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Body composition (BC) quantifies the proportion of 
muscle and adipose tissue, traditionally approximated 

with body mass index (BMI). BMI is an evidence-based 
marker of health and disease risk used to define criteria for 
overweight and obese patients (1). However, BMI has low 
specificity for identifying excess adipose tissue, varying sig-
nificantly in its correlation with adipose tissue by sex, age, 
and race or ethnicity (2,3).

A commonly used method for more accurate assessment 
of BC requires analysis of a single axial CT slice through 
the third lumbar vertebral body (L3) (4). The L3 slice cor-
relates well with whole-body skeletal muscle (SM), visceral 
fat (VF), and subcutaneous fat (SF) volumes (R = 0.92, 

0.96, and 0.89, respectively) (5,6). Boundaries of these tis-
sues are identified anatomically, and the area is quantified 
with established Hounsfield unit ranges, yielding SM area, 
VF area, and SF area (7). To date, the time and expertise 
required for manual BC analysis has precluded widespread 
clinical use (8). Furthermore, the few published deep learn-
ing models do not include selection of the appropriate CT 
slice and/or were not trained with routine abdominal CT 
examinations (9–13).

BC areas have shown usefulness in the assessment of car-
diovascular risk. Although both VF and SF areas are associ-
ated with insulin resistance and left ventricular remodeling, 
VF area is associated with lower cardiac output and higher 
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Background:  Although CT-based body composition (BC) metrics may inform disease risk and outcomes, obtaining these metrics has 
been too resource intensive for large-scale use. Thus, population-wide distributions of BC remain uncertain.

Purpose:  To demonstrate the validity of fully automated, deep learning BC analysis from abdominal CT examinations, to define de-
mographically adjusted BC reference curves, and to illustrate the advantage of use of these curves compared with standard methods, 
along with their biologic significance in predicting survival.

Materials and Methods:  After external validation and equivalency testing with manual segmentation, a fully automated deep learning 
BC analysis pipeline was applied to a cross-sectional population cohort that included any outpatient without a cardiovascular dis-
ease or cancer who underwent abdominal CT examination at one of three hospitals in 2012. Demographically adjusted population 
reference curves were generated for each BC area. The z scores derived from these curves were compared with sex-specific thresholds 
for sarcopenia by using x2 tests and used to predict 2-year survival in multivariable Cox proportional hazards models that included 
weight and body mass index (BMI).

Results:  External validation showed excellent correlation (R = 0.99) and equivalency (P , .001) of the fully automated deep 
learning BC analysis method with manual segmentation. With use of the fully automated BC data from 12 128 outpatients 
(mean age, 52 years; 6936 [57%] women), age-, race-, and sex-normalized BC reference curves were generated. All BC areas  
varied significantly with these variables (P , .001 except for subcutaneous fat area vs age [P = .003]). Sex-specific thresholds  
for sarcopenia demonstrated that age and race bias were not present if z scores derived from the reference curves were used  
(P , .001). Skeletal muscle area z scores were significantly predictive of 2-year survival (P = .04) in combined models that  
included BMI.

Conclusion:  Fully automated body composition (BC) metrics vary significantly by age, race, and sex. The z scores derived from refer-
ence curves for BC parameters better capture the demographic distribution of BC compared with standard methods and can help 
predict survival.
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systemic vascular resistance (14–16). VF area has also been shown 
to be independently associated with metabolic syndrome and ma-
jor cardiovascular events in patients with colon cancer as well as in 
an asymptomatic screening population (17–19).

Furthermore, BC has been linked to prognosis and chemo-
therapy toxicity in patients with cancer and to the risk of devel-
oping cancer. Cachexia or significant weight loss is known to be 
associated with poor prognosis. Sarcopenia, the loss of muscle 
mass generally calculated with sex-specific thresholds of SM 
index, and decreased muscle attenuation, which reflects lipid 
deposition and muscular atrophy, may occur without substan-
tial weight loss, especially in obese patients, and are associated 
with survival in multiple tumor types (7,20–22). Furthermore, 
sarcopenia is associated with increased chemotherapy toxicity 
(21,23). Last, the incidence of multiple tumor types is associated 
with various indexes of adiposity (24). These data show that BC 
is too complex to be approximated with BMI alone.

We developed a fully automated BC analysis pipeline in 
which deep learning was used to calculate BC parameters from 
routine abdominal CT examinations (25). The aim of this study 
was to demonstrate the validity of this pipeline, to apply this 
fully automated BC analysis pipeline to abdominal CT exami-
nations to define age-, sex-, and race-normalized BC reference 
curves, and to show the usefulness of these curves compared with 
standard methods in the prediction of 2-year survival in a large, 
cross-sectional outpatient population.

Materials and Methods
The Mass General Brigham (formerly Partners HealthCare) 
institutional review board approved this study and waived 
informed consent. All procedures were compliant with the 
Health Insurance Portability and Accountability Act.

Neural Network Model Data Sets
An internal data set included a single abdominal CT examina-
tion for each of 604 patients with pancreatic adenocarcinoma 
enrolled in a multi-institutional research protocol and was 

randomly partitioned into 421 training, 94 validation, and 89 
internal test examinations (26). Two hundred ninety-six pa-
tients were  men (49% ) and 308 were women (44%), with a 
median age of 64 years (interquartile range, 14 years). An ex-
ternal test data set included 534 abdominal CT examinations 
from patients with lymphoma from a different institution; 
these patients were described in a separate publication (27). 
Demographic data are not available for the external data set 
owing to anonymization from the source cohort. Examinations 
were performed with varying hardware, imaging parameters, 
and use of oral or intravenous contrast material.

After selection of a CT slice at L3, four 3rd- or 4th-year ra-
diology residents (including N.M. and W.C.W.) performed ini-
tial manual segmentation of SM, VF, and SF areas with software 
(internal data set: sliceOmatic [TomoVision, Magog, Canada]; 
external data set: OsiriX [Pixmeo, Bernex, Switzerland]). Spe-
cific Hounsfield unit ranges for muscle (229 to 150 HU) and 
fat (2190 to 230 HU) were used (7). The residents were first 
trained with 20 cases and had to reach a coefficient of variance 
of less than 3% with these 20 cases. All segmentations were 
separately reviewed and edited by a board-certified radiologist 
(M.H.R., with 13 years of experience). Annotators had access to 
only the CT image data.

Analysis Pipeline, Model Training, and Testing
The analysis pipeline included series selection and two con-
volutional neural network models (Fig 1, Appendix E1 [on-
line]). The preliminary pipeline was published as a conference 
paper (25). The source code for this study is available online 
(https://github.com/CPBridge/ct_body_composition [commit 
399d06e74e4ec18290cc3f1021b0f8e3fa6e4e5a]).

A DenseNet architecture model was used to predict the spa-
tial offset of a given slice from the radiologist-selected L3 slice 
saturated by the sigmoid function (Fig E1a [online]) (28). In-
put images were downsampled to 256 3 256 and normalized to 
soft-tissue window (level, 40 HU; width, 400 HU). Regression 
outputs for an entire series underwent Gaussian smoothing, and 
the slice closest to zero was selected as the L3 slice. The model 
was trained with a mean absolute error loss function of the spa-
tial offset and tested on the external test data set.

A U-Net architecture model was used to segment the L3 slice 
according to SM, VF, and SF (Fig E1b [online]). Native 512 
3 512 resolution images were normalized to soft-tissue win-
dow (29). The model was trained with a total Dice loss function 
across classes and tested on 89 internal test cases (30).

Combined model performance was assessed by comparing 
the calculated areas from our analysis pipeline with the manual 
segmented external data set with Pearson correlation coefficients.

Cross-sectional Population Cohort
All adult outpatients who underwent abdominal CT examina-
tion in 2012 at Brigham and Women’s Hospital, Massachu-
setts General Hospital, and Dana-Farber Cancer Institute were 
identified in the Partners HealthCare Research Patient Data 
Registry. Demographic data, BMI, weight, height, smoking 
status, diagnosis codes, and death data were retrieved from the 
electronic medical record and Social Security Death Index.

Abbreviations
BC = body composition, BMI = body mass index, SF = subcutaneous 
fat, SM = skeletal muscle, VF = visceral fat

Summary
Population-scale fully automated body composition analysis of 
routine abdominal CT examinations was used to generate reference 
curves that capture the distribution of body composition by race, sex, 
and age.

Key Results
	n Fully automated body composition (BC) analysis showed high 

correlation (R . 0.98) and equivalency (P , .001) to manual 
segmentation.

	n Given that BC parameters varied significantly by age, race, and sex 
(P , .001 for all except subcutaneous fat area vs age [P = .003]), 
demographically adjusted reference curves were determined.

	n Reference curves allow calculation of z scores that capture the 
distribution of BC by race, sex, and age compared with standard 
methods that are biased by age and race (P , .001).
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described for the internal data set annotation). Reader 1 re-
viewed the same set of cases with at least a 1-month washout 
between sessions. A formal test for equivalency was performed 
between our pipeline and reader 1+2 with two one-sided t tests 
(an equivalence test) (a = .05) (31). The margin of equivalence 
was 65%. Variances were compared between each reader and 
our fully automated BC analysis by using an extension of the 
Levene test (32).

Reference curves over age by race and sex were created for BC 
areas and indexes (height-normalized areas), weight, and BMI 
by using the lms function of the GAMLSS R package (version 
5.1–6, 2019, open source) for the following subgroups from 
the cross-sectional population cohort: White non-Hispanic 
patients aged 18–90 years, Black female patients aged 18–75 
years, and Black male patients aged 18–70 years (33–35). Other 
groups were not modeled owing to limited representation in  
our cohort. The source code for creating the reference curves is 
available online (https://github.com/CPBridge/ct_body_composi-
tion [commit 399d06e74e4ec18290cc3f1021b0f8e3fa6e4e5a]).

The proportion of the cross-sectional population cohort with 
sarcopenia was calculated by using previously published thresh-
olds of SM index of less than 55 cm2/m2 for men and less than 
39 cm2/m2 for women (7), resulting in 35% of patients being 
classified as having sarcopenia. For SM index data normalized 
by means of our reference curves, a z-score cutoff of 20.40 cor-
responded to 35% of our cohort having sarcopenia. To compare 
how the proportion of patients classified as having sarcopenia 
defined by the sex-specific thresholds varied according to age cat-
egory and race when compared with the z-score method, which 
yielded a constant sarcopenia frequency of 35% regardless of 
race and age category, two-sided Pearson x2 goodness-of-fit tests 
were performed across age and race categories wherein the null 
hypotheses were that the percentage with sarcopenia as defined 

The earliest examination was selected per patient and re-
trieved in Digital Imaging and Communications in Medicine 
format; 0.2% (51 of 28 462 examinations) failed retrieval and 
were excluded. Inference was performed by using our fully au-
tomated BC analysis without retraining. For examinations with 
multiple axial series, the axial series with the greatest slice thick-
ness, greatest slice number, and maximum VF area was selected 
with sequential tie breaking.

Cases with automatically generated flags for potential errors 
in slice selection based on model output were excluded. These 
excluded cases were manually reviewed for actual slice selection 
errors. Quality assurance for BC segmentation was performed by 
a radiologist (K.M., a 4th year radiology resident at the time of 
the study) on a random 2% (n = 564) of cases.

We excluded patients with major cardiovascular (n = 9531) 
and/or oncologic (n = 14 531) diagnosis codes according to the 
International Classification of Diseases, ninth revision (except 
hypertension and nonmelanomatous skin cancers) in the elec-
tronic medical record within 3 months of the examination date, 
which yielded 12 128 cases (mean patient age, 52 years; 6936 
women [57%]) (Table).

Statistical Analysis
Independent samples t tests and normal linear regression were 
used to determine associations between the BC areas and age, 
sex, and race.

A total of 100 cases, separate from the model training or 
testing data sets, were analyzed by means of our fully automated 
pipeline and manually segmented by two independent readers 
(N.M. [reader 1], a 3rd-year resident, and M.H.R. [reader 2], 
a board-certified attending radiologist with 13 years of expe-
rience), and reader 1 was overread by reader 2 (subsequently 
referred to as “reader 1+2”; similar process compared with that 

Figure 1:  Diagram shows pipeline for fully automated body composition analysis of abdominal CT examinations. PACS = picture archiving and commu-
nication system.
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height of the L3 vertebral body in previous studies had been 
determined to be approximately 30 mm (36). A sample com-
parison of a radiologist-chosen L3 slice and an automatically 
chosen L3 slice is demonstrated in Figure 2, A.

The segmentation model assigned pixels to the muscle, SF, 
and VF classes with mean Dice scores (6standard deviation) of 
0.97 6 0.03, 0.98 6 0.02, and 0.95 6 0.10, respectively, in the 
internal test data set. Comparison of representative automatic 
segmentation and manually segmented ground truth is demon-
strated in Figure 2, B.

In the fully automated pipeline executed on the external test 
data set to determine integrated end-to-end performance, the 
muscle compartment showed a mean absolute error versus the 
fully human analysis of 4.3 cm2 and a mean relative error of 
3.1% (R = 0.99). For the SF compartment, the mean absolute 
error was 10.9 cm2 and the mean relative error was 5.9% (R = 
0.99). For the VF compartment, the mean absolute error was 
7.9 cm2 and the mean relative error was 6.5% (R = 0.99).

Formal testing for equivalency between our fully auto-
mated pipeline and standard manual segmentation—a resi-
dent overread by an attending physician—showed equiva-
lence for all BC areas and L3 slice selection (P , .001) (Table 
E1 [online]), with no significant difference in the variances  
(P . .05 for all areas and table position of selected slice) (Table 
E2 [online]).

according to sex-specific thresholds within each age and race cat-
egory was equal to 35%.

To evaluate associations of 2-year overall survival, hazard ra-
tios with 95% CIs were calculated by using Cox proportional 
hazards models. Predictors were BC areas, weight, and BMI z 
scores modeled as four-knot cubic splines with knots defined 
at quartiles. The first multivariable model included all BC areas 
(SM, VF, and SF), the second included BC areas and weight, 
and the third included BC areas and BMI. Kaplan-Meier curves 
were constructed for BC variables for up to 2 years of follow-up.

All analyses were performed by C.P. Bay in SAS (version 9.4, 
2016; SAS Institute, Cary, NC) except for the derivation of the 
reference curves, which was performed with R statistical software 
(version 3.5.1, 2018; R Foundation for Statistical Computing, 
Vienna, Austria). All testing was two tailed, and P , .05 was 
considered to indicate a statistically significant difference. See 
Appendix E1 (online) for additional details.

Results

Model Performance and Equivalency Testing
The slice selection model chose the L3 slice with a median error 
of 5 mm, a mean error of 11 mm, and a maximum error of 40 
mm in the external test data set. The mean error was within the 
range of the L3 vertebral body in most patients, as the mean 

Characteristics of Population Cohort without Major Cardiovascular or Oncologic Comorbidities

Variable Women Men Overall
Age (y)* 52 6 17 52 6 17 52 6 17
Sex
  F … … 6936 (57.2)
  M … … 5192 (42.8)
Race (n = 10,720)
  White non-Hispanic 4971 (81.7) 3963 (85.4) 8934 (83.3)
  Black 629 (10.3) 319 (6.9) 948 (8.8)
  Asian 174 (2.9) 153 (3.3) 327 (3.1)
  White Hispanic 26 (0.4) 12 (0.3) 38 (0.4)
  Other 282 (4.6) 191 (4.1) 473 (4.4)
Institution
   Brigham and Women’s Hospital/Dana-Farber Cancer Institute 2413 (34.8) 1483 (28.6) 3896 (32.1)
   Massachusetts General Hospital 4523 (65.2) 3709 (71.4) 8232 (67.9)
Body mass index (kg/m2) (n = 9020)* 29 6 7 29 6 6 29 6 7
Weight (kg) (n = 9433)* 74 6 20 89 6 20 80 6 21
Height (m) (n = 8915)* 1.6 6 0.1 1.8 6 0.1 1.7 6 0.1
Smoking status (n = 8868)
  Current smoker 574 (10.8) 520 (14.7) 1094 (12.3)
  Former smoker 1218 (22.8) 977 (27.6) 2195 (24.8)
  Nonsmoker 3539 (66.4) 2040 (57.7) 5579 (62.9)
Systolic blood pressure (mm Hg) (n = 9316)* 124 6 17 128 6 17 126 6 17
Diabetes diagnosis 725 (10.5) 613 (11.8) 1338 (11.0)
Follow-up time (y)† 5.1 (2.8–5.6) 4.8 (1.5–5.5) 5.0 (2.2–5.5)

Note.—Unless otherwise indicated, data are numbers of patients, with percentages in parentheses; data are for 12 128 patients unless other-
wise specified due to missing data.
* Data are means 6 standard deviations.
† Data are medians, with interquartile range in parentheses.
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as VF or SM (n = 2), limited scan field of view (n = 1), beam-
hardening artifact (n = 1), arms in the field of view (n = 1), and 
anasarca (n = 1).

Characteristics of Population Cohort without Major 
Cardiovascular or Oncologic Comorbidities
Of the 28 411 patients whose examinations were initially ana-
lyzed, 12 128 did not have a known major cardiovascular or 
cancer diagnosis at the time of the examination and were se-
lected to be broadly representative of the general population. 
Characteristics of this cohort are described in the Table. BC 
areas of these patients varied significantly by age, sex, and race 
(P , .001 for all except SF area vs age [P = .003]) (Fig 3).

Quality Assurance Analysis for Cross-sectional Population 
Cohort
A single abdominal CT examination was analyzed with our 
pipeline for each of 28 411 outpatients who underwent abdomi-
nal CT examination in 2012 in our hospital system; 192 ex-
aminations were flagged as having a potential error in slice selec-
tion based on model output and were subsequently excluded. 
Manual review of these examinations showed that only 13.5% of 
these examinations (26 of 192) had inappropriate slice selection.

Radiologist review of a random 2% (564 of 28 411) of re-
maining cases revealed a 2.5% (14 of 564) segmentation error 
rate. Causes of failure included intraabdominal SM or SF (n = 
5), limited reconstruction field of view (n = 3), SF segmented 

Figure 2:  Images demonstrate examples of model output for deep learning body composition pipeline. A, Examples of automated slice selection. The left CT slice  
was automatically selected by the model; the right CT slice was selected by a radiologist. Graph shows output of L3 regression model. Two vertical lines represent 
slices selected by radiologist (light blue) and by algorithm (orange). Dotted red line is unfiltered prediction; fluctuations in this curve correspond to adjacent vertebral 
levels. Zero crossing of filtered prediction is chosen as L3 level by algorithm (solid red line). B, Two examples of automated segmentation results, one per row. Left image 
shows automated segmentation by the model, the middle image is the input CT slice, and the right image is manually segmented ground truth produced by the radiolo-
gist. Color interpretation for segmentation masks are as follows: background or other, black; skeletal muscle, brown; subcutaneous fat, yellow; and visceral fat, white.
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tion, there is a trend to lose SM area as patients get older, most 
notably in White non-Hispanic patients compared with Black 
patients. As patients get older, there is an overall increase in 
VF area; an increase is not seen in SF area. Although SM area 
seems overall similar between White non-Hispanic patients 
and Black patients, VF area is decreased in Black compared 
with White non-Hispanic patients.

Reference Curves for BC
Age-varying reference curves were calculated according to sex 
and race for both BC areas and indexes (area normalized by 
height) (Figs 4, E2 [online]; Table E3 [online]). As expected, 
the reference curves showed qualitative variation by age, sex, 
and race. Trends such as greater SM and VF areas and mildly 
lower SF area in men than in women were noted. In addi-

Figure 3:  Distribution of body composition parameters according to race and sex. Box-and-whisker plots show, A, skeletal muscle area, B, visceral fat area, C, subcu-
taneous fat area, D, skeletal muscle index, E, visceral fat index, and, F, subcutaneous fat index in outpatient population in White non-Hispanic women (red), Black women 
(orange), White non-Hispanic men (yellow), and Black men (green). Line within box represents the median, box represents interquartile range, and dashed lines represent 
maximum and minimum values in our population.
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Application of z Scores Derived from Reference Curves
Established sex-specific thresholds for SM index to define 
sarcopenia were applied to our cohort, and 35% of patients 
were classified as having sarcopenia (7). Goodness-of-fit tests 
of sarcopenia category according to age and race versus a null 
hypothesis of a uniform 35% fraction showed significant bias 
across age and race groups (P , .001 for age and race) (Fig 
5). In comparison, the z-score method applied with a uniform 
z score threshold of 20.40 yields the same overall prevalence 
of sarcopenia with uniform distributions across age and race 
group by definition.

In Cox proportional hazards models that included quartiles 
of BC z scores derived from the previously defined reference 
curves in Figure 1, SM area was found to be consistently and sig-
nificantly associated with risk of subsequent death within 2 years 
across simple and multivariable models (Figs 6, E4 [online]). In 
the combined model that included the BC areas adjusted for 
weight, SM area was predictive of death (P , .001), whereas 
weight was not (P = .17). In the combined model that included 
the BC areas adjusted for BMI, SM area was predictive of death 
(P = .04) with a greater statistically significant difference than 
BMI (P = .05) (Fig 6).

Reference curves were also generated for weight and BMI 
(Fig E3 [online], Table E4 [online]).

Correlation between Weight, BMI, and BC z Scores
The following Spearman correlation coefficients were calcu-
lated on the z-score scale and represent the extent of deviation 
of a particular patient’s data compared with the mean value in 
patients of the same race, sex, and age. Weight showed a posi-
tive correlation with SM area (Spearman correlation coefficient: 
0.60 [95% CI: 0.58, 0.61], P , .001), VF area (Spearman cor-
relation coefficient: 0.70 [95% CI: 0.69, 0.71], P , .001), and 
SF area (Spearman correlation coefficient: 0.81 [95% CI: 0.80, 
0.82], P , .001). BMI showed positive correlation with SM 
area (Spearman correlation coefficient: 0.53 [95% CI: 0.51, 
0.54], P , .001), VF area (Spearman correlation coefficient: 
0.73 [95% CI: 0.72, 0.74], P , .001), and SF area (Spearman 
correlation coefficient: 0.82 [95% CI: 0.81, 0.83], P , .001). 
Height showed a positive correlation with SM area (Spear-
man correlation coefficient: 0.23 [95% CI: 0.21, 0.25], P , 
.001), VF area (Spearman correlation coefficient: 0.03 [95% 
CI: 0.003, 0.05], P = .03), and SF area (Spearman correlation 
coefficient: 0.07 [95% CI: 0.04, 0.09], P , .001).

Figure 4:  Graphs show reference curves of body composition areas for, A, White non-Hispanic female patients (n = 4971), B, White non-Hispanic male patients 
(n = 3963), C, Black female patients (n = 629), and, D, Black male patients (n = 319). From inferior to superior, lines represent third (dark blue), fifth (light blue), 10th 
(pink), 25th (purple), 50th (black), 75th (green), 90th (yellow), 95th (orange) and 97th (red) percentiles.
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with sex-specific thresholds for skeletal muscle index (7,38) is 
biased by age and race. However, there is limited understanding 
of how clinically significant sarcopenia varies by age and race and 
whether absolute or relative sarcopenia is more important in dif-
ferent clinical scenarios. Furthermore, although muscle attenua-
tion has also been recognized as an important biomarker that is 
complementary to BC area metrics (18,39), it is dependent on 
the use of intravenous contrast material, which adds complexity 
to interpretation. Ultimately, additional work will be needed to 
understand how z scores relate to important clinical outcomes 
and to calibrate z-score thresholds for scenarios such as preopera-
tive risk or cancer cachexia (7,22).

We have shown that BC z scores can be predictive of survival 
in an outpatient population, augmenting the value of routine 
abdominal CT examination and providing utility beyond weight 
and BMI. Other work in oncology used manual BC analysis to 
show that BC metrics could be predictive of survival across tu-
mor types, suggesting that fully automated BC analysis could 
add value to the treatment of patients with cancer if integrated 
into clinical decision pathways (20–22,38,40). Furthermore, 
compelling research revealed that weight management and ex-
ercise can decrease risk and improve outcomes of breast cancer, 
results that likely involve alterations in BC (41). It would be 
interesting to correlate our fully automated BC analysis to the 
marker of lean body mass and body surface area frequently used 
in the exercise physiology and pharmacology literature.

Our study had several limitations. Given the racial break-
down of outpatients at our large hospital system, we could de-
rive reference curves only for White non-Hispanic patients and 
Black patients. Future plans include recruiting additional sites 

Discussion

Although there is widespread in-
terest in CT-based body compo-
sition (BC) analysis, manual seg-
mentation of BC areas requires 
substantial time and expertise, 
which limits applications to well-
funded research (8,15,18,20). 
With the ability to process com-
plete abdominal CT examina-
tions, excellent performance 
during external validation, 
equivalency to manual segmen-
tation, and a low failure rate, our 
fully automated BC pipeline can 
replace manual segmentation for 
determining BC areas and clini-
cal implementation is feasible. 
Furthermore, this pipeline was 
used to confirm that BC areas 
vary widely by age, sex, and race 
and to generate demographic-
specific reference curves.

This study demonstrated a 
means by which artificial intelli-
gence could add value in clinical 
practice. By fully automating a task that both is mundane and 
requires expertise and time, we extracted predictive information 
from existing data. A consumer-level graphics processing unit 
would be sufficient to fully automate BC analysis with the speed 
and scale necessary for a large hospital, harnessing latent value 
from routine imaging.

Previously published BC deep learning models did not include 
series selection and/or were not trained on routine abdominal CT 
examinations. Although Weston et al (11) presented a model that 
could segment the entire abdomen, it is unclear how whole-abdo-
men analysis relates to well-established epidemiologic results based 
on analysis of a single CT slice at L3 (7,18). Furthermore, no prior 
investigators, to our knowledge, have related their model results to 
population reference curves in order to understand the specific risk 
of a particular demographic group (9–13,19).

The reference curves generated in our study allow the calcula-
tion of z scores that represent the deviation of a particular patient’s 
BC area relative to a reference population of the same race, sex, 
and age. These reference curves are analogous to those used in 
bone mineral densitometry, wherein z scores drive the definitions 
of osteopenia and osteoporosis as well as treatment decisions (37). 
We purposely chose outpatients without cardiovascular or cancer 
diagnoses in order for this reference cohort to be broadly represen-
tative of the general population, avoiding undue bias toward indi-
viduals with major illnesses with known or presumed alterations 
in BC. Interestingly, these reference curves highlight differences in 
BC across demographic groups—differences that are not reflected 
with traditional metrics such as weight or BMI.

Compared with z scores that capture the demographic distri-
bution of BC, the standard method of determining sarcopenia 

Figure 5:  Bar charts show comparison proportion of patients classified with sarcopenia with varying age and race 
categories by standard method with sex-specific skeletal muscle index (SMI) threshold for calculating sarcopenia (35% of 
patients in total) versus skeletal muscle index z-score threshold of 20.40 corresponding to 35% of population across age, 
race, and sex (dotted line).
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In conclusion, we observed that body composition (BC) 
metrics, obtained by means of our fully automated analysis 
pipeline, varied significantly by age, race, and sex in a large 
outpatient, cross-sectional cohort that was used to generate 
population reference curves. Demographically adjusted BC z 
scores generated by using these reference curves will be useful 
for future research and clinical applications.
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to improve the reference curves for Black patients, who were 
still less represented than White non-Hispanic patients; to de-
rive reference curves for other racial groups; and to validate our 
reference curves in other geographic regions. Although our aim 
was to focus on patients without a major cardiovascular or on-
cologic diagnosis at the time of imaging, the included patients 
underwent imaging for a reason and may have been less healthy 
than the average American adult. Last, although prior research 
has shown that BC areas calculated from a single CT slice at L3 
estimates whole-body composition well, we plan to investigate 
volumetric BC segmentation, which would necessitate large-
scale collection of many manually segmented CT slices per pa-
tient examination for model training and validation.

Figure 6:  Graphs show hazard ratios (solid lines) with 95% CIs (dotted lines) for risk of death (n = 9752 with 201 death events). A, Simple Cox proportional hazards 
models. B–D, Multivariable Cox proportional hazards models for, B, all areas (n = 12 128), C, all areas and weight (n = 7651), and, D, all areas and body mass index 
(BMI) (n = 7210). SFA = subcutaneous fat area, SMA = skeletal muscle area, VFA = visceral fat area.
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