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Abstract

Stochastic reaction network models are often used to explain and predict the dynamics of gene 

regulation in single cells. These models usually involve several parameters, such as the kinetic 

rates of chemical reactions, that are not directly measurable and must be inferred from 

experimental data. Bayesian inference provides a rigorous probabilistic framework for identifying 

these parameters by finding a posterior parameter distribution that captures their uncertainty. 

Traditional computational methods for solving inference problems such as Markov Chain Monte 

Carlo methods based on classical Metropolis-Hastings algorithm involve numerous serial 

evaluations of the likelihood function, which in turn requires expensive forward solutions of the 

chemical master equation (CME). We propose an alternate approach based on a multifidelity 

extension of the Sequential Tempered Markov Chain Monte Carlo (ST-MCMC) sampler. This 

algorithm is built upon Sequential Monte Carlo and solves the Bayesian inference problem by 

decomposing it into a sequence of efficiently solved subproblems that gradually increase both 

model fidelity and the influence of the observed data. We reformulate the finite state projection 

(FSP) algorithm, a well-known method for solving the CME, to produce a hierarchy of surrogate 

master equations to be used in this multifidelity scheme. To determine the appropriate fidelity, we 

introduce a novel information-theoretic criteria that seeks to extract the most information about the 

ultimate Bayesian posterior from each model in the hierarchy without inducing significant bias. 

This novel sampling scheme is tested with high performance computing resources using 

biologically relevant problems.
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1. INTRODUCTION

A distinguishing feature of biology is the diversity manifested by living things across 

different scales, from the readily observed multitude of species to the differences between 

individuals of the same species. At the microscopic level, a population of cells with the same 
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genetic code, growing under the same lab conditions, could still display phenotypic 

variability in gene products [1–5]. Phenotypic variability has been observed in an increasing 

volume of data obtained from single-cell, single-molecule measurements enabled by recent 

progresses in chemical labeling and imaging techniques [6–8].

Much of the variability in gene expression is attributed to the stochasticity of vital cellular 

processes (e.g., transcription, translation) that are subjected to the randomness of molecular 

interactions. Stochastic reaction networks (SRN) represent a class of models that have been 

widely used to capture temporal and spatial fluctuations in single-cell gene expression [9]. 

SRN models treat the copy numbers of biochemical species, i.e. the number of molecules of 

a given type within a cell, as states in a discrete-space, continuous-time Markov process, 

where chemical reactions are represented by transitions between states. Given an SRN 

model, the probabilities of gene expression states within a cell can be computed by solving 

the chemical master equation (CME). This is a dynamical system in an infinite-dimensional 

space that describes the evolution of the probability distribution of all states. The finite state 

projection (FSP) is a well-known approximation method to obtain high-fidelity solutions of 

the CME [10]. This method reduces the intractable state space of the original SRN into a 

finite subset chosen based on a proven error bound, turning the infinite-dimensional CME 

system into a finite problem of linear differential equations.

The present work is concerned with the selection, parameter estimation, and uncertainty 

propagation of these reaction network models within the Bayesian framework. Bayesian 

methods are a powerful tool for system identification for SRN models because they provide 

rigorous uncertainty quantification by identifying a probability distribution over plausible 

model parameters instead of selecting a single model that may fit the data well [11–15]. This 

distribution over the models given the data is called the posterior distribution. Quantifying 

model parameter uncertainty is critical because it is difficult to model the full complexity of 

the biological system that may exhibit experimental context dependence [16]. Further, once 

model parameter uncertainty has been quantified, further experiments can be designed to 

provide new information about the system [17–21].

In this paper, we focus on data obtained by the experimental technique of single-molecule 

fluorescent in situ hybridization (smFISH). These datasets consist of independent single-cell 

measurements, each of which measures the copy number of biochemical species at a single 

time point. The standard approach to sample from the posterior distribution implied by this 

data is to use Markov Chain Monte Carlo (MCMC) algorithms such as the random walk 

Metropolis-Hastings MCMC sampler [11,22]. With high-fidelity CME solutions enabled by 

the FSP, one can compute the likelihood of observing these single-cell data and then perform 

Bayesian inference for model parameters. However, this approach suffers from two 

drawbacks. The first drawback is that the MCMC is inherently serial, preventing it from 

utilizing the massively parallel processing capability provided by modern high performance 

computing clusters. Therefore, if standard MCMC techniques are used, several tens to 

hundreds of thousands of sequential model evaluations may be needed to adequately sample 

the posterior distribution. The second drawback is that the FSP solutions required for the 

likelihood function are expensive, often requiring several minutes per model evaluation for a 

moderately sized problem. Typically, the number of differential equations that the FSP 
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algorithm needs to solve grows exponentially with the number of species in the network, so 

the size of the state space and transition matrix quickly grows intractable. This has motivated 

Approximate Bayesian Computation (ABC) approaches that replace the computationally 

expensive single-cell likelihood function with less expensive model-data discrepancy 

functions [23–25]. Samples produced by ABC are, in general, not distributed according to 

the true posterior distribution, and a careful choice of summary statistics is critical for the 

performance and reliability of ABC samplers. Another prominent direction to circumvent 

the cost of solving the CME is to use moment-based likelihood functions [26,27]. When the 

SRN consists only of linear first-order reactions, the equations describing the first 

centralized moments (such as mean and variance) can be solved exactly at very low 

computational cost, which is a large advantage over FSP-based approaches. However, for 

general reaction networks, only approximations to the moments based on moment closure 

techniques are available and the appropriate choice of closure method is essential for making 

reliable inference [27]. There has also been recent progress on non-Bayesian approaches to 

fitting SRN models to smFISH data, such as by replacing the expensive CME-based 

likelihood with the Wasserstein distance that could be much easier to estimate for certain 

networks [28].

In this work, we propose a different approach that uses a parallel and multifidelity MCMC 

computational framework to produce samples from the true posterior distribution. Many 

approaches to parallel MCMC methods have been proposed either based on parallel 

proposals or parallel Markov chains [29–32]. One family of popular parallel MCMC 

methods are those based upon sequential Monte Carlo (SMC) samplers [31,33–35]. For this 

work, we replace the standard MCMC methods with the Sequentially Tempered Markov 

Chain Monte Carlo (ST-MCMC) [35], which is a massively parallel sampling scheme based 

on SMC. This method transports a population of model parameter samples through a series 

of intermediate annealing levels that reflect the gradual increase in the influence of the data 

likelihood. At each level, MCMC is used to explore the intermediate distribution and re-

balance the distribution of the samples. Since this method is population based, these MCMC 

steps can be done in parallel. Further, this method can effectively adapt to the target 

posterior distribution to speed up sampling.

Similarly, approaches to multifidelity MCMC have been explored in the literature such as 

multifidelity delayed acceptance schemes, Multilevel Markov Chain Monte Carlo, and 

multifidelity approaches to SMC [36–41]. Multifidelity delayed acceptance schemes have 

been applied to Bayesian inference for the CME before [22,42,43]. Within these methods, a 

fast surrogate of the expensive likelihood function is used to pre-screen proposed samples 

within MCMC before they are accepted or rejected based on the expensive CME likelihood. 

This method still requires many sequential full model evaluations in order to sample the 

posterior. Multilevel MCMC [40] uses a hierarchy of models, such as different discretization 

grids of a PDE, to design an estimator for a specific quantity of interest. This uses parallel 

Markov chains at different model fidelities to estimate a correction to the quantity of interest 

estimate incurred by refining the model fidelity. Multifidelity SMC methods like the 

Multilevel Sequential2 Monte Carlo sampler [41] use an embarrassingly parallel approach 

and a hierarchy of multifidelity models. Therefore, only a few sequential full model 

evaluations may be needed. We take this approach to develop a multifidelity form of ST-
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MCMC for solving the CME. Within our method, instead of only considering a series of 

annealing levels, we also consider a hierarchy of model fidelity. Thus, the solution of the full 

inference problem is broken down by steering the samples from a distribution that reflects a 

low fidelity model with little influence from the likelihood to a distribution that reflects the 

high-fidelity model with the full influence of the likelihood. By performing the early updates 

using fast models, the sampler can quickly converge to the most important regions of 

parameter space, where a higher fidelity model can then be used to better assess which 

regions of this high-likelihood space are most likely. The key challenge for applying 

multifidelity methods in the SMC context is deciding which annealing factor and model 

fidelity is appropriate at a given level. Latz et al. suggest an approach based on the effective 

sample size of the population [41]. We take a different approach by leveraging a limited 

number of high fidelity model solves to estimate the information gained about the ultimate 

posterior given a current model fidelity and annealing factor. This information-theoretic 

criteria can effectively identify when the lower fidelity model is overly biasing the solution 

and should be discarded in favor of a higher fidelity model.

We demonstrate the efficiency and accuracy of our novel scheme when solving parameter 

estimation, model selection, and uncertainty propagation for stochastic chemical kinetic 

models in the Bayesian framework. This new approach to multifidelity ST-MCMC using fast 

surrogates from reduced order models based on a novel reformulation of the FSP 

significantly reduces the number of expensive likelihood function required to sample the 

posterior. The example problems are based on models from the system and synthetic biology 

literature. These include a three-dimensional repressilator gene circuit, a spatial bursting 

gene expression network, and a stochastic transcription network for the inflammation 

response gene IL1beta [44]. As such the primary contributions of this paper are:

1. Development of multifidelity ST-MCMC for Bayesian inference of SRNs

2. Introduction of an information-theoretic criteria for assessing the appropriate 

model fidelity within multifidelity ST-MCMC

3. Description of a novel surrogate model of the CME to be used within 

multifidelity inference problems

This paper is organized as follows: Section 2 describes general background for stochastic 

reaction network modeling, finite state projection, Bayesian inference, and MCMC methods. 

Section 3 describes the Multifidelity Sequential Tempered MCMC algorithm and the 

information-theoretic criteria for adapting model fidelity. Section 4 describes a novel 

surrogate models for the CME. Section 5 describes three experiments to identify model 

parameters in SRNs using Multifidelity ST-MCMC. Finally, Section 6 concludes.

2. BACKGROUND

2.1 Stochastic reaction networks for modeling gene expression

A reaction network consists of N different chemical species S1, …, SN that are interacting 

via the following M chemical reactions
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ν1, j
reactS1 + … + νN, j

reactSN ν1, j
prodS1 + … + νN, j

prodSN . (1)

We are interested in keeping track of the integral vectors x≡ (x1, …, xN)T, where xi is the 

population of the ith species. Assuming constant temperature and volume, the time-evolution 

of this system can be modeled by a continuous-time, discrete-space Markov process [9]. The 

jth reaction channel is associated with a stoichiometric vector 

νj = ν1, j
prod − ν1, j

react , …, νN, j
prod − νN, j

react  T
 (j = 1, …,M) such that, if the system is in state x 

and reaction j occurs, the system transitions to state x+νj. Given x(t) = x, the propensity 

αj(x; θ)dt determines the probability that reaction j occurs in the next infinitesimal time 

interval [t, t + dt), where θ is the vector of model parameters. In other words,

Prob x(t + dt) = x + νj ∣ x(t) = x = αj(x; θ)dt .

An important case of reaction networks are those that follow mass-action kinetics, whose 

propensity functions take the form

αj(x; θ) = cj(θ)
x1

ν1, j
react ⋅ … ⋅

xN

νN, j
react . (2)

In this formulation, cj(θ) is the probability per unit time that a combination of specific 

reactant molecules can react via reaction j, and the remaining factor is the number of ways 

the existing molecules can be combined to form the left side of the chemical equation (1).

The time-evolution of the probability distribution of this Markov process is the solution of 

the linear system of differential equations known as the chemical master equation (CME)

d
dt p(t) = A(θ)p(t), t ∈ 0, tf
p(0) = p0

, (3)

where p(t) is the time-dependent probability distribution of all states, p(t, x) = Prob{x(t) = xi|

x(0)}. The initial distribution p0 is assumed to be given, and A(θ) is the infinitesimal 

generator of the Markov process, defined entrywise as

A(y, x; θ) =

αj (x; θ)if y = x + νj

−∑j = 1
M αj(x; θ)if y = x

0otherwise

. (4)

Here, we have made explicit the dependence of A on the model parameter vector θ, which 

we need to infer from experimental data.

2.2 The finite state projection

Typically, reaction networks model open biochemical systems, where the set of all possible 

molecular states is unbounded. This makes the CME an infinite-dimensional linear system 
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of ODEs. The finite state projection (FSP) is a well-known strategy to systematically reduce 

this linear system into a finite surrogate model with a strict error bound.

The FSP can be thought of as a special class of projection-based model reduction applied to 

the CME. Specifically, let Ω be a finite subset of the CME state space. The projection of the 

CME operator A onto the subspace spanned by the point-mass measures {δx|x ∈ Ω} is given 

by

AΩ(y, x) = A(y, x)if x, y ∈ Ω
0otherwise . (5)

We can then define a reduced model of the dynamical system (3) based on this projection as

d
dt pΩ(t) = AΩpΩ(t), t ∈ 0, tf . (6)

Clearly, to solve (6) we only need to keep track of the equations corresponding to states in 

the finite set Ω, which is amenable to numerical treatments.

In contrast to generic projection methods, the gap between the reduced-order model and the 

true CME can be computed for the FSP. Indeed, Munsky and Khammash [45, Theorem 2] 

proved that the truncation error can be quantified in ℓ1 norm as

p(t) − pΩ(t) 1 = 1 − ∑
x ∈ Ω

pΩ(t, x) . (7)

Clearly, the right hand side can be readily computed from the solution of the reduced system 

(6). From this precise error quantification, we have effective iterative method for solving the 

CME. Choosing an error tolerance ε > 0, starting from any initial set Ω := Ω0, we solve 

system (6) and check that the right hand side of (7) is less than ε. If this fails, we add more 

states to Ω0 to get a strictly larger set Ω1 and repeat the procedure until we find an 

approximation that satisfies our error tolerance.

As the sequence of subsets Ωi grows until it eventually covers the whole state space, we 

might expect that the finite-time solution of (6) will likewise converge to the true solution. 

This is indeed the case for all models in practice, with only a few theoretical 

counterexamples in which the Markov chain is explosive [10]. Sufficient conditions for the 

convergence of the FSP can be checked based on the form of the propensity function 

[46,47]. In practice, reaction networks tend to have only reactions between two or fewer 

molecules, with propensity functions in mass-action form (2), and these are guaranteed to be 

approximable with the FSP [46].

For the rest of the paper, we only concern ourselves with non-explosive SRNs where the 

FSP converges. Given such models, any exhaustive sequence of subsets {Ωj} suffices to 

guarantee that the FSP solution eventually satisfies any prespecified error tolerance. 

However, some choices are more efficient than other, and it is also more advantageous to 
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partition the time interval into smaller timesteps and use a smaller Ωj on each step [48]. We 

will return to these observations in section 4.3.

A final point to make about the FSP is that, if the sequence of reduced sets Ωj are increasing, 

that is, Ωj ⊂ Ωj+1, j = 1,2, …, the resulting truncation error has been shown to decrease 

monotonically [45, Theorem 1] (also see [49, Theorem 2.5]). This gives us a natural way to 

form a hierarchy of reduced models for the CME, and we will return to this in section 4.1. 

With the computed distribution of the SRN in our hands, we can now match them directly to 

experimental data using a straightforward likelihood function.

2.3 Bayesian inference of SRN models from discrete single-cell measurements

In this work, we focus on inferring the parameters for the reaction network from discrete, 

single-cell datasets [3,6–8,50] that consist of several snapshots of many independent cells 

taken at discrete times t1, …, tT. The snapshot at time ti records gene expression in ni 

independent cells, each of which can be collected in the data vector cj,i, j = 1, …, ni of 

molecular populations in cell j at time ti. Since smFISH experiments [6,50] measure a new 

batch of cells at every time point, there is no correlation between observations at different 

time points.

Assume that a model class ℳ = M(θ) θ ∈ Θ of stochastic reaction networks has been 

chosen to model the data consisting of a fixed set of reactions with unknown reaction 

parameters θ. Let p(t, x|M(θ)) denote the entry of the CME solution corresponding to state x 
at time t, given by SRN model M(θ). The log-likelihood of the dataset D given M(θ) is 

given by

L(D ∣ θ) = ∑
i = 1

T
∑
j = 1

ni
log p ti, cj, i ∣ M(θ) . (8)

A common approach to fitting this model is to find model parameters θ that maximize the 

log-likelihood function. However, there are potentially many other model parameters that 

could fit the data approximately as well as the maximum likelihood model.

In contrast, the Bayesian approach quantifies the range of parameter uncertainty. Bayesian 

inference is rooted in the Bayesian philosophy in which our uncertainty is modeled using 

probability distributions [51]. Inference begins with a prior distribution, p(θ), that captures 

our initial beliefs. After data has been observed, the likelihood of the data given a model 

class and associated parameters is found as p(D ∣ θ) = exp(L(D ∣ θ)). Then by applying 

Bayes’ Theorem, we construct the posterior distribution on model parameters that reflects 

our updated beliefs:

p(θ ∣ D) = p(D ∣ θ)p(θ)
p(D) (9)

Here, p(D) is a normalization constant known as the model evidence. Sampling from the 

posterior distribution on parameters allows us to quantify our uncertainty regarding the 

parameter fit and predictions. Therefore, the Bayesian approach allows us to be confident in 

Catanach et al. Page 7

Int J Uncertain Quantif. Author manuscript; available in PMC 2021 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the inference results, understand the influence of uncertainty on predictions, and design 

experiments to reduce the parameter uncertainty. However, it can be computationally 

challenging.

The Bayesian framework also provides a criteria to select or weigh different model classes 

as data become available. Suppose, instead of a single model class, we are given K possible 

network structures that could potentially explain the observations. Let 

ℳk = Mk θk
θk ∈ Θk denote the k-th class, where the parameter domains Θk need not have 

the same dimensionality. Each model class is associated with a prior weight P ℳk  that 

represents the prior level of belief in each class. If D denotes the dataset as before, we can 

compute the model evidence of ℳk as

P D ∣ ℳk = ∫
θ ∈ Θkp D ∣ θ, ℳk P θ ∣ ℳk dθ . (10)

The posterior probability of each model class can then be computed by applying Bayes’ 

Theorem:

P ℳk ∣ D =
P D ∣ ℳk P ℳk

∑j = 1
K P D ∣ ℳj P ℳj . (11)

These probabilities reflect the posterior weighting of the different model classes and can be 

used to make average predictions over the models. The drawback of Bayesian model 

selection in the context of stochastic gene expression is the computational cost of computing 

the model evidences. We will return to this issue in section 3 where we show how the 

Multifidelity ST-MCMC framework provides an efficient way to estimate model evidence.

2.4 Markov Chain Monte Carlo samplers

Markov Chain Monte Carlo algorithms are widely used for sampling the posterior 

distribution of a Bayesian inference problem. These methods design a Markov chain whose 

stationary distribution is the target posterior distribution, p(θ ∣ D). Therefore, by simulating 

the evolution of samples, θ, according to the Markov chain, correlated samples are 

asymptotically drawn from the posterior distribution. A common MCMC method is the 

Metropolis-Hastings algorithm. The algorithm begins by initializing the parameter state to 

some θ0. Then at a step i + 1 in the evolution, a candidate sample θ′ is drawn according to a 

proposal distribution Q(θ′ | θi). This candidate is then accepted or rejected with probability 

α(θ′ | θi) given by

α θ′ ∣ θi = min 1, p D ∣ θ′ p θ′ Q θi ∣ θ′
p D ∣ θi p θi Q θ′ ∣ θi

(12)

This acceptance probability is independent of the normalization constant p(D) and therefore 

computationally tractable. If the candidate is accepted θi+1 = θ′; otherwise, θi+1 = θi. This 
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algorithm iterates until a sufficient number of posterior samples have been generated to 

accurately represent the posterior.

Effective sample size (ESS) provides a metric to judge whether sufficient samples have been 

generated. The ESS of a N sample population θi=1…N corresponds to the number of 

independent samples, NESS, which would estimate a quantity of interest, q = E[q(θ)], with 

the same variance as the estimate from the N samples. Therefore, when designing a sampler 

we want to maximize NESS to attain the highest possible sampling efficiency. For MCMC 

this corresponds to minimizing sample correlation. However, even very effective samplers 

often need tens of thousands of sequential model evaluations to generate sufficient effective 

samples, making this form of MCMC challenging for computationally expensive models.

2.5 Sequential Monte Carlo samplers

To overcome many of the challenges associated with a standard Metropolis-Hastings based 

MCMC method, parallel methods, like Sequential Monte Carlo (SMC), have been 

introduced to better leverage high performance computing resources. SMC methods for 

Bayesian inference transport a sample population, initially distributed so that it can 

approximate expectations with respect to the prior, to one which can approximate posterior 

expectations [31,33–35]. Typically, this means a population of samples initially distributed 

according to the prior being transformed into a population of samples approximately 

distributed according to the posterior. For Sequential Tempered MCMC (ST-MCMC) [35], 

we break down the inference problem into a series of annealing levels i defined by an 

annealing factor βi ∈ [0, 1]. Each level defines an intermediate distribution, πβi (θ), which we 

would like to use to generate samples and to compute expectations. These intermediate 

distributions take the form of

πβi (θ) = p θ ∣ D, βi = p(D ∣ θ)βi p(θ)
∫ p(D ∣ θ)βi p(θ)dθ

(13)

This annealing approach is common to many SMC methods used for Bayesian inference and 

can be thought of as gradually integrating the influence of the data into the solution. 

Tempering provides several benefits namely: 1) robust handling of potentially multimodal or 

unidentifiable posteriors, 2) smoother evolution of the parallel sample population to avoid 

different rates of convergence to the posterior, 3) online adaptation of the MCMC sampler, 

and 4) estimation of the model evidence for model selection through thermodynamic 

integration.

To simplify the problem of transporting samples from the prior, π0 (θ), to posterior, π1 (θ), 

we transport samples sequentially through each level in the sequence, i.e. πβi (θ) to πβi + 1 (θ)

with βi+1 > βi. Because we can control the size of the jump Δβ = βi+1 − βi, we can ensure 

that this change is not too drastic as to cause poor approximation of the true distribution i.e. 

too drastic a decrease in the ESS. Transporting samples is done in three steps:
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1. Reweight the previous sample population, distributed according to πβi (θ), with 

unnormalized weights wi= p D ∣ θi
Δβ to reflect expectations with respect to the 

new distribution πβi + 1 (θ).

2. Resample the population according to the weights so that the samples now reflect 

πβi + 1 (θ).

3. Seed a Markov chain starting at each sample and then use MCMC to explore 

πβi + 1 (θ).

The MCMC step is essential to ensure the sample population does not degenerate since the 

reweighting and resampling steps reduce the ESS of the population. MCMC increases the 

ESS because it decorrelates the seeds and explores the target distribution, causing samples to 

better reflect it. Typically, Δβ is chosen adaptively to not decrease the ESS too much during 

the update. This is achieved by finding a Δβ such that the coefficient of variation (COV) of 

the sample weights equals a target κ. The COV approximates the ESS by NESS ≈ N
1 + κ2 . 

Therefore, we find a Δβ > 0 that solves the equation

κ =
1
N ∑i = 1

N wi (Δβ) − w(Δβ) 2

w(Δβ) . (14)

Here, wi (Δβ) = p D ∣ θi
Δβ and w(Δβ) = 1

N ∑i = 1
N wi (Δβ). Typically, we choose κ = 1, which 

corresponds to a target ESS of N/2. With this method for finding Δβ, we then sequentially 

move through all the adaptively tuned annealing levels until we reach the final posterior 

reflected by π1 (θ). For more details about this algorithm, see [35].

3. MULTIFIDELITY ST-MCMC

For expensive models, ST-MCMC and similar SMC-based methods may still be 

computationally prohibitive. One approach to overcome this computational burden is to 

utilize a multifidelity model hierarchy that can speed up sampling. The key idea is that for 

early levels of the ST-MCMC algorithm a low fidelity, but computationally cheap model, 

may be sufficiently informative to guide the samples towards the ultimate posterior 

distribution. This is because at early levels, the annealing factor causes the contribution of 

the likelihood to be damped, so perturbations in the likelihood caused by the decrease in 

model fidelity are less important. Intuitively, a lower fidelity model may be useful when the 

bias it introduces in the likelihood function is less than the variance of the likelihood at the 

annealing level. We consider different strategies for rigorously defining this intuition in the 

rest of this section.

We extend ST-MCMC to multifidelity ST-MCMC by defining intermediate levels both in 

terms of their annealing factor β and the choice of model fidelity M. We consider a hierarchy 

of models ℳ = Mj : j = 1…K  with increasing fidelity and computational cost. This 

algorithm is described in Algorithm 1. The key challenge is determining the best strategy for 
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choosing βl and ml at Step 2 since the rest of the algorithm proceeds like standard ST-

MCMC.

3.1 Tempering and bridging using an Effective Sample Size criteria

One approach to choosing the appropriate annealing factor and model fidelity is a combined 

likelihood tempering and model bridging scheme discussed in Latz et al. [41]. This scheme 

is based upon the ESS statistic discussed in Section 2.5. Within Multifidelity ST-MCMC, at 

every level l of Algorithm 1, we choose whether to temper by changing βl = βI−1 +Δβ or to 

bridge by changing the model fidelity, ml = ml−1 + 1. This choice is made by measuring the 

ESS of the sample population with respect to the next change in the model fidelity by 

computing the unnormalized weights as if we were to bridge:

wi =
πβl − 1 θi

l − 1 ∣ Mml − 1 + 1

πβl − 1 θi
l − 1 ∣ Mml − 1

=
p D ∣ θi

l − 1, Mml − 1 + 1
βl − 1

p D ∣ θi
l − 1, Mml − 1

βl − 1
. (15)

We can then compute the coefficient of variation of the weights, wi, to determine if it 

exceeds a target κ. If it does, we choose to bridge to the next model fidelity because the 

sample population is beginning to degenerate, so it no longer has sufficient ESS to 

approximate the next level intermediate posterior. If the COV is less than κ, we choose to 

keep the current model but instead increase β. The next beta is chosen using the same 

strategy as before by solving Equation 14.

3.2 Information-theoretic criteria for model fidelity adaptation

We introduce a new criteria for model fidelity selection based on information theory. This 

criteria is motivated by the fact that the ESS-based strategy described above only decides to 

change fidelity based on the next model in the hierarchy. This means the sampler may 

continue to use a low fidelity model because it still meets the ESS criteria with respect to the 

next model, even when it is drifting away from the high fidelity posterior. Instead, we 

introduce a method that utilizes a limited number of full fidelity model evaluations to help us 

better decide when to bridge model fidelity. Depending on the computational cost of the full 

fidelity simulations, the improved bridging strategy and the improved robustness of this 

method may outweigh the cost of these full fidelity solutions.

Within multifidelity ST-MCMC, if the algorithm is at annealing level l with annealing factor 

βl ∈ [0, 1] and has been sampling the intermediate posterior defined by a model, Mml, in a 

Catanach et al. Page 11

Int J Uncertain Quantif. Author manuscript; available in PMC 2021 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model hierarchy ℳ = Mj : j = 1…K , we would like to know whether Mml still provides 

meaningful information about the ultimate posterior once we move to level l + 1 with 

annealing factor βl+1. Here we assume the ultimate posterior is p θ ∣ D, MK , where MK is 

the highest fidelity model. Therefore, unlike the previous ESS-based method, we begin by 

proposing a tempering step under the assumption that the current model fidelity is valid. We 

find the proposed βl+1 by solving Equation 14.

If Mml no longer provides meaningful information at the next level, we use the next highest 

fidelity model in the algorithm, Mml+1. This criteria can be formulated using a 

generalization of information theory [52], where the information gained about the full 

posterior, p θ ∣ D, MK , by moving from level l to l + 1 with model Mml is:

ℐp θ ∣ D, MK p θ ∣ D, Mml, βl + 1 ‖p θ ∣ D, Mml, βl
= DKL p θ ∣ D, MK ‖p θ ∣ D, Mml, βl −
DKL p θ ∣ D, MK ‖p θ ∣ D, Mml, βl + 1

= ∫ p θ ∣ D, MK log
p θ ∣ D, Mml, βl + 1

p θ ∣ D, Mml, βl
dθ .

(16)

If this quantity is positive, then the intermediate posterior defined by βl+1 and ml is closer to 

the ultimate posterior than the previous level, so we choose ml+1 = ml. However if this is 

negative, this update is driving the distribution away from the ultimate posterior, so we 

should use a higher fidelity model for the next update, thus ml+1 = ml + 1.

If we choose to update the model fidelity, we consider two strategies for choosing βl+1 for 

the next level. In the first strategy, keeping with the ESS-based tempering and bridging 

framework from above, is to set βl+1 = βl. The second strategy is to tune βl+1 to try to attain 

an ESS target. The first strategy is often more computationally efficient, but may not be as 

robust if changing model fidelity introduces significant variations in the likelihood. To tune 

βl+1, we first define the importance weight for transitioning from a level defined by βi and 

ml to a level defined by βl+1 and ml+1 = ml + 1 as

wi =
πβl + 1 θi

l ∣ Mml + 1

πβl θi
l ∣ Mml

=
p D ∣ θi

l, Mml + 1
βl + 1

p D ∣ θi
l, Mml

βl
(17)

Using the same approach as before, we can then tune βl+1 to meet some ESS target based 

upon the COV of the weights. However, unlike in previous problems, this might not be 

achievable. If Equation (14) has a solution, we chose the largest βl+1 such that the COV 

target is met. If Equation (14) does not have a solution, we find the βl+1 that minimizes the 

COV and thus maximizes the ESS.
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3.3 Computing the information-theoretic criteria

Since computing the information in Equation 16 requires marginalizing over the posterior, it 

can be challenging. However, this computation can be approximated using the samples from 

ST-MCMC. The first step is to recognize the connection between computing this criteria and 

estimating the model evidence:

ℐp θ ∣ D, MK p θ ∣ D, Mml, βl + 1 | | p θ ∣ D, Mml, βl

= ∫ p θ ∣ D, MK log p θ ∣ D, Mml, βl + 1
p θ ∣ D, Mml, βl

dθ

= ∫ p θ ∣ D, MK log p D ∣ θ, Mml
Δβ p D ∣ Mml, βl

p D ∣ Mml, βl + 1
dθ

(18)

Here, p(D ∣ M, β) is the model evidence, i.e. the normalization, for the likelihood defined by 

the model M with an annealing factor β:

p(D ∣ M, β) = ∫ p(D ∣ θ, M)β p(θ)dθ (19)

By noting the relationship to model evidence, the ratio of the evidences can be expressed as:

p D ∣ Mml, βl
p D ∣ Mml, βl + 1

=
p D ∣ Mml, βl

∫ p D ∣ θ, Mml
βl + 1p(θ)dθ

= 1

∫ p D ∣ θ, Mml
Δβ p D ∣ θ, Mml

βlp(θ)

p D ∣ Mml, βl
dθ

= 1
Eθ ∣ D, Mml, βl p D ∣ θ, Mml

Δβ .

(20)

Eθ ∣ D, Mml, βl indicates that the expectation is taken over the distribution p θ ∣ D, Mml, βl . 

Therefore,

∫ p θ ∣ D, MK log p D ∣ θ, Mml
Δβ p D ∣ Mml, βl

p D ∣ Mml, βl + 1
dθ

= ∫ p θ ∣ D, MK log
p D ∣ θ, Mml

Δβ

Eθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ dθ .

(21)

Since we cannot yet sample p θ ∣ D, MK  we use importance sampling to express this 

integral in terms of the level l distribution, which we have samples for:
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∫ p θ ∣ D, MK log
p D ∣ θ, Mml

Δβ

Eθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ dθ

= ∫ p θ ∣ D, Mml, βl
p θ ∣ D, MK

p θ ∣ D, Mml, βl
log

p D ∣ θ, Mml
Δβ

Eθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ dθ

∝ ∫ p θ ∣ D, Mml, βl
p D ∣ θ, Mk

p D ∣ θ, Mml
βl

log
p D ∣ θ, Mml

Δβ

Eθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ dθ

= ℐcriteria .

(22)

This integral only needs to be known up to a constant of proportionality since we only need 

to assess whether it is positive. We can then express it in terms of expectations as:

ℐcriteria = Eθ ∣ D, Mml, βl
p D ∣ θ, MK

p D ∣ θ, Mml
βl

log p D ∣ θ, Mml
Δβ −

Eθ ∣ D, Mml, βl
p D ∣ θ, MK

p D ∣ θ, Mml
βl

logEθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ .

(23)

We can now estimate whether ℐcriteria is positive or negative to determine if information is 

gained or lost by this next update. To approximate these expectations we use the N ST-

MCMC samples at level l, where θi
l : i = 1…N, which are approximately distributed 

according to p θ ∣ D, Mml, βl . We also use the evaluation of the full fidelity model 

likelihood at these points:

Eθ ∣ D, Mml, βl
p D ∣ θ, MK

p D ∣ θ, Mml
βl

log p D ∣ θ, Mml
Δβ

≈ ∑
l = 1

N p D ∣ θi
l, MK

p D ∣ θi
l, Mml

βl
log p D ∣ θi

l, Mml
Δβ .

(24)

Eθ ∣ D, Mml, βl
p D ∣ θ, MK

p D ∣ θ, Mml
βl

≈ ∑
l = 1

N p D ∣ θi
l, MK

p D ∣ θi
l, Mml

βl
. (25)

Eθ ∣ D, Mml, βl p D ∣ θ, Mml
Δβ ≈ ∑

l = 1

N
p D ∣ θi

l, Mml
Δβ . (26)
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3.4 Multifidelity ST-MCMC and Bayesian model selection

SMC and ST-MCMC methods not only enable robust solutions of Bayesian inference 

problems for parameter calibration, but also enable Bayesian model selection by providing 

asymptotically unbiased estimates of the model evidence. Model evidence estimates are 

generally highly computationally expensive since they require estimating the normalization 

constant,

p(D ∣ M) = ∫ p(D ∣ θ, M)p(θ ∣ M)dθ, (27)

which consists of marginalizing the likelihood over the prior distribution. If the high 

probability content of the prior differs significantly from the most likely parameters 

according to the likelihood, it is difficult to estimate this integral using Monte Carlo 

samples. Instead, SMC type methods break down this estimate into a series of Monte Carlo 

approximations over the intermediate distribution levels previously discussed. As such, a 

hierarchy of multifidelity models can also be used to accelerate this estimate within the 

Multifidelity ST-MCMC framework. Using the methods described in [31,53] a SMC based 

sampler, like Multifidelity ST-MCMC, can estimate the model evidence of the highest 

fidelity model, MK, by estimating the product:

p D ∣ MK = ∏
l = 1

L p D ∣ ml, βl
p D ∣ ml − 1, βl − 1

= ∏
l = 1

L
cl . (28)

where p(D ∣ m, β) = ∫ p D ∣ θ, Mm
β p(θ)dθ, and L is the final level of ST-MCMC. The ratio 

cl can be written as

cl =
∫ p D ∣ θ, Mml

βlp(θ)dθ
p D ∣ ml − 1, βl − 1

= ∫ p D ∣ θ, Mml
βl

p D ∣ θ, Mml − 1
βl − 1

p D ∣ θ, Mml − 1
βl − 1p(θ)

p D ∣ ml − 1, βl − 1
dθ

= Eθ ∣ D, Mml − 1, βl − 1
p D ∣ θ, Mml

βl

p D ∣ θ, Mml − 1
βl − 1

≈ 1
N ∑

i = 1

N
wil .

(29)

where wil are the unnormalized resampling weights at level l for the sample population 

θi = 1…N
l − 1 . Therefore, using the weights we already computed as part of Multifidelity ST-

MCMC, we are able to compute an estimate of the model evidence. The error in the estimate 

of the model evidence is controlled by the ESS of the Monte Carlo samples used to estimate 

cl and the choice of annealing factors βl. For a comprehensive analysis of the statistical 

properties of the estimator see [31,53].
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4. MULTIFIDELITY REDUCED MODELS OF THE CHEMICAL MASTER 

EQUATION

The FSP algorithm introduced in section 2 is commonly used to compute the likelihood of 

observed data measurements. When used within MCMC sampling, the FSP is usually 

implemented in one of the following two ways.

The first is to fix a single, large, subset of states for all parameter samples [11]. Since the 

probability distribution of the CME changes significantly as the MCMC explores the 

parameter space, it is very difficult to specify a finite state set that accurately captures a 

significant portion of the probability mass for all times and all parameters. One can end up 

choosing a static FSP that is either inaccurate or inefficient. This scenario is similar to when 

a static discretization scheme (e.g., finite element) is employed in the simulation of 

parametric partial differential equation models, in which the manually chosen grid size may 

turn out to be too coarse for some parameter regimes and excessive for others.

This drawback motivates the second approach that instead uses adaptive CME solvers. There 

have been many adaptive formulations of the FSP [48,54–57] in which an approximation to 

the full-fidelity CME is sought within a user-specified error tolerance by expanding the state 

set iteratively. There could be regions in the parameter space where the adaptive state set has 

to be expanded to an enormous size to accurately approximate the CME solution. Yet, most 

of these parameter combinations fit poorly to the data, and therefore the large computational 

effort for their forward solutions does not provide useful information about the posterior. On 

the other hand, since reaction networks usually comprise of nonlinear and unpredictable 

interactions, it is difficult to know a priori which parameter values would give rise to such 

difficult (but meaningless) forward solutions of the full-fidelity CME. Simple techniques to 

regularize the cost of the forward solutions by restricting either the computational time or 

the number of time steps may run the risk of mistakenly ignoring genuinely informative 

parameter candidates whose evaluation just happens to require high computational cost.

The framework of the Multifidelity ST-MCMC sampler allows us to conceive of a 

compromise. In particular, we introduce a series of surrogate CMEs whose solution 

complexity is uniformly bounded across all parameters. An adaptive FSP method with strict 

error tolerance is applied only to these surrogate master equations. In other words, the 

solution to each surrogate CME can be computed accurately by the FSP with bounded cost, 

where coarser, yet cheaper, surrogate CMEs are used to guide the sampling process at the 

early annealing level, while the more expensive solutions of the high-fidelity CME are only 

required at the last annealing steps. This allows us to avoid overcommitting to parameters 

that have low posterior probabilities during the early annealing levels, yet still guarantee 

accurate computation of the likelihood at later sampling stages.

4.1 Implicitly defined finite state projection for constructing surrogate CME models

Surrogate models can be derived by adding restrictive assumptions to the physics of the 

original model. In particular, consider a hypothetical physical biological surrogate of the 

original cells modeled by the full CME in which all cellular processes ‘freeze’ when 
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molecular copy numbers reach a certain set of thresholds. As we increase these thresholds, 

the surrogate cells behave more freely and closer to the original cells and the master 

equation describing their behavior becomes closer to the original CME, illustrated in Fig. 1.

Let b1, …, bN be bounds on the copy number of species 1 through N. We define an 

approximate SRN whose propensities are surrogates of the original SRN propensities and 

are given by

αj (x) = αj(x)∏
i

xi ≤ bi , (30)

where [E] takes value 1 if expression E is true and zero otherwise. Since there are no further 

transitions once the process enters a state that exceeds the bounds, the state space of the 

surrogate chemical master equation is effectively reduced to the hyper-rectangle 

H (b) = ×i = 1
N 0, …, bi . Thus, the infinite-dimensional system of differential equations (3) 

is replaced by the finite-dimensional surrogate dynamical system

M(b) : d
dt pH(t) = AHpH(t), pH(0) = p0|H, (31)

where the truncated infinitesimal generator AH is defined similar to eq. (4) but with the 

exact propensities replaced by the surrogate propensities given in eq. (30).

We note that eq. (31) is equivalent to eq. (6) with Ω = H(b). Thus, our surrogate propensities 

implicitly define a finite state projection of the original CME. We also note that the 

surrogate CMEs need not be constrained within a hyper-rectangle as considered here (see, 

e.g., [56,57] for examples of non-rectangular FSP). It may be beneficial to derive a sequence 

of transformations to the original propensities, with the approximations chosen in such a 

way that alleviate the computational burden of solving the original model by, e.g., making 

the lower-fidelity dynamical system less stiff than the high-fidelity one. We leave this more 

general strategy to future work.

For the present choice hyper-rectangular state spaces, we recall the important result 

mentioned in section 2.2 that, as the entries of b increase monotonically, the state space H(b) 

includes more states and the truncation error, measured as the ℓ1-distance between pH and 

the true CME solution p(t) decreases monotonically. This provides us with a straightforward 

and natural way to form a hierarchy of surrogate models within the Multifidelity ST-MCMC 

framework.

4.2 Using the hierarchy of surrogate CMEs within the ST-MCMC framework

With the surrogate CME models formulated, a strict hierarchy of surrogate models can be 

defined by a sequence of bounding vectors b(1) ≤ b(2) ≤ … ≤ b(K) where the “≤” sign applies 

element-wise. The corresponding surrogate models Ml := M(b(l)) are then defined as in eq. 

(31). As mentioned earlier, the error in the surrogate CMEs decrease monotonically as we 

increase the bounds. Therefore, {Ml} forms a hierarchy in which each level attains more 

fidelity than its predecessor.
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At the l-th level, the log-likelihood function in eq. (8) is approximated by [58]

L(D ∣ θ) ≈ LMl(θ) = ∑
i = 1

T
∑
j = 1

ni
log p ti, min cj, i, b(l) ∣ Ml(θ) . (32)

In the surrogate log-likelihood, the data is projected onto the finite state space H(bl), and the 

probabilities of the data at different time points are computed from the surrogate Markov 

model Ml. Clearly, as l increases, the surrogate function LMl (θ) becomes a more accurate 

approximation to the true log-likelihood L(D ∣ θ). In the ideal situation where the hierarchy 

is allowed to have infinite depth, these surrogates are guaranteed to form a sequence that 

asymptotically converges pointwise to the true log-likelihood from below. This is shown 

formally in the following proposition.

Proposition 4.1.—Let the sequence of bounds b(l)
l = 1
∞ ⊂ ℕN, where b(l) : = b1

(l), …, bN
(l)

be chosen such that b(l) ≤ b(l+1) elementwise (i.e., bj
(l) ≤ bj

(l + 1)). Assume that the 

continuous-time Markov chain underlying the SRN is non-explosive for all parameters and 

that the initial distribution of the CME (3) has finite support. For each fixed value of the 

parameter θ, we have the following:

1. LMl (θ) L(D ∣ θ) as l → ∞.

2. There exists a subsequence li such that LMli ↑ L(D ∣ θ).

Here, the log-likelihood function L(D ∣ θ) is defined as in (8) and the surrogate LMli (θ) is 

defined as in (32).

Proof.: Without loss of generality, we assume that the initial distribution is concentrated at a 

single state x0. Let R be the number of reactions that occur during the finite time interval [0, 

tT] given the starting state x0. If there exists ε > 0 for which ℙ R > Rε ≥ ε for every choice 

of Rε, then we have ℙ(R = ∞) ≥ ε, violating the assumption of non-explosion. Thus, for 

every ε > 0, there exists Rε such that ℙ R > Rε < ε. Furthermore, we can find lε such that 

H b lε  contains all states that are reachable from x0 via Rε reactions or fewer. Thus, the 

probability for a sample path within [0, tT] of the surrogate CME to ever exceed H(b(l)) is 

less than ε, and the corresponding solution of the surrogate CME is guaranteed to be less 

than ε away (in one-norm) from the true CME solution. This proves (i).

We have min(cj,i, b(l)) = cj,i for sufficiently large l. Entry-wise, the FSP approximations 

increase monotonically [10, Theorem 2.2], so p(ti, cj,i|Ml(θ)) increases monotonically. We 

can then choose the subsequence {li} from {l} by simply truncating the leading elements 

until b(l) disappears from the min(, ) function in eq. (32). This proves (ii).□

In summary, the FSP scheme allows us to define a hierarchy of surrogate master equations 

that approach the true CME as the surrogate state space enlarges. From this, we can define a 

sequence of surrogate log-likelihood functions that converge to the true log-likelihood from 
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below. These surrogates could be used within the Multifidelity ST-MCMC framework 

introduced in section 3. Before we do so, however, we must first ensure that an accurate 

solution to the system (31) could be computed efficiently.

4.3 Fast and accurate solution of the surrogate master equation

Although the surrogate master equation (31) is a significant reduction from the infinite-

dimensional CME, the number of states included in the truncated state space H(b) still grows 

as O(b1 · … · bN) and the surrogate CME can quickly become expensive as we increase the 

entries of b. However, in practice, the probability mass of the solution vector pH(t) tends to 

concentrate at a much smaller subset of states. It is therefore advantageous to approximate 

pH(t) with a more compactly supported distribution. More precisely, if we let ε > 0 be an 

error tolerance, we can use a distribution pΩ supported on Ω ⊂ H such that pH − pΩ ≤ ε. 

Here, the FSP error bound (8) plays a critical role in choosing the appropriate support set Ω. 

We note that this error bound was recently utilized by Fox et al. [58] to compute rigorous 

lower and upper bounds for the true log-likelihood function (8), from which comparison 

between certain models could be done even at a low-fidelity FSP solution. We do not pursue 

this direction in the present work.

To efficiently compute the solution of the surrogate CMEs using the principles just 

mentioned, we employ a new FSP implementation recently developed by Vo and Munsky 

[59]. This solver divides the time interval of interest [0, tf] into subintervals Ij := [tj, tj+1), j = 

0, …, nstep − 1 with 0 := t0 < t1 < … < tnstep := tf. On each time subinterval Ij, the dense 

tensor pH(t) that is the solution of the surrogate CME (31) is approximated by a sparse 

tensor pΩj(t) supported on Ωj ⊂ H, obtained from solving

d
dt  pΩj(t) = AΩjpΩj (t), t ∈ tj, tj + 1 , (33)

where

AΩj(y, x) = AH(y, x) if x, y ∈ Ωj
0otherwise

.

Clearly, in solving (33), we only need to keep track of the equations corresponding to states 

in Ωj and that reduces the computational cost significantly.

From the FSP error bound (7), we derive an error-control criteria of the form

gj(t) = 1 − 1T pΩj(t) ≤ t
tf

ε . (34)

If at some t ∈ [tj, tj+1) we find that the inequality is not satisfied, more states are added to Ωj 

and the integration starts again from tj until the criteria is satisfied over the whole interval. 

The determination of the time steps tj is left to the ODE integrator employed for solving eq. 

(33). The advantage of using such an adaptive FSP approach, compared to the classic FSP as 

formulated in [10], is that we need not start with the full state space at the beginning of the 
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integration. Rather, a small projection can be used to advance the solution over the early 

time points, while more states are included at the later time points only when needed using 

the time-dependent FSP error bound (34).

The state sets Ωj are chosen as integral solutions of a set of inequality constraints. In 

particular, they have the form

Ωj = x ∈ H(b) ∣ fi(x) ≤ ci
(j) , (35)

where fi are functions that are chosen a priori, and ci > 0 are positive scalars. To expand Ωj, 

we simply increase ci
(j) and run a breadth-first-search routine to explore all reachable states 

that satisfy the relaxed inequality constraints.

Implementation-wise, the approximate solution pΩj is stored in the coordinate format similar 

to that used for sparse tensors [60]. The list of tensor indices is managed with the Distribute 

Dictionary data structure in the software package Zoltan [61,62]. We also make use of 

parallel objects from the PETSc library [63–65].

These MPI-based libraries allow our implementation to scale into multiple computing nodes, 

details of the parallel version of our CME solver is communicated elsewhere [59]. However, 

it is worth pointing out that, as the number of cores increase, there is a diminishing return on 

the speedup gained from parallelizing the forward solution of the CME due to the 

communication cost inherent in numerical operations such as matrix-vector multiplications. 

Therefore, simply plugging a parallel forward solution code on an increasing number of 

nodes into a serial MCMC sampler such as Metropolis-Hastings will have diminishing 

benefits. The ST-MCMC, in contrast, allows us to achieve better utilization of the computing 

resources, since it is embarrassingly parallel. Doubling the number of processors simply 

enables us to simultaneously sample twice as many parameter samples in about the same 

computational time.

We also note that using an adaptive solver such as one we present here incurs some 

numerical error in the surrogate likelihood function. However, we expect this error to be 

negligible with a conservative choice of error tolerance. In particular, the error threshold ε is 

always fixed at 10−8 in our numerical tests.

In the next section, we will confirm the accuracy and efficiency of our combined 

multifidelity sampler and adaptive model reduction scheme when applied to two biologically 

inspired problems and one on a real experimental dataset.

5. NUMERICAL EXAMPLES

In the following tests we compare the four variants of the ST-MCMC described above: the 

Full-fidelity, ESS-Bridge, IT-Bridge, and Tuned IT-Bridge schemes. The full-fidelity scheme 

is the classic ST-MCMC with every likelihood evaluation using the highest model fidelity. 

The remaining three schemes are Multifidelity ST-MCMC variants in which the bridging 

between fidelity levels are determined based on the ESS, the new information-theoretic 
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criteria with or without β-tuning (see eq. (17) and the preceding discussion in section 3.2). 

In each of these Multifidelity schemes, the surrogate likelihood is formulated as described in 

section 4.1. When all propensities are time-invariant as in the first two examples, the reduced 

system of ODEs in eq. (33) is solved by computing the action of the matrix exponential 

operator using the Krylov approximation with Incomplete Orthogonalization Procedure [66–

68], with the Krylov basis size fixed at 30. In the case of time-varying propensities in the 

third example, we use the Four stage third order L-stable Rosenbrock-W scheme [69] 

implemented in the TS module of PETSc [70]. All these ODEs solvers are set with 

conservative absolute tolerance of 10−14, and relative tolerance of 10−4. All the codes for the 

numerical experiments are available at the public Github repository at https://github.com/

voduchuy/StMcmcCme.

5.1 Parameter inference for repressilator gene circuit

We first consider a three-species model inspired by the well-known repressilator gene circuit 

[1]. This model consists of three species, TetR, λcI and LacI, which constitute a negative 

feedback network (Table 1). We simulate a dataset that consists of five measurement times 2, 

4, 6, 8, and 10 minutes, with 1000 cells measured at each time point. These numbers of 

single-cell measurements are typical of smFISH experiments [6,44]. We assume that all cells 

start at the state x0 = (TetR, λcI, LacI) = (0, 0, 0), so that at the initial time where there are 

no gene products.

The hierarchy of surrogate CMEs (cf. (31)) is defined by the bounds

b(l) =

bTetR
(l)

bλcI
(l)

bLacI
(l)

=

c1 + (l − 1)
d1 − c1

Lmax + 1

c2 + (l − 1)
d2 − c2

Lmax + 1

c3 + (l − 1)
d3 − c3

Lmax + 1

where (c1, c2, c3) = (20, 40, 40) and (d1, d2, d3) = (50, 100, 100), with Lmax = 10. Therefore, 

the multifidelity ST-MCMC will transit through ten levels, with the highest-fidelity model 

having a state space of size 51×101×101.

We conduct parameter inference in log10-transformed space. The prior for the parameters is 

chosen to be a multivariate normal distribution (in log10 space) with a diagonal covariance 

matrix (see table 2). We ran both the ST-MCMC with the highest-fidelity surrogate CME 

and the multifidelity ST-MCMC on 29 nodes, with 36 cores per node with 1044 parallel 

chains. For each level, samples were evolved using Metropolis-Hastings MCMC until a 

correlation target of 0.6 was reached. The proposal distribution was adaptively tuned as part 

of the algorithm. Details on the ST-MCMC sampler and its tuning can be found in [35]. Fig. 

2 shows the time taken for each sampling scheme to reach a certain annealing level, with the 

multifidelity schemes with our proposed IT-based criteria outperforming the state-of-the-art 

fixed-fidelity ST-MCMC and ESS Bridging schemes. Specifically, while the full-fidelity ST-

MCMC took over 25 hours to finish, the Multifidelity ST-MCMC with ESS, Information-

theoretic, and Tuned Information-theoretic Bridging took respectively 7.2, 4.1 and 5.3 hours, 
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resulting in speedup factors of about 3.5, 6.2 and 4.8. The novel Information-theoretic (IT) 

schemes are clearly faster than the ESS-based scheme in this example, with the untuned IT 

scheme almost twice as fast as the ESS-based scheme. We observe that for the early levels of 

the algorithms, when β is small, the lowest fidelity model is sufficiently informative. Further, 

at these early levels the ESS-based scheme is slightly faster than the others since it does not 

require any full model evaluations. However, after β gets larger, the IT-based methods start 

to outperform the ESS-based method since they use the full model evaluations to judge that 

they do not need to bridge to the higher fidelity models as quickly as the ESS-based scheme 

does. Although the prior assigns a probability density of only about 8.766 × 10−20 to the true 

parameter vector, all samplers were able to bring the particles close to the true parameters 

(Fig. 4). There is no notable difference in the shapes of the posterior distributions 

constructed from the samples of these two schemes (Fig.3 and table 2).

5.2 Bayesian comparison of compartmental models of gene expression

We next explore the application of multifidelity ST-MCMC to the problem of model 

selection. We consider a class of compartmental multi-state gene expression models based 

on the model considered in [71]. The model separates biomolecules into the nuclear and 

cytoplasmic compartments. The reaction network consists of a gene that could switch 

between an inactivated state G0 and several activated states Gi, i = 1, …, nG −1. When 

activated, these gene can be transcribed into RNA molecules within the nucleus at the rate of 

ri molecule/minute on average. These nuclear mRNA molecules are then transported into the 

cytoplasm at a rate of ktrans molecule/min, where they degrade at the probabilistic rate γ 
molecule/minute. Overall, the model consists of nG + 2 species: genes that are at different 

states, nuclear mRNA and cytoplasmic mRNA. These molecular species that can go through 

3nG +1 reaction channels (Table 3). Only the copy numbers of the nuclear and cytoplasmic 

mRNA species are observable in experiments. We want to use model selection to decide the 

number nG of gene states that best explain the observed data.

We simulate a ground truth dataset based on the model with nG := 3, which consists of 1000 

single-cell measurements for each time point t ∈ {2, 4, 6, 8, 10} (with hour as time unit). We 

then use the multifidelity ST-MCMC using the information-theoretic criteria with β-tuning 

to estimate the model evidence for three classes of reaction networks that consist of two, 

three, and four gene states and compare these results with the model evidence founding 

using the full model. We choose the information-theoretic criteria with β-tuning over the 

other multifidelity approaches because it is the most robust and uses the β-tuning to avoid 

sampling degeneracy when the model fidelity changes. This is very important for computing 

model evidence because the model evidence estimate error is related to the KL-divergence 

between the intermediate distributions. The 2 and 3 state model were run using 7 nodes with 

36 cores, while the 4 state model was run on 14 nodes also with 36 cores each. Each ST-

MCMC used 1008 parallel samples. For each level, chains were run using MCMC until a 

correlation target of 0.6 was reached or 100 iterations exceeded. These results are 

summarized in Table 4. The model evidence ranges are computed using the approach 

described in [53].
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From our results, we observe that not only does the Tuned-IT multifidelity ST-MCMC 

provide consistent estimate of the model evidence compared to the full-model based ST-

MCMC, it actually predicts less error. All the while taking less time with speed up factors of 

about 1.6, 3.8 and 3.2 for the 2, 3, and 4 gene state model respectively. The improved 

estimate of the multifidelity approach is likely due to the fact that it uses more intermediate 

levels so it has a finer discretionary of the thermodynamic integration used to estimate the 

evidence.

The computed evidence indicates that the present data does not significantly favor one 

model choice over others. Clearly more experiments are required to provide conclusive 

evidence for model selection, and the multifidelity framework allows us to realize the 

insufficiency of data faster than the full-fidelity scheme. This is an important advantage in 

practice, as the faster assessment of current experimental data will likely reduce the lag time 

between consecutive batches of experiments. Further it may be possible to integrate the 

same multifidelity ST-MCMC based approach into Bayesian experimental design to speed 

up estimating the expected information gain from various experimental setups in order to 

design experiments to better discriminate between the models.

5.3 Stochastic transcription of the inflammation response gene IL1beta

Having explored the performance of the Multifidelity ST-MCMC schemes with FSP on 

theoretical examples with simulated datasets, we apply our method on modeling real 

datasets. We consider the expression of the IL1beta gene in response to LPS stimulation that 

was studied in Kalb et al. [44]. The dataset consists of mRNA counts for IL1beta measured 

right before applying LPS stimulation, as well as those at [0.5, 1, 2, 4] hours after. We 

consider a three-state gene expression model with a time-varying deactivation rate. We 

assume the initial state (2, 0, 0, 0). The observed mRNA counts are fit to the solutions of the 

CME at times T0 +{0, 0.5, 1, 2, 4} hour, where the time offset T0 is to be estimated. The 

influence of LPS-induced signaling molecules is modeled by the function of the form

S(t) = max 0, exp −r1 t − T0 1 − exp −r2(t − T0) . (36)

This signal affects the rate by which the gene turns off,

k1, 0(t) = max 0, a10 − b10S(t) .

This results in a chemical reaction network with time-varying propensities and eleven 

uncertain parameters (Table 5). Similar to the previous example, the gene state is hidden and 

the data only contains measurements of the mRNA copy numbers.

Fig. 5 summarizes the performance of the four sampling schemes. The full-fidelity model 

considered in this example has a state space of only 18,432 states, and could be solved 

quickly without any reduction scheme. Yet, we still observe significant speedup from the 

Multifidelity schemes. Specifically, the Multifidelity ST-MCMC with ESS, Information-

theoretic and Tuned Information-theoretic Bridging took respectively 3153, 2384, and 2703 

seconds to finish, with speedup factors of 1.7, 2.2, and 2.0 over the full-fidelity scheme that 

takes over 5468 seconds. In Figure 6, we see the evolution of the model parameters for the 
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different methods, and we can use this to better understand differences from Figure 5. It took 

significantly longer for the ESS-based method to bridge to higher fidelity models than the 

IT-based methods. However, when it did bridge it jumped straight to the highest model 

fidelity. For several parameters, we see that their evolution under the ESS-based scheme 

accumulated significant bias at lower β levels before being corrected when the ESS sampler 

started bridging much later on (e.g. parameters r1, k01, and T0). Furthermore, once bridging 

occurred the distributions were very far apart from each other so the sample population 

degenerated. This can be seen in the bias that occurs in parameters r2, b10 and α1 

immediately after bridging. The fact that the ESS-based method does not use any 

information from the full posterior explains this delay and degeneracy as it is unable to 

detect the emergence of bias. In contrast, the IT-based methods use the guidance of full 

model evaluations to better recognize the emergence of bias, so they correct it quicker. 

Therefore, the IT-based schemes have a smoother evolution and as a result take less time. 

However, we do observe bias occur in r2 after one bridging step for the IT-Bridge without β 
tuning, indicating some sampling degeneracy. This is not the case for IT-Bridge with β 
tuning since it is specifically designed to avoid degeneracy.

All sampling schemes essentially arrived at the same posterior estimates for the model 

parameters (Table 6). Despite significant posterior variance for some parameters, the 

Bayesian prediction for the distributions of RNA copy number has negligible uncertainties, 

and they appear to correspond reasonably well with the experimental data at the beginning 

and the end of the measurement time period (Fig. 7). We notice that this is not necessarily 

the only model structure that could explain the data, and there may yet be other models that 

could fit and predict single-cell behavior more accurately. The speedup enabled by the 

Multifidelity framework will allow the researcher the ability to more rapidly propose, assess, 

and choose between different alternative models.

6. CONCLUSION

Rapid advancements in experimental techniques are allowing biologists to collect 

quantitative data about cellular processes at ever smaller scales with increasing detail [6–8]. 

Mathematical models have become an indispensable part in the process of learning and 

making predictions from this data. Stochastic reaction networks (SRNs) form a powerful 

class of models that have found widespread use within the quantitative biology community 

[7]. Identifying these models from the data, however, is a challenging task due to the 

computational cost of solving the chemical master equation (CME). This has prevented a 

fully Bayesian statistical framework from being adopted widely in real biological studies. In 

this paper, we seek to address the challenge of applying the Bayesian philosophy to 

analyzing stochastic gene expression data by proposing an efficient computational 

framework for Bayesian parameter calibration and model selection for SRNs. This 

framework combines novel multifidelity formulations of the massively parallel ST-MCMC 

sampler with surrogate models of the CME. Numerical tests demonstrate that this combined 

approach leads to significant savings in comparison to a state-of-the-art method that uses 

solely the high-fidelity models. Further, we also propose a new criteria for tuning model 

fidelity within multifidelity SMC type methods based on information theory that compares 

favorably to effective sample size based techniques.
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The research reported here may potentially lead to fruitful future directions. With respect to 

surrogate models, the approach proposed here for the efficient solution of the surrogate 

master equations is only one among various alternatives that have been proposed over the 

years since the introduction of the FSP algorithm [10]. Another attractive option for 

constructing multifidelity models is to utilize a low-rank tensor format such as the quantized 

tensor train that has been proposed for the forward solution of the CME [72–77]. It is also 

possible to exploit bounds on the log-likelihood function as done in Fox et al. [58]. While 

the present paper focuses on inference from smFISH data, our approach may also be adapted 

to analyze other types of single-cell data, such as time-course fluorescence measurements 

whose likelihood is also amenable to the FSP approach [78]. The improved efficiency may 

lead to more widespread adoptions of the Bayesian approach in answering biological 

questions. We refer to Catanach et al. [16] for an example of a Bayesian approach to 

studying the phenomenon of context dependence in synthetic gene circuits using Bayesian 

model selection, which required significant computational resources.

There are also many directions for improving Multifidelity ST-MCMC in general. We expect 

estimating the information gain criteria could be significantly improved. One possibility is 

using a more advanced sampling scheme that leverages model evaluations from across the 

multifidelity hierarchy. This could even further reduce the number of full model evaluations 

needed at each level. Another avenue of research is designing Multifidelity ST-MCMC 

specifically for estimating a quantity of interest to a given accuracy as is done in Multilevel 

MCMC. If we have a design object, ST-MCMC may not need to progress through the full 

model hierarchy or all annealing levels in order to provide enough information to estimate 

the quantity of interest to the desired accuracy. By further reducing the computational cost of 

Bayesian methods like ST-MCMC, engineers and scientists will be better able to integrate 

uncertainty quantification into their workflow. Therefore, as high performance computing 

resources are becoming increasingly accessible, we expect the Multifidelity ST-MCMC 

framework to provide a useful tool for researchers who are interested in model calibration 

and uncertainty propagation for complex models.
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FIG. 1: 
Illustrative realizations of the full and surrogate CMEs for a simple system with mass-action 

propensity. Given the same random seed, the simulated trajectory of the surrogate CME will 

be identical to that of the true CME until the state reaches a threshold, b, where the surrogate 

trajectory freezes. Increasing the threshold reduces the chance that the surrogate trajectories 

hit the bounds and consequently more realizations of the true CME are captured by the 

surrogate model.
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FIG. 2: 
Performance of ST-MCMC samplers on the repressilator example. The horizontal axis 

represent the annealing factor, i.e. inverse temperature. Significant speed up is observed for 

the multifidelity schemes.
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FIG. 3: 
Prior and posterior densities in the repressilator example. See table 2 for the numerical 

values of the estimated means and standard deviations of these posterior distributions. It is 

evident that all methods converge to virtually the same distribution.
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FIG. 4: 
Evolution of the population of samples for the repressilator model parameters using four 

different ST-MCMC variants: full-fidelity, multifidelity strategies with bridging based on 

ESS, Information-theoretic Criteria and Tuned Information-theoretic Criteria. The solid lines 

represent the history of the sample means. The area of the mean ± standard deviation is 

presented in the shaded region. Notice in the γ1 parameter that bias starts to accumulate for 

the IT-based methods. This bias is corrected when the sampler starts bridging since the bias 

began to exceed the natural parameter variability.
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FIG. 5: 
Performance of ST-MCMC samplers on the IL1beta example. The horizontal axis represents 

the inverse temperature.
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FIG. 6: 
Evolution of the population of samples for the IL1beta model parameters using four different 

ST-MCMC variants: full-fidelity, multifidelity strategies with bridging based on ESS, 

Information-theoretic Criteria and Tuned Information-theoretic Criteria. The solid lines 

represent the history of the sample means. The area of the mean ± standard deviation is 

presented in the shaded region.
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FIG. 7: 
Comparison of data and the posterior mRNA distribution predictions for the IL1beta 

transcription model at zero and four hour after LPS induction. The mean Bayesian 

prediction for the mRNA probability distribution is computed by averaging the solution of 

the CME over all posterior samples. The area of one standard deviation around the mean is 

shown in shade. Visually speaking, samples from different ST-MCMC formulations yield 

identical predictions.
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TABLE 1:

Reactions and propensities in the repressilator model. ([X] is the number of copies of the species X.)

reaction propensity

1. ∅ → TetR k0/ 1 + a0[LacI]b0

2. TetR → ∅ γ0 [TetR]

3. ∅ → λcI k1/ 1 + a1[TetR]b1

4. λcI → ∅ γ1 [λcI]

5. ∅ → LacI k2/ 1 + a2 λcI b2

6. LacI → ∅ γ2[LacI]
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TABLE 2:

Model parameters in the repressilator example. The second column presents the parameters of the prior 

distribution, where we use a Gaussian prior in the log10-transformed parameter space with a diagonal 

covariance matrix. The last four columns present the posterior mean and standard deviation of model 

parameters estimated using four methods: fixed-fidelity ST-MCMC (Fixed), Multifidelity ST-MCMC with 

ESS-Bridging, Multifidelity ST-MCMC with IT-Bridging, and Multifidelity ST-MCMC with β-tuning and IT-

Bridging.

Parameter True Prior Posterior

Full-fidelity ESS-Bridge IT-Bridge Tuned IT-Bridge

log10(k0) 1.00 10.00 ± 0.3 1.00 ± 0.01 1.00 ± 0.02 0.99 ± 0.01 1.00 ± 0.01

log1o(γ0) −2.00 0.10 ± 0.3 −1.98 ± 0.07 −1.98 ± 0.08 −1.98 ± 0.07 −1.98 ± 0.07

log10(a0) −1.00 0.10 ± 0.3 −1.05 ± 0.06 −1.05 ± 0.07 −1.07 ± 0.06 −1.06 ± 0.06

log10(b0) 0.30 0.10 ± 0.3 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.01 0.31 ± 0.01

log10(k1) 0.88 10.00 ± 0.3 0.87 ± 0.00 0.87 ± 0.01 0.87 ± 0.00 0.87 ± 0.00

log1o(γ1) −1.70 0.10 ± 0.3 −1.71 ± 0.05 −1.73 ± 0.06 −1.73 ± 0.05 −1.71 ± 0.05

log10(a1) −2.00 0.10 ± 0.3 −1.98 ± 0.05 −1.98 ± 0.06 −1.99 ± 0.05 −1.98 ± 0.05

log10(b1) 0.40 0.10 ± 0.3 0.40 ± 0.01 0.40 ± 0.01 0.40 ± 0.01 0.40 ± 0.01

log10(k2) 1.00 10.00 ± 0.3 0.98 ± 0.01 0.99 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

log10(γ2) −1.30 0.10 ± 0.3 −1.34 ± 0.03 −1.34 ± 0.04 −1.34 ± 0.03 −1.34 ± 0.03

log10 (a2) −1.30 0.10 ± 0.3 −1.35 ± 0.06 −1.34 ± 0.07 −1.36 ± 0.06 −1.35 ± 0.06

log10 (b2) 0.48 0.10 ± 0.3 0.48 ± 0.01 0.48 ± 0.01 0.48 ± 0.01 0.48 ± 0.01
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TABLE 3:

Reactions and propensities in the compartmental gene expression model.

reaction index reaction propensity

1,…,nG Gi−1 → Gi, i = 1,…, nG − 1 ki − 1
+ Gi − 1

nG + 1,…, 2nG Gi → Gi−1, i = 1,…, nG − 1 ki
− Gi

2nG + 1,…, 3nG − 1 Gi → Gi + RNAunc, i = 1,…, nG − 1 ri[Gi]

3nG RNAnuc → RNAcyt ktrans [RNAnuc]

3nG + 1 RNAcyt → ∅ γ[RNAcyt]
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TABLE 4:

Comparison of the model evidence computation for the 2,3, and 4 state gene expression model using ST-

MCMC with the full fidelity and Multifidelity ST-MCMC with β-tuning. The evidence estimates from the full-

fidelity and multifidelity methods are consistent, but the multifidelity scheme is significantly faster.

Model Full-fidelity Tuned IT Bridge

Log Evidence Time (Sec) Log Evidence Time (Sec)

2 Gene −20108.8 ± 5.4 1244 −20112.6 ± 2.0 758

3 Gene −20111.9 ± 5.6 67496 −20115.7 ± 2.0 17511

4 Gene −20113.0 ± 5.7 76546 −20117.5 ± 1.8 23777
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TABLE 5:

Reactions and propensities in the IL1beta model.

reaction propensity

1. G0 → G1 k01 [G0]

2. G1 → G2 k12 [G1]

3. G2 → G1 k21 [G2]

4. G1 → G0 k10(t) = max{0,a10 − b10S(t)}, see eq.(36)

5. ∅ → RNA α1 [G1] + α2 [G2]

6. RNA → ∅ γ[RNA]
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TABLE 6:

Model parameters in the IL1beta example. The second column presents the parameters of the prior 

distribution, where we use a Gaussian prior in the log10-transformed parameter space with a diagonal 

covariance matrix. The last four columns present the posterior mean and standard deviation of model 

parameters estimated using the ST-MCMC with full-fidelity model and the Multifidelity ST-MCMC with three 

different bridging strategies.

Parameter Prior Posterior

Full-fidelity ESS-Bridge IT-Bridge Tuned IT-Bridge

log10(r1) −2.00 ± 0.33 −2.48 ± 0.03 −2.47 ± 0.03 −2.47 ± 0.03 −2.47 ± 0.03

log10(r2) −2.00 ± 0.33 −2.00 ± 0.34 −2.00 ± 0.33 −2.00 ± 0.33 −2.00 ± 0.32

log10(k01) −3.00 ± 0.33 −3.26 ± 0.03 −3.25 ± 0.04 −3.25 ± 0.03 −3.25 ± 0.03

log10(a10) −2.00 ± 0.33 −1.31 ± 0.06 −1.31 ± 0.06 −1.30 ± 0.06 −1.31 ± 0.06

log10(k10) 3.00 ± 0.33 3.04 ± 0.34 3.05 ± 0.34 3.06 ± 0.30 3.04 ± 0.31

log10(k12) −3.00 ± 0.33 −3.08 ± 0.03 −3.08 ± 0.04 −3.08 ± 0.04 −3.08 ± 0.03

log10(k21) −2.00 ± 0.33 −1.25 ± 0.15 −1.26 ± 0.14 −1.28 ± 0.14 −1.28 ± 0.13

log10(α1) −3.00 ± 0.33 −3.60 ± 0.15 −3.60 ± 0.16 −3.60 ± 0.16 −3.60 ± 0.16

log10(α2) 0.00 ± 0.33 0.71 ± 0.15 0.70 ± 0.14 0.68 ± 0.13 0.68 ± 0.13

log10(γ) −4.00 ± 0.33 −4.56 ± 0.05 −4.56 ± 0.05 −4.56 ± 0.05 −4.56 ± 0.05

log10(T0) 4.00 ± 0.33 5.36 ± 0.09 5.36 ± 0.09 5.37 ± 0.08 5.37 ± 0.09
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