Skip to main content
. 2021 Apr 16;28(Pt 3):876–888. doi: 10.1107/S1600577521001910

Table 1. Average signal-to-noise ratio (SNR) after attenuation of streaks in the Shepp–Logan phantom subject to mixed streak and Poissonian noise as in (14), with different combinations of {{\rm{std}}(\eta_{{}_{{\rm{P}}}})} and peak values of A, with {\rm{peak}} = \infty being the limiting case for which {\pi\! = \!0}.

As all of the algorithms aim to remove streak noise only, the SNR values are calculated with Y = \ln[A+\pi/(1\!+\!\eta_{{}_{{\rm{P}}}})] as {{\rm SNR}(\hat{Y}) = 10\,{\rm{log}}_{10}({\rm{svar}}_{X}\{Y^{2}\}/{\rm{smean}}_{X}((\hat{Y}\!-\!Y)^{2})), where svar and smean denote sample variance and sample mean, respectively. Each value of the table is the average SNR over ten different noise realizations.

    SNR
Peak std(ηP) Noisy Münch et al. (2009) Vo et al. (2018) Proposed
∞ (π = 0) 0.005 32.61 11.80 28.97 44.05
0.01 26.59 11.78 28.52 39.19
0.02 20.58 11.72 27.48 34.29
0.05 12.77 11.49 24.62 27.24
2560 0.005 32.66 11.85 28.32 38.41
0.01 26.64 11.82 27.89 35.90
0.02 20.63 11.77 26.90 32.63
0.05 12.82 11.54 24.21 26.67
1280 0.005 32.71 11.90 27.76 36.51
0.01 26.69 11.87 27.36 34.31
0.02 20.68 11.82 26.45 31.55
0.05 12.86 11.59 23.92 26.21