, an estimate is produced for all blocks included in the

group. As a new group is built for every position xR of the

reference block, there is a large amount of block estimates

providing a highly redundant covering of the image. Let XR be

the set of coordinates of all reference blocks and denote by

f ŷy
xR
xj
g

MxR

j¼1 the set of estimates (10) for the group of blocks

matched to the reference block at position xR. Then, the block

estimates of an image are [xR2XR
f ŷy

xR
xj
g

MxR
j¼1 and they can all

be distinct.

We aggregate all block estimates at their respective posi-

tions into the image through an adaptive weighted average,

ŷy ¼

P
xR2XR

PMxR
j¼1 !

xR
xj

Wxj
ŷy

xR
xjP

xR2XR

PMxR
j¼1 !

xR
xj

Wxj

; ð11Þ

where ! xR
xj

is a block-specific weight and Wxj
is a windowing

function over blocks at position xj . The weights ! xR
xj

, inversely

proportional to the residuals of transform-domain noise

variances, promote estimates with less residual noise to

improve the quality of the final estimate.

The steps for denoising a group of blocks are demonstrated

in Figure 4.

3. Processing pipeline

In this section, we consider the necessary steps for modeling

the streak noise through (1) for real sinogram data, hence

allowing the effective application of BM3D for streak

removal.

3.1. Bright-fielding and log-transformation

The optical attenuation through the sample is determined

experimentally via bright-field corrections requiring two

additional inputs: the bright-field and the dark-field (Seibert

et al., 1998). The bright-field is an acquisition obtained by

the imaging procedure with no sample, and the dark-field is

obtained with no beam; both are 2-D arrays the size of

effective pixels of the detector. Furthermore, the Beer–

Lambert law relates the X-ray transform through the sample

to the optical attenuation by a logarithmic transformation

(Swinehart, 1962).

Hence, the raw projections Praw are first normalized as

Pnorm ¼
Praw � ID

IB � ID

; ð12Þ

where ID is the dark-field and IB is the bright-field,1 and then

log-transformed as

Plog ¼ ln Pnormð Þ: ð13Þ

Bright-fielding (12) provides a partial, but not thorough,

correction of the streak noise (Davidson et al., 2003); the

denoising pipeline of the following sections is designed to

attenuate the remaining streak noise.

3.1.1. Noise in the projections. Apart from possible

completely defective detectors2 we treat the variation in

detector response as normally distributed. We further model

the streak noise as locally stationary, meaning that the streak

variance is presumed constant within sufficient area (i.e. the

block-matching search neighborhood) for the application of

BM3D. As the data are obtained through a photon-counting

detector, the statistics of the measured raw data can be further

modeled through a Poisson distribution. Considering both

the approximately normally distributed streak noise and the

Poissonian component, noise in projections normalized by

(12) can be modeled as

Pnorm ¼ A 1þ �
P


 �
þ � ¼ Aþ

�

1þ �
P

 !
1þ �

P


 �
; ð14Þ

where A are the noise-free projections, �
P

is the normally

distributed streak noise component, and � is (approximately)

white Poissonian noise with zero mean; all components of

(14) are considered as 3-D arrays and multiplications are

elementwise.

We note that the natural logarithm of (13) acts as a

variance-stabilizing transformation for the multiplicative noise

component ð1þ �
P
Þ. Hence, we have
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Figure 4
Denoising a part of Fly (a portion of Figure 2) with vertical streak noise
with � as in Figure 1. Left to right: (a) positions x1, . . . , x8 of one group of
blocks with reference block in red; (b) contents of the eight matched
blocks zx1

; . . . ; zx8
; (c) the resulting T 3D spectrum coefficients s

x1;...;x8
i;j ;

(d) corresponding 3-D noise standard deviations ðv
x1;...;x8
i;j Þ

1=2; (e) hard-
thresholded coefficients �HT

i;j s
x1;...;x8
i;j ; ( f ) the denoised group of blocks

ŷyHT
x1
; . . . ; ŷyHT

x8
, and (g) the denoising result of hard-thresholding ŷyHT. For

the spectrum coefficients and the standard deviations (c, d, e), 50%-gray
pixel color in the figure corresponds to value 0 in the data.

1 As Praw is a 3-D array, the pixels of IB and ID are replicated through the angle
dimension for the operations in (12).
2 Extreme streak noise arising from defective detectors is addressed separately
in Section 3.4.



Plog ¼ ln Pnormð Þ  ln Aþ
�

1þ�
P

 !
þ �

P
; ð15Þ

where the approximation comes from lnð1þ�
P
Þ  �

P
. The

additive noise component �
P

in (15) corresponds to the streak

noise to be denoised. As here we only aim to attenuate

the streak noise, through denoising we estimate

ln½Aþ �=ð1þ �
P
Þ�; the embedded noise term �=ð1þ �

P
Þ

although not i.i.d. is nevertheless (approximately) white and

does not present streaks.

Individual sinograms, each of which is defined as a cross

section of the stack of projections Plog , are denoted as

Z ¼ Y þ �
Z
; ð16Þ

where Y denotes the underlying streak-free sinogram, and �
Z

is the corresponding cross section of �
P
. The sinograms Z are

used as the input for the processes in the following Section 3.2.

3.2. Multiscale filtering architecture

In the following, we assume that sinograms Z are oriented

such that streaks are oriented vertically, i.e. the angular

component is vertical and the displacement is horizontal.

The streak noise �
Z

is characterized by very long-range

correlation. In particular, because vertically there are no high-

frequency streak noise components, the streaks can be filtered

entirely at a coarse vertical scale, with consequent benefits in

terms of efficacy and computational efficiency. Furthermore,

BM3D operates using blocks of fixed size within a limited

neighborhood which may be too small to fully denoise the

wider streaks. Thus, we also want to denoise across multiple

horizontal scales to effectively attenuate streaks of varying

sizes.

Our multiscale implementation is based on a simple and

efficient pixel binning to go towards coarser scales by repla-

cing adjacent pixels by their sum. To go back towards finer

scales we leverage the iterative debinning approach from

Azzari & Foi (2016), which is based on spline upsampling. The

multiscale denoising process is illustrated in Figure 5 and

proceeds as follows.

We begin with a single vertical binning of the full noisy

sinogram Z of height m to a sinogram Z0 of height mv � m

through a binning operator Bv. On Z0, we perform all conse-

quent horizontal operations and denoising.

After vertical binning, the sinogram Z0 is progressively

halved in size K times through a horizontal binning operator

Bh: Zk = Bh Zk�1ð Þ = B k
h Z0ð Þ = B k

h Bv Zð Þ
� �

, k¼1; . . . ;K.

Denoting by n the width of Z and Z0, Zk has width d2�kne;

with every binning, the streak width also gets halved. The

multiscale denoising is operated in a coarse-to-fine fashion,

where progressively for each k ¼ K;K�1; . . . ; 2; 1; 0 we

obtain an estimate ŶYk of B k
h Bv Yð Þ
� �

. We start by taking as

noisy input Z �K of BM3D the smallest binned sinogram ZK; in

this way, we obtain from Z �K¼ZK the coarsest estimate ŶYk ,

which is taken as initialization for the following recursive steps

executed for each scale k¼K�1; . . . ; 0:

research papers
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Figure 5
Flowchart of the multiscale denoising process, starting from the noisy
sinogram Z and resulting in the estimate ŶY of the streak-free sinogram,
both of size n�m. First, Z is vertically rescaled into a sinogram Z0 of size
n�mv, mv� m , through the binning operator Bv. Then, by repeated
horizontal binning Bh, Z0 is progressively downscaled into a series of
sinograms Zk¼Bh Zk�1ð Þ, k¼1; . . . ;K, each of size d2�kne�mv. The
coarsest scale noisy input Z �K¼ZK is denoised with BM3D to produce
ŶYK . Then, recursively for k¼K�1; . . . ; 0, the noisy input
Z �k ¼Zk � B

�1
h Zkþ1�ŶYkþ1


 �
is denoised by BM3D to produce ŶYk; this

definition of Z �k means that the coarse-scale horizontal components of Zk

are replaced by ŶYkþ1. The PSD for each scale is estimated as described in
Section 3.3.2. The resulting estimate ŶY0 of the horizontal debinning (size
n�mv) similarly replaces the coarse-scale vertical components of Z to
obtain the full-size estimate ŶY.



(1) Replace the horizontal coarser-scale components of Zk

by those of the estimate ŶYkþ1,

Z �k ¼ Zk � B
�1
h Bh Zkð Þ
� �

þ B
�1
h ŶYkþ1


 �
¼ Zk � B

�1
h Zkþ1 � ŶYkþ1


 �
:

(2) Denoise Z �k with BM3D to produce the estimate ŶYk .

The result ŶY0 of the last denoising step is the fully denoised

estimate the size of Z0 . To produce the full-size estimate ŶY of

Y, we replace the vertical coarse-scale components of Z with

those of ŶY0 , similar to the Step (1) above,

ŶY ¼ Z � B�1
v Bv Z0ð Þ
� �

þ B
�1
v ŶY0


 �
¼ Z � B�1

v Z0 � ŶY0


 �
:

Figure 6 illustrates the sinograms over the various stages of the

multiscale denoising process.

3.3. Multiscale noise model

For BM3D denoising, we regard Z �k of each scale k as z of

the model (1), as

Z �k ¼ B
k
h BvðYÞ
� �

þ � �k ; ð17Þ

where

� �k ¼
�K ; k ¼ K ;
�k � B

�1
h Bh �kð Þ
� �

; k<K;


ð18Þ

and �k ¼ B
k
h Bv �Z


 �� �
.

This definition for � �k , k<K, follows from considering

the coarser-scale estimate ŶYk as perfectly denoised. Similar

to (3), � �k is treated as correlated noise with PSD

� �k ¼ var F � �k
� �
 �

¼ jXkj F g �k
� ��� �� 2

; K � k � 0; ð19Þ

where g �k is a correlation kernel and jXkj ¼ d2
�knemv . As per

(4), the kernel g �k can be defined as

g �k ¼ jXkj
�1=2
F
�1 std F � �k

� �
 �� �
: ð20Þ

3.3.1. Multiscale PSD of white streak noise. Let �0¼Bv �Z


 �
be horizontally white and vertically constant streak noise like

in Figure 1. Under this assumption for �0, we have that also

all �k ¼ B
k
h �0ð Þ for 0 � k � K are horizontally white and

vertically constant, with variance varð�kÞ ¼ 2kvarð�0Þ. The

doubling of the variance with every horizontal binning follows

from the noise whiteness, which means that each pixel of the

coarser scale sinogram is a sum of two pixels with independent

noise of equal variance. Therefore, disregarding the specific

support size of their actual finite realizations, we can identify

these stationary random fields as

�k ¼ 2k=2 stdð�0Þ �W; ð21Þ

where �W is a white streak noise like in Figure 1 with

varð�WÞ ¼ 1. We can hence rewrite (18) as

� �k ¼
2K=2 stdð�0Þ �W ; k ¼ K;
2k=2 stdð�0Þ �W � B

�1
h Bh �Wð Þð Þ


 �
; k<K:


ð22Þ

This together with (20) means that we can characterize � �k
through a kernel g �k obtained by scaling either of two basic two

kernels gc and gB,

gc ¼ jXj
�1=2
F
�1 std F �W

� �
 �� �
;

gB ¼ jXj
�1=2
F
�1 std F �W � B

�1
h Bh �Wð Þð Þ

� �
 �� �
;

ð23Þ

by a factor

&k¼2k=2stdð�0Þ ¼ stdð�kÞ; ð24Þ

as

g �k ¼
&kgc ; k ¼ K;
&kgB ; k<K:


ð25Þ

We note that although the equalities (23) formally depend on

the realization size |X|, in practice this term only renormalizes

the kernel with regard to the Fourier transforms; hence (23)

can be computed for an arbitrary support.

The kernel gc is single-pixel wide and vertically constant like

in Figure 1, with gc

�� ��
2
¼ stdð�WÞ ¼ 1. Example noise � �k ,

k<K, and the corresponding kernel g �k ¼ &kgB and PSD � �k
(19) are shown in Figure 7.

Estimation of &0 . To estimate stdð�0Þ¼&0, we first convolve

Z0 with a 2-D kernel gd¼	
  where 	 is a 1-D column

Gaussian function of length mv /2 and standard deviation

mv /12 and  is a horizontal high-pass Daubechies wavelet

‘db3’ of length 6, hence convolution with gd realizes low-pass

filtering in the vertical and high-pass filtering in the horizontal.

Thus, compared with Z0, Z0�� gd offers a lower signal-to-noise

ratio (SNR), which facilitates the estimation of noise statistics;

an example of Z0 and the corresponding Z0�� gd are shown in

Figure 8 (top). One can compute an estimate of the standard

deviation of �0�� gd via its median absolute deviation

(Hampel, 1974),
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Figure 6
Multiscale denoising of Fly. Left: the noisy sinogram Z. Center and right: three scales of the multiscale denoising process, each showing Zk, Z �k , and ŶYk.
The full-size estimate ŶY is displayed in Fig. 12.



dstd �0�� gdð Þstd �0�� gdð Þ ¼ 1:4826 smed
X0

Z0�� gd � smed
X0

Z0�� gdð Þ

���� ����� �
;

ð26Þ

where smed denotes the sample median and the factor 1.4826

calibrates the estimate with respect to a normal distribution of

the noise. As std �0�� gdð Þ = k&0 gc�� gdk2, an estimate &̂&0 of &0

can be obtained through

&̂&0 ¼ kgc�� gdk
�1
2

dstd �0�� gdð Þstd �0�� gdð Þ: ð27Þ

3.3.2. Adapting the model to non-white streak noise. The

above model (21)–(25) assumes that the streak noise �
Z

is

horizontally white and stationary; however, real streak noise

is never exactly white across the displacement, and may thus

have significant differences in noise power between scales.

To adapt to these deviations from the model, we relax the

definition (24) of &k and allow the scaling parameter &k�0 to

vary with each scale k, while assuming the kernels as in (25)

for simplicity.3 In this way, to adaptively model the PSD (19),

we require only the estimation of &k on each Z �k .

Estimation of &k , k�0 . For k¼K, &K can be estimated from

ZK¼Z �K by trivial substitutions of 0 with K in (26) and (27).

Although also for k<K one could estimate &k similarly from

Zk, a more accurate estimate can be obtained using Z �k as this

leverages the denoising of the coarser scales and thus Z �k�� gd

offers an even lower SNR than Zk�� gd. An example of Z �k and

the corresponding Z �k�� gd are shown in Figure 8 (bottom).

Similar to (26) and for any K�k�0, the standard deviation of

the noise in Z �k�� gd can be estimated as

dstd � �k�� gd


 �
std � �k�� gd


 �
¼ 1:4826 smed

Xk

Z �k�� gd � smed
Xk

Z �k�� gdð Þ

���� ����� �
:

Noting that std � �k�� gd


 �
¼ kg �k�� gdk2, we then estimate &k as

&̂&k ¼
kgc�� gdk

�1
2

dstd � �K�� gd


 �
std � �K�� gd


 �
; k ¼ K;

kgB�� gdk
�1
2

dstd � �k�� gd


 �
std � �k�� gd


 �
; k<K:

8<: ð28Þ

3.3.3. Horizontal nonstationarity of g
Z
. Variance of the

streak noise may differ across the sinogram due to changes in

photon flux or noise in the bright-field. Thus, it may not be

possible to denoise Z �k assuming a constant &k for all spatial

positions without either oversmoothing or leaving noise arti-

facts in some areas. To adapt to horizontal nonstationarity, we

further relax the model allowing &k to vary within each scale k.

In particular, before noise estimation and denoising, we split

Z �k and Z �k�� gd into overlapping, full-height segments. We

apply BM3D separately on each segment of Z �k , using a PSD

scaled by &̂&k estimated on the corresponding segment of

Z �k�� gd, i.e. we consider each segment as a separate noisy

image z with a corresponding �. After denoising, the segment

estimates produced by BM3D are recombined with a

windowing function to form the full estimate ŶYk .

3.4. Attenuation of extreme streaks

We note that the projections often include several streaks

caused by defects in the scintillator. These streaks can be far

stronger than what are reasonably produced by the distribu-

tion of �
P

and therefore require a specific pre-processing. To

this end, after applying the bright-field and before the multi-

scale denoising process, we run a simple procedure on Plog

which aims to detect and attenuate only the most extreme

streaks. First, we calculate the median across the angular

dimension of the 3-D stack of projections as

~PP ¼ smed
angle

Plog


 �
;

resulting in a 2-D map in which the streaks present as pixels

extremely brighter or darker than their surroundings. To

detect extreme outliers, for each coordinate x representing a

single pixel of the detector and hence of ~PP, we fit a bivariate
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Figure 8
A fragment of Z0 of Fly and the corresponding Z0�� gd (top), and a
fragment of Z �0 with the corresponding Z �0�� gd (bottom). For Z0�� gd

and Z �0�� gd, 50%-gray pixel color in the figure corresponds to value 0 in
the data. Note how most of the signal of the sinogram fragments is not
present in the convolved arrays, facilitating the estimation of the streak
noise statistics. Although Z0�� gd and Z �0�� gd look very similar, careful
visual inspection reveals slight differences similar to those between �¼�k

in Figure 1 and � �k in Figure 7.

Figure 7
Example of noise � �k of Z �k , k<K, the correlation kernel g �k ¼&kgB where
gB is produced by B and B�1, and the corresponding PSD � �k . For the
kernel, 50%-gray pixel color in the figure corresponds to value 0 in the
data; for the PSD, black is 0. Note the missing low frequencies at the
center of the PSD, and the higher-frequency nature of � �k compared with
the white streak noise � in Figure 1.

3 Adopting the kernels (25) with arbitrary values of &k corresponds to
assuming �k approximately white with variance &2

k, which may differ from
2kstd(�0) against (21). This assumption becomes increasingly appropriate as k
grows for non-white �0 featuring mild local horizontal correlations, as the
binning in B k

h ð�0Þ is tantamount to a convolution and decimation, leading to a
flattening of the PSD.



cubic polynomial }x to a window ~PPx of ~PP centered at x. Then,

consistent with Gaussian modeling of �
P
, we mark the center

pixel ~PPðxÞ defective if j ~PPðxÞ�}xðxÞj > 4 sstdf ~PPx�}xg, where

sstd denotes the sample standard deviation; each marked pixel

in ~PP corresponds to a full column of the sinograms.

Each pixel of a defective column is replaced with the

median of non-defective pixels within a 2-D window consid-

ering the displacement dimensions around it. We note that

columns corrected in this way are unlikely to be completely

free of streak noise; instead, the aim is to introduce less

extreme pixel values that can be further denoised by the

following applications of BM3D. In order not to overload the

notation, we denote the output of this step as Plog identical to

its input.

The complete streak noise attenuation procedure is illu-

strated in Figure 9. The procedure is fully automatic, requiring

as an input only the raw projections and the bright- and

dark-fields.

4. Experiments

We test our pipeline on synthetic data as well as two real

acquisitions displaying ring artifacts. As a comparison, we

show results for two leading streak-removal procedures from

the Tomopy library (Gürsoy et al., 2014): Münch et al. (2009)

and Vo et al. (2018). In particular, for the latter we combine

‘Algorithm 3’, ‘Algorithm 5’, and ‘Algorithm 6’, which is

demonstrated by Vo et al. (2018) to attenuate a variety of

different streaks.

For the synthetic experiments, we use a sinogram

(627 � 180 pixels) of the Shepp–Logan phantom obtained

through MATLAB Radon transform upon a sign change and

an exponential transformation. We regard this sinogram as the

noise-free projections A and generate noise according to (14)

with g as a one-pixel wide image-height vertical kernel like the

one in Figure 1. To obtain streak noise of different strengths,

the streak noise component ð1þ�
P
Þ is generated with stdð�

P
Þ =

0.005, 0.01, 0.02, 0.05. Next, to generate noisy measurements

with different SNR levels for the Poisson component, we

separately scale A to the ranges [1280, 2560] (higher SNR) and

[640, 1280] (lower SNR) and generate a Poisson variate with

mean and variance Að1þ�
P
Þ, thus defining the Poissonian

noise � as the difference between this Poisson variate and

Að1þ�
P
Þ. Furthermore, we include experiments with � ¼ 0

(infinite SNR), thus resulting in a total of 12 combinations of

Poisson and streak noise strengths. We do not simulate

extreme streaks. As the underlying data consist of only a

single sinogram, we have Z ¼ Plog and we consider

ln Aþ �=ð1þ�
P
Þ


 �
as the streak-free sinogram Y. The results

of the phantom experiments are collected in Table 1, and

illustrated in Figures 10 and 11.

The Fly dataset consists of 180 projections with 50 s expo-

sure (detector pixel size 27 mm, demagnified to 15.7 mm by

cone-beam geometry) collected using a Sigray Prisma X-ray

micro-tomography instrument at 34 kV; each sinogram is 512

pixels wide. The Fly contains both extreme streaks caused by

defective detectors and approximately normally distributed

streaks, although they are generally more intense towards the

edges of the projections due to weak photon flux and Poisson

noise affecting the bright-field. Thus, the Fly benefits greatly

from both the extreme streak removal procedure of Section

3.4 and relaxing the stationarity assumption by performing

PSD estimation and denoising in multiple parts for each

sinogram as described in Section 3.3.3. The denoising results of

two different sinograms are shown in Figure 12; the corre-

sponding tomograms of the second sinogram of Figure 12 are

shown in Figure 13.

We also test the algorithm on a soft tissue sample 00076

displaying severe ring artifacts freely available in TomoBank

(De Carlo et al., 2018). The data contain 2000 projections with

2.2 mm pixels, 100 ms exposure time obtained at the Advanced

Photon Source, 2-BM beamline; other experimental para-

meters are an X-ray energy of 60–70 keV, 10 mm LuAG

scintillator, and sample-to-detector distance as 90 mm. The
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Figure 9
The complete denoising process, requiring as inputs the noisy projections
Praw and the bright- and dark-fields IB, ID, and producing as the output an
estimate of the streak-free stack of projections composed of sinogram
estimates ŶY.

Table 1
Average signal-to-noise ratio (SNR) after attenuation of streaks in the
Shepp–Logan phantom subject to mixed streak and Poissonian noise as in
(14), with different combinations of stdð�

P
Þ and peak values of A, with

peak ¼ 1 being the limiting case for which �¼0.

As all of the algorithms aim to remove streak noise only, the SNR values are
calculated with Y ¼ ln½Aþ �=ð1þ�

P
Þ� as SNRðŶYÞ = 10 log10ðsvarX fY

2g=
smeanX ððŶY�YÞ2ÞÞ, where svar and smean denote sample variance and sample
mean, respectively. Each value of the table is the average SNR over ten
different noise realizations.

SNR

Peak std(�P) Noisy
Münch et
al. (2009)

Vo et al.
(2018) Proposed

1 (� = 0) 0.005 32.61 11.80 28.97 44.05
0.01 26.59 11.78 28.52 39.19
0.02 20.58 11.72 27.48 34.29
0.05 12.77 11.49 24.62 27.24

2560 0.005 32.66 11.85 28.32 38.41
0.01 26.64 11.82 27.89 35.90
0.02 20.63 11.77 26.90 32.63
0.05 12.82 11.54 24.21 26.67

1280 0.005 32.71 11.90 27.76 36.51
0.01 26.69 11.87 27.36 34.31
0.02 20.68 11.82 26.45 31.55
0.05 12.86 11.59 23.92 26.21



sinograms are 2560 pixels in width. Included are ten samples

for bright- and dark-fields, which are averaged to obtain a

single bright-field and dark-field. The denoising results of a

single sinogram are shown in Figure 14, and the corresponding

tomograms in Figure 15.

4.1. Implementation details

We use the BM3D implementation for Python (available

from the PyPI package bm3d) with the ‘refilter’ profile and

input PSD estimated as described in Section 3.3.2.

For the multiscale denoising procedure, we performed

vertical binning with mv = dm=dm=64ee ’ 64 pixels; this value,

being slightly larger than the height of the BM3D search

neighborhood of Section 2.2.1 (39 � 39 pixels), allows our

method to attenuate streaks which change slowly across the

angle – a larger value of mv might be used to deal with streaks

featuring faster variation. The number of horizontal scales K

for each sinogram was set as K¼blog2ðn=40Þc, which gives

K¼3 for Fly and the Shepp–Logan phantom, and K¼6 for

00076; these values offer a compromise between denoising

wide streaks versus preserving low-frequency signal compo-

nents – larger values of K not only result in ZK narrower than

the BM3D search neighborhood but also in extremely coarse

scales that naturally feature a very high SNR that may lead

to overestimating &K and hence to oversmoothing. For the

localized processing of each scale (Section 3.3.3), we estimate

&k , K � k � 0 and apply BM3D denoising on 39-pixel wide

segments, following the width of BM3D search neighborhood.

For the attenuation of extreme streaks, we used a 19 �

19 pixels window.

To consider the computational cost, we note that the full

denoising process of Fly (181 � 512 � 512 pixels) run single-

threaded on an AMD Ryzen 7 1700 processor takes about one

hour, mostly due to the BM3D denoising in CPU. A highly

parallel GPU-based implementation is expected to reduce this

run time to the scale of seconds (Davy & Ehret, 2020). The

complexity of BM3D is linear with the number of pixels in the
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Figure 10
Left: comparison of sinograms after different denoising procedures on the Shepp–Logan phantom with noise as in (14) with stdð�

P
Þ = 0.02 and signal

peak 2560. Top to bottom: Y ¼ ln½Aþ �=ð1þ �
P
Þ�; Z; Münch et al. (2009); Vo et al. (2018); proposed procedure based on BM3D denoising. Right:

corresponding estimation errors. Note how both of the comparison methods create strong artifacts around the areas with the highest contrast, as pointed
by the arrows. These artifacts are not present in either the noisy image Z or the BM3D-based estimate.



noisy image. Thus, the computation time is directly propor-

tional to the sinogram height after vertical binning. As each

iteration of the horizontal multiscale denoising halves the

number of pixels, the computational cost of BM3D for an

extra iteration k > 0 is then a 1/2kth of the cost of k¼0, the

total for all k¼0; . . . ;K being at most twice that of single

scale denoising of Z0 .

The correlation kernels gc and gB do not depend on the

input or scale, and can thus be pre-computed. To compute gB ,

we use directly the definition (23) through a Monte Carlo

simulation of sample standard deviation in the Fourier

domain. We note that, as the kernel is vertically constant, it

suffices to perform this simulation in 1-D and repeat the

kernel mv times in the vertical dimension.

For Münch et al. (2009) and Vo et al. (2018), we use

implementations remove_stripe_fw and remove_all_stripe

provided by the tomopy Python library of Gürsoy et al. (2014).

The tomograms of each experiment are reconstructed using

the xpack library (Marchesini et al., 2020).

5. Discussion and conclusions

We have presented a model for streak noise in the sinogram

domain as locally stationary correlated noise additive in the

logarithmic scale. Based on this model, we have described a

BM3D-based multiscale denoising procedure removing streak

noise, and, consequently, the tomogram ring artifacts. The use

of the recently proposed variant (Mäkinen et al., 2020) of

BM3D is crucial for this work, as we deal with long-range

noise correlation which earlier BM3D designs could not

handle satisfactorily.

Tested on both synthetic and real data, our denoising

procedure achieves state-of-the-art performance in streak
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Figure 11
Corresponding tomograms of Figure 10. Top: Y¼ ln½Aþ �=ð1þ �

P
Þ� and

Z. Bottom, left-to-right: Münch et al. (2009), Vo et al. (2018), and
proposed procedure based on BM3D denoising. Note the strong circular
components on both Münch et al. (2009) and Vo et al. (2018) which are
method artifacts present only in the results by these two algorithms.

Figure 12
Comparison of two sinograms of Fly after different denoising procedures.
Top to bottom: noisy sinogram Z; Münch et al. (2009); Vo et al. (2018);
proposed procedure based on BM3D denoising. Although Vo et al. (2018)
is very effective at removing streaks, it also considerably affects the
sinogram features; note, for example, the considerably weaker bold
diagonal line (indicated by the first arrow) compared with the other
algorithms. Both Münch et al. (2009) and Vo et al. (2018) also distort
larger areas of the sinograms, as pointed out by the second arrow; these
problems are absent from the BM3D-based result. Although not visually
obvious here, the differences cause severe artifacts in the tomograms, as
can be seen in Figure 13.



removal. Compared with the two popular streak removal

algorithms (Münch et al., 2009; Vo et al., 2018), our procedure

achieves superior results both visually and quantitatively in

terms of signal-to-noise ratio. Although all tested algorithms

manage to successfully remove most streak noise, both Münch

et al. (2009) and Vo et al. (2018) tend to create large distortions

especially where the intensities of the underlying sinogram

columns vary significantly. This type of artifact hinders inter-

pretation of the results and subsequent analysis such as

segmentation. In comparison, the proposed algorithm offers
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Figure 13
Comparison of resulting tomograms after different denoising procedures
on the second sinogram of Fly shown in Figure 12. Top to bottom: noisy
reconstructed object; Münch et al. (2009); Vo et al. (2018); proposed
procedure based on BM3D denoising. Although all methods achieve
good results in removing the streaks, both Münch et al. (2009) and Vo et
al. (2018) introduce strong shadows absent from the proposed estimate, as
indicated by the arrows.

Figure 14
Comparison of sinograms after different denoising procedures on 00076.
Top to bottom: noisy sinogram Z; Münch et al. (2009); Vo et al. (2018);
proposed procedure based on BM3D denoising. Note how in the zoom-in
the proposed method manages to remove streak noise without creating
additional artifacts. Münch et al. (2009) creates a horizontal streak-like
artifacts as seen in the middle of the zoom-in, not present in the noisy
sinogram; Vo et al. (2018) does not fully denoise the sinogram.



similar or better streak removal without further distorting

the sinogram.

The proposed multiscale framework, here using basic pixel

binning and debinning, could be extended to more sophisti-

cated scale decompositions, such as steerable pyramids,

contourlets, or dual-tree wavelets (Kovacevic & Chebira,

2008). In this work, we have considered each sinogram as

a separate input for BM3D for simplicity, but the same

mechanism can be used for simultaneous filtering of the entire

3-D stack of sinograms. In this way, the similarities between

consecutive sinograms of the stack could be utilized within the

collaborative filter.

As the sinograms are commonly processed after a loga-

rithmic transform, we have not discussed inversion of the

logarithm needed for denoising. Although the exponential

function is naturally the inverse of the logarithm, the non-

linearity of the logarithm causes bias in a denoised sinogram if

inverted this way. Hence, if the sinogram should be reverted

back from the logarithmic domain after denoising, an exact

unbiased inverse (Mäkitalo & Foi, 2010; Mäkitalo et al., 2010)

should be used instead.
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Figure 15
Comparison of resulting tomograms after different denoising procedures
on 00076. Top to bottom: noisy reconstructed object; Münch et al. (2009);
Vo et al. (2018); proposed procedure based on BM3D denoising. Münch
et al. (2009) manage to remove almost all noise in both low and high
frequencies, but create artifacts where the original did not have any, as
seen from the rightmost zoom. The proposed denoising procedure
removes most of the noise [including the wide streaks still present in Vo et
al. (2018)], and does not introduce further artifacts. Note also the central
pixel, magnified in the middle, which is very dark for both Münch et al.
(2009) and Vo et al. (2018), whereas the proposed procedure does not
leave any visible artifact.
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