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Abstract

BACKGROUND—Population-based estimates of the risk of breast cancer associated with
germline pathogenic variants in cancer-predisposition genes are critically needed for risk
assessment and management in women with inherited pathogenic variants.

METHODS—In a population-based case—control study, we performed sequencing using a custom
multigene amplicon-based panel to identify germline pathogenic variants in 28 cancer-
predisposition genes among 32,247 women with breast cancer (case patients) and 32,544
unaffected women (controls) from population-based studies in the Cancer Risk Estimates Related
to Susceptibility (CARRIERS) consortium. Associations between pathogenic variants in each gene
and the risk of breast cancer were assessed.

RESULTS—Pathogenic variants in 12 established breast cancer—predisposition genes were
detected in 5.03% of case patients and in 1.63% of controls. Pathogenic variants in BRCAI and
BRCAZ were associated with a high risk of breast cancer, with odds ratios of 7.62 (95%
confidence interval [Cl], 5.33 to 11.27) and 5.23 (95% ClI, 4.09 to 6.77), respectively. Pathogenic
variants in PALBZ2 were associated with a moderate risk (odds ratio, 3.83; 95% ClI, 2.68 to 5.63).
Pathogenic variants in BARD1, RAD51C, and RAD51D were associated with increased risks of
estrogen receptor—negative breast cancer and triple-negative breast cancer, whereas pathogenic
variants in ATM, CDH1, and CHEKZ were associated with an increased risk of estrogen receptor—
positive breast cancer. Pathogenic variants in 16 candidate breast cancer—predisposition genes,
including the ¢.657_661del5 founder pathogenic variant in NBN, were not associated with an
increased risk of breast cancer.

CONCLUSIONS—This study provides estimates of the prevalence and risk of breast cancer
associated with pathogenic variants in known breast cancer—predisposition genes in the U.S.
population. These estimates can inform cancer testing and screening and improve clinical
management strategies for women in the general population with inherited pathogenic variants in
these genes. (Funded by the National Institutes of Health and the Breast Cancer Research
Foundation.)
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Germline Pathogenic Variants in cancer-predisposition genes included in hereditary cancer
multigene testing panels have been associated with an increased risk of breast cancer.14
Identification of pathogenic variants in predisposition genes has provided benefit through
improving access to risk-reducing prophylactic surgery and targeted therapies among
carriers of pathogenic variants in BRCAI and BRCAZ and access to enhanced
mammography and magnetic resonance imaging (MRI)- based screening among carriers of
pathogenic variants in several established breast cancer—predisposition genes.>8 The
aggregate prevalence of pathogenic variants in these genes has been estimated at 7 to 10%
among women with breast cancer.1:"~10 However, these prevalences and associated risks of
breast cancer are based on high-risk populations enriched with women who had a family
history of breast and ovarian cancers, received a breast cancer diagnosis at a young age, had
estrogen receptor (ER)—negative tumors, or had founder mutations. Only studies of limited
size have evaluated pathogenic variants in multigene panels in women with breast cancer
unselected for family history or age at diagnosis.1112 Thus, current risk estimates of breast
cancer with respect to predisposition genes have uncertain application to the general
population.13

Genetic testing recommendations have been developed to provide guidance on the selection
of women for multigene panel testing. The U.S. Preventive Services Task Force has
suggested that the selection of unaffected women for testing be based on risk stratification.14
The National Comprehensive Cancer Network has also suggested that risk stratification be
used in the selection of unaffected and affected women for testing.1® In contrast, the
American Society of Breast Surgeons has recommended that germline genetic testing for
hereditary cancer be performed in all women with breast cancer. Separately, population-
based screening for BRCAIand BRCAZin all women older than 30 years of age has been
proposed.1® However, large-scale population-based studies that provide estimates of the
prevalence of pathogenic variants in predisposition genes in the general population are
lacking.

Cancer Risk Estimates Related to Susceptibility (CARRIERS) is a United States—based
consortium consisting of population-based and family-based studies of breast cancer. Here,
we used the population-based studies in the CARRIERS consortium to estimate the
prevalence and risk of breast cancer associated with pathogenic variants in breast cancer—
predisposition genes in the U.S. general population.

METHODS
STUDY POPULATION

The CARRIERS consortium includes 17 studies — 7 nested case—control studies in
prospective cohorts, 2 case—cohort studies in prospective cohorts, 3 case—control studies, and
5 case—control o rcase—cohort studies enriched with women with early-onset disease or a
family history of breast cancer (Table S1 in the Supplementary Appendix, available with the
full text of this article at NEJM.org). The characteristics of the 39,553 women with breast
cancer (case patients) and 35,867 study-matched unaffected women (controls) are provided
in Table S2. Population-based estimates were derived from 32,247 case patients and 32,544
controls from the 12 studies in the CARRIERS consortium that were not enriched with
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patients with a family history or early onset of disease (the Black Women’s Health Study,
the Cancer Prevention Study Il, the Cancer Prevention Study 3, the California Teachers’
Study, the Mayo Clinic Breast 3 Cancer Study, the Multiethnic Cohort Study, the Mayo
Mammography Health Study, the Nurses’ Health Study, the Nurses’ Health Study I, the
Women’s Circle of Health Study, the Women’s Health Initiative, and the Wisconsin
Women’s Health Study). All participants provided informed consent for research. The
CARRIERS study was approved by the institutional review board at the Mayo Clinic.

DNA SEQUENCING AND BIOINFORMATICS ANALYSIS

Germline DNA samples were subjected to dual bar-coded QlAseq (Qiagen) multiplex
amplicon-based analysis of 746 target regions in 37 cancer-predisposition genes.1’ Libraries
from 768 samples 6 were pooled and sequenced in each lane of a HiSeq 4000 system
(IMlumina). Genetic variants were identified with the use of the Genome Analysis Toolkit
(GATK) Haplotype Caller tool and Var-Dict variant caller tool. High-quality sequence data
(read depth of >20 times) were obtained for 99.3% of the target regions. Twenty-eight
cancer predisposition genes including 12 established breast cancer—predisposition genes
(ATM, BARD1, BRCA1, BRCAZ, CDH1, CHEKZ, NF1, PALBZ, PTEN, RAD51C,
RAD51D, and TP53) and 16 candidate predisposition genes were evaluated (Table S$3).18-30
Loss-of-function variants and variants identified as “pathogenic” or “likely pathogenic” in
the ClinVar database were classified as pathogenic variants (see the Supplementary
Appendix).1” Pathogenic variants in AV/FZ and TP53were restricted to those with an alternate
allele fraction (calculated as the number of alternate allele reads divided by the total number
of reads at a specific genomic position) between 0.3 and 0.7 in an effort to exclude potential
clonal hematopoiesis variants.3!

STATISTICAL ANALYSIS

Prevalences of pathogenic variants and variants of uncertain significance in each gene were
tabulated for the case patients and controls in the population-based CARRIERS analysis,
and 95% confidence intervals were estimated with the use of the Wilson score method
without continuity correction. A generalized additive model for pathogenic-variant status
and a smoothing spline function for age32 were used to estimate the relationship between the
prevalence of a pathogenic variant and age. Associations between pathogenic variants in
each gene and the risk of breast cancer were assessed by means of logistic regression, with
adjustment for study, age, first-degree family history of breast cancer, and race or ethnic
group. Sensitivity analyses were conducted to assess the effect of each of the 12 studies with
the use of a leave-one-study-out cross-validation approach. Comparisons between unaffected
controls and women with ER-positive cancer, women with ER-negative cancer, and women
with triple-negative breast cancer (ER-negative, progesterone receptor [PR]- negative, and
human epidermal growth factor receptor type 2 [HER2]-negative) were conducted with the
use of binomial logistic-regression models. All analyses were performed with R software
(version 3.5.2), and all tests were two-sided. Lifetime absolute risk of breast cancer to age
85 years was estimated for pathogenic-variant carriers by combining age-specific odds ratio
estimates with age-specific breast cancer incidence rates from the Surveillance,
Epidemiology, and End Results (SEER) Program of the National Cancer Institute
(Supplementary Appendix).
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RESULTS
PARTICIPANT CHARACTERISTICS

The distributions of age at diagnosis for 39,553 case patients and age at the time of selection
into the study for 35,867 controls from the 17 studies in the CARRIERS consortium are
shown in Figure S1. In the 12 population-based studies, the mean age at the time of breast
cancer diagnosis among 32,247 case patients was 62.1 years, and the mean age at the time of
enrollment among 32,544 controls was 61.2 years, ages that are similar to those derived
from the SEER 18 registries (Table 1 and Table S4). A family history of breast cancer was
reported in 20.4% of case patients and 14.3% of controls (Table 1). Among the case patients
with available data on tumor biomarkers, 82.9% had ER-positive breast cancer and 11.3%
had triple-negative breast cancer (Table 1), prevalences that are consistent with those derived
from the SEER 18 registries. Data on HER2 status were available for only 41.1% of tumors.

PREVALENCE OF PATHOGENIC VARIANTS IN PREDISPOSITION GENES

In the overall CARRIERS analysis that included data from all 17 studies, the prevalence of
pathogenic variants in 12 established breast cancer— predisposition genes (A7TM, BARDI,
BRCAI, BRCAZ, CDHI1, CHEKZ2 NF1, PALB2, PTEN, RAD51C, RAD51D, and TP53)
was 5.67% (95% confidence interval [CI], 5.44 to 5.90) among case patients and 1.73%
(95% Cl, 1.60 to 1.87) among controls (Tables S5 and S6). However, in the population-
based CARRIERS analysis, the prevalence was 5.03% (95% Cl, 4.79 to 5.27) among cases
patients and 1.63% (95% CI, 1.50 to 1.78) among controls (Table 2). The prevalence of
pathogenic variants was similar among non-Hispanic White, non-Hispanic Black, and
Hispanic case patients and controls (Table S7). A lower overall prevalence of pathogenic
variants was detected among Asian American case patients (1.64%; 95% CI, 1.07 to 2.49)
(Table S7). Among the case patients, the highest prevalence of pathogenic variants was
observed for BRCAZ (1.29%; 95% Cl, 1.18 to 1.42), CHEKZ2 (1.08%; 95% ClI, 0.98 to
1.20), and BRCA1 (0.85%; 95% CI, 0.76 to 0.96) (Table 2). BRCAI carriers had a relatively
young mean (£SD) age at diagnosis (50.9+13.3 years among those with ER-positive status
and 50.3+£12.4 among those with ER-negative status), whereas BRCAZ carriers had a
slightly older mean age at diagnosis (55.4+12.8 years among those with ER-positive status
and 58.6+£12.2 among those with ER-negative status) (Table S8). The prevalence of variants
of uncertain significance in the 12 established breast cancer genes was 18.9% (95% Cl, 18.5
to 19.4) among case patients and 18.5% (95% ClI, 18.1 to 19.0) among controls (Table S9).

PATHOGENIC VARIANTS IN PREDISPOSITION GENES AND BREAST CANCER RISK

Case—control association analyses, with adjustment for study, age, family history of breast
cancer, and race or ethnic group, were performed with data from all 17 studies in the
CARRIERS consortium and with data from the 12 population-based studies in the
CARRIERS consortium (Table 2 and Table S5 and S6). In the population-based studies,
BRCAI1and BRCAZwere associated with a high risk of breast cancer, with odds ratios of
7.62 (95% ClI, 5.33 t0 11.27) and 5.23 (95% ClI, 4.09 to 6.77), respectively (Table 2 and
Table S10). Pathogenic variants in PALB2and CHEKZ were associated with a moderate
risk, with odds ratios of 3.83 (95% ClI, 2.68 to 5.63) and 2.47 (95% ClI, 2.02 to 3.05),
respectively. The common CHEKZ pathogenic variants p.1le157Thr and p.Ser428Phe had
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limited clinical importance (i.e., odds ratio, <1.5), with odds ratios of 1.30 (95% CI, 1.06 to
1.59; P=0.01) and 1.26 (95% ClI, 0.76 to 2.12; P=0.37), respectively, and were excluded
from the analyses. Pathogenic variants in A7TM and NFI were associated with an increased
risk of breast cancer, with odds ratios of 1.82 (95% Cl, 1.46 to 2.27) and 1.93 (95% Cl, 0.91
to 4.31), respectively. Pathogenic variants in BARD1, RAD51C, and RAD51D were
associated with a moderate risk of ER-negative breast cancer and triple-negative breast
cancer but not ER-positive breast cancer, whereas pathogenic variants in ATM, CDH1, and
CHEKZwere associated only with ER-positive breast cancer (Table 3). Limited numbers of
women with pathogenic variants in PTEN and 7P53did not allow us to assess associations
with breast cancer (Tables 2 and 3). Sensitivity analyses verified that individual studies did
not influence associations with breast cancer risk (Fig. S2).

None of the 16 candidate predisposition genes, including the mismatch repair genes (MLHA,
MSH?Z, and MSH6), were significantly associated with increased risk of breast cancer in
analyses involving the participants overall (Table S10) or the participants stratified according
to ER status (Table S11) (P>0.05 for all). An increased risk of breast cancer was not
observed among the participants with any pathogenic variant in VBN (odds ratio, 1.05; 95%
Cl, 0.71 to 1.56) or among those with the NBN pathogenic variant ¢.657_661del5 (odds
ratio, 0.93; 95% ClI, 0.52 to 1.68), which was previously associated with breast cancer, or

those with ¢.657_661del5 who were homozygous for the GG allele of the ¢.553 (Table S10).
33,34

To investigate the influence of a family history of breast cancer on associations with breast
cancer risk in the general population, analyses were conducted separately for the pathogenic-
variant carriers with (20.4%) or without (79.6%) a first-degree relative with breast cancer.
Among the participants with a family history, pathogenic variants in BRCA1, BRCAZ,
CDH1, and PALB2were associated with a high risk of breast cancer (odds ratio, >4) and
pathogenic variants in ATM and RAD51D were associated with a moderate risk (odds ratio,
>2) (Table S12). The influence of age at breast cancer diagnosis on associations was also
evaluated.3® With respect to the pathogenic variants in the 12 established predisposition
genes, the associations with breast cancer risk were unchanged among the participants who
received a breast cancer diagnosis at an age of 50 years or younger, except among those with
pathogenic variants in BRCAI or BRCAZ, who were at an increased risk (Table S13).
Among the participants who received a diagnosis of breast cancer at an age of more than 50
years, the associations with breast cancer observed for pathogenic variants in most genes
were similar to those among the participants overall (Table S14). To assess the influence of
older age at enrollment, associations with breast cancer were evaluated in the studies in
which women younger than 45 years of age were eligible for enrollment; the results did not
differ from those of the population-based CARRIERS analysis (Table S15).

LIFETIME ABSOLUTE RISK OF BREAST CANCER

The prevalences of pathogenic variants in the commonly mutated genes ATM, BRCA1,
BRCAZ CHEK?Z, and PALBZ2were assessed among the case patients according to age at
diagnosis and among the controls according to age at the time of selection into the study
(Fig. S3). The prevalence of pathogenic variants in BRCA1 and BRCAZamong case
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patients decreased rapidly after age 40 years, whereas a constant and limited decline in the
prevalence of pathogenic variants in ATM, CHEKZ, and PALBZ2was observed among the
case patients 40 to 85 years of age (Fig. S3). Pathogenic variants in ATM, BRCA1, BRCAZ,
CHEK?Z, and PALBZ2were associated with lifetime absolute risk of breast cancer of greater
than 20% by age 85 years among non-Hispanic Whites; pathogenic variants in BRCA1 or
BRCAZyielded a lifetime risk of approximately 50%, and in PALBZ, a lifetime risk of
approximately 32% (Fig. 1).

DISCUSSION

Here, we report the prevalence of pathogenic variants in breast cancer—predisposition genes
among 32,247 women with breast cancer and 32,544 study-matched unaffected women from
U.S. population-based studies in the CARRIERS consortium and provide estimates of breast
cancer risk with respect to these pathogenic variants in the general population. On the basis
of the American Cancer Society estimate of 276,000 new diagnoses of breast cancer in the
United States in 2020, the population-based CARRIERS analysis suggests that at least
13,800 (approximately 5%) will occur in women with germline pathogenic variants in
predisposition genes. However, many of these women are not known to have underlying
genetic susceptibility to breast cancer.

Currently, there are differing recommendations for the selection of patients with breast
cancer for clinical genetic testing, with considerable controversy regarding which patients to
test and which genes to include in the testing process.15:36-38 The National Comprehensive
Cancer Network and the National Institute for Health and Care Excellence provide criteria
for the selection of women with breast cancer, ovarian cancer, or both for testing on the basis
of personal and family history of these and other cancers.1%:36-38 |n contrast, the American
Society of Breast Surgeons has suggested offering testing to all patients with breast cancer,
which increases the number of pathogenic-variant carriers by 30%.37 Among the patients
with breast cancer in the population-based CARRIERS analysis, 5.03% had pathogenic
variants in the 12 established, clinically actionable predisposition genes, with 0.85% and
1.29% having pathogenic variants in BRCAI and BRCAZ, respectively. These refined
estimates of the prevalences of pathogenic variants among women with breast cancer in the
overall population, as opposed to selected high-risk patients, may inform ongoing
discussions regarding testing in patients with breast cancer. The risks of breast cancer
associated with pathogenic variants in the genes evaluated in the population-based
CARRIERS analysis also provide important information for risk assessment and counseling
of women with breast cancer who do not meet high-risk selection criteria.

The population-based CARRIERS analysis also showed that certain subgroups of patients
with breast cancer are at substantially increased risk of having pathogenic variants in high-
penetrance, clinically actionable genes. For instance, 7 pathogenic variants in BRCAI,
BRCAZ and PALBZwere observed in 8.13% of the patients with triple-negative breast
cancer, as compared with 1.84% of the patients with ER-positive breast cancer. In addition,
approximately 3.3% of women with ER-positive breast cancer without a family history had
pathogenic variants in actionable breast cancer genes, with pathogenic variants in A7V,
CHEK?Z, and BRCAZ accounting for the majority. Furthermore, pathogenic variants in
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BARDI, RAD51C, and RAD51D showed weak associations with breast cancer risk among
the participants overall but were associated with a moderate risk of ER-negative breast
cancer (odds ratio, >2). These findings were consistent with previously reported associations
with ER-negative and triple-negative breast cancer among women who qualified for clinical
genetic testing®3% and among non-Hispanic Black women with breast cancer, a relatively
high proportion of whom have ER-negative disease.* Thus, risk stratification of women with
breast cancer in the general population based on features such as tumor markers is an
important method for identifying women at the highest risk of having a mutation, especially
in underserved, minority populations.

There is also increasing discussion regarding screening for pathogenic variants in BRCA1
and BRCAZin the unaffected population.*0 Such testing for the Ashkenazi Jewish founder
mutations in BRCAI and BRCAZis currently availablein Israel.#1 However, beyond founder
mutations, estimates of the prevalence of pathogenic variants in BRCAI and BRCAZ or
other breast cancer—pre-disposition genes are not well established in the general population.
Here, we provide prevalence estimates for the 12 predisposition genes, showing that
pathogenic variants in CHEKZand ATM are the most common, and we note that pathogenic
variants in BRCAI and BRCAZwere found in 0.35% of the participants (or, 1 in 280).
These estimates may inform the debate about population-based testing.

Most commercial genetic testing for hereditary cancer is based on multigene panels.
However, many genes included on commercially available panels were not associated with
an increased risk of breast cancer in the population-based CARRIERS analysis.
Furthermore, several genes previously associated with an increased risk of breast cancer,
including NBN, BRIP1, and RECQL, showed no associations in this population-based study.
In particular, the finding that the NBN/ ¢.657_661del5 Slavic founder mutation was not
associated with an increased risk of breast cancer suggests that the recommendation by
management guidelines'®:36-38 to increase screening among women with NVBN pathogenic
variants may need to be reevaluated. Among the established breast cancer—predisposition
genes, ATM yielded an odds ratio of 1.82 (95% Cl, 1.46 to 2.27) among all the women in
the population-based CARRIERS analysis, an odds ratio of 1.72 (95% CI, 1.37 to 2.16)
among women with no family history of breast cancer, and an odds ratio of 1.68 (95% Cl,
1.31 to 2.17) among those who received a diagnosis of breast cancer at an age of more than
50 years. These findings suggest that carriers of pathogenic variants in A7\ in the general
population may have a substantially lower risk than what is often communicated to carriers
of pathogenic variants who are identified through clinical testing (i.e., a risk that is said to be
2.5 times as high as that among noncarriers).142 However, the estimated lifetime risk of
breast cancer by age 85 years among carriers of pathogenic variants in A7M was still over
the 20% threshold used clinically for enhanced screening. Pathogenic variants in PALB2
were associated with a moderate risk of breast cancer in the population-based CARRIERS
analysis (odds ratio, 3.83; 95% Cl, 2.68 to 5.63), a finding that is similar to that in a study of
two PALBZfounder mutations in a prospective cohort study in Poland (odds ratio, 4.39;
95% ClI, 2.30 to 8.37).43 However, PAL B2 was identified as a high-risk gene (odds ratio,
8.04; 95% ClI, 5.33 to 12.29) among case patients with a family history of breast cancer in
the population-based CARRIERS analysis (Table S12), a finding consistent with the results
of a study of 524 families with PALB2 mutations (relative risk, 7.18; 95% CI, 5.82 to 8.85).
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44 These findings confirmed the effect of family history on breast cancer risk and identified
family history as a critical factor for risk stratification of patients.

This study has some limitations. Enrollment was restricted to women 50 years of age or
older in certain population-based studies in the CARRIERS consortium, which had the
potential to influence the generalizability of the aggregate estimates of the prevalence of
pathogenic variants in BRCAI and BRCAZto younger women; however, sensitivity
analyses that excluded the Women’s Health Initiative and the Cancer Prevention Study |1
(studies that involved women at an older age at enroliment) did not substantially influence
the findings. In addition, the statistical model for penetrance estimation was based on the
assumptions that the underlying population-based SEER rates, prevalence of pathogenic
variants, and age-specific estimates of odds ratios reflect those in the general population.
Future studies are needed to evaluate the calibration of the probability estimates. Another
potential limitation is that the sequencing was conducted in a research laboratory rather than
a commercial genetic-testing facility. However, the custom QlAseq panel was shown to have
high sensitivity and specificity for pathogenic variants in predisposition genes.1’
Furthermore, because all samples were sequenced in a single center and variants were called
through a single pipeline, issues with bioinformatics and batch effects were minimized. In
addition, it was not possible to study the effects of individual pathogenic variants on breast
cancer risk because of the rarity of the variants.

Overall, the results of the population-based CARRIERS analysis showed that pathogenic
variants in the predisposition genes A7TM, BRCAI1, BRCAZ, CHEKZ, and PALBZ were
associated with increased risks of breast cancer and that pathogenic variants in BARDI,
RAD51C, and RAD51D were associated with increased risks of ER-negative breast cancer
in the general population. To 3 date, the management recommendations for women with
pathogenic variants in these genes have been based on risk estimates from studies involving
women at high risk. We anticipate that the estimates from the population-based CARRIERS
analysis will inform cancer screening and other risk-management strategies for women with
pathogenic variants in cancer-predisposition genes in the general population.
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= Pathogenic-variant carriers ==== General population
ATM BRCA1 BRCA2
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Figure 1. Population-Based Lifetime Absolute Risk of Breast Cancer Development According to
Age and the Commonly Mutated Genes ATM, BRCAL, BRCA2, CHEK?2, and PALB2.

The Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium studies that
were included in the analysis of the absolute risk of breast cancer among pathogenic-variant
carriers were the Cancer Prevention Study Il, the Cancer Prevention Study 3, the California
Teachers’ Study, the Mayo Clinic Breast Cancer Study, the Multiethnic Cohort Study, the
Mayo Mammaography Health Study, the Nurses’ Health Study, the Nurses’ Health Study I,
the Women’s Circle of Health Study, the Women’s Health Initiative, and the Wisconsin
Women’s Health Study. The analysis in the general population was performed with the use
of age-specific breast cancer incidence data (restricted to non-Hispanic Whites) from the
Surveillance, Epidemiology, and End Results 21 registries.
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