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Understanding the Molecular Drivers of Disease Heterogeneity in 
Crohn’s Disease Using Multi-omic Data Integration and Network 
Analysis

Padhmanand Sudhakar, PhD,*,#  Bram Verstockt, MD, PhD,*,†,# Jonathan Cremer,‡ Sare Verstockt, PhD,* 
João Sabino, MD, PhD,*,† Marc Ferrante, MD, PhD,*,† and Séverine Vermeire, MD, PhD*,†

Crohn’s disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn 
impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the con-
tribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to 
relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene 
expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could poten-
tially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as 
genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other 
inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type–specific 
targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. 
Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.

Key Words:  Crohn’s disease, heterogeneity, clinical phenotypes, blood, monocytes, CD4+ T cells, gene expression, genetics, data integration, 
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INTRODUCTION
Crohn’s disease (CD) is an inflammatory bowel disease 

(IBD) characterized by variable degrees of disease heteroge-
neity, including disease location and behavior, perianal in-
volvement, disease progression, extraintestinal manifestations, 
and the need for and response to different therapies.1–4 Clinical, 
endoscopic, and histological findings are used in the proper 
diagnosis and clinical management of patient subgroups.5 
However, the underlying molecular features that dictate and 
contribute to the CD disease spectrum are greatly unknown. 
Associations between the observed heterogeneity of spe-
cific clinical traits and variations in molecular (genomic and 
transcriptomic) and cellular (cell-type specific) features have 
been documented.6–8 In particular, various subtypes of immune 
cells such as CD8+, CD4+ T cells, and CD14+ monocytes 
have been associated with variation in activity, prognosis, and 
severity of disease.7,9–13 Nevertheless, a comprehensive anal-
ysis of molecular features that contributes to the vast panels 
of clinical heterogeneity from a systemic and network biology 
perspective has not been carried out. In this study, we use a 
combinatorial approach (Fig. 1A) driven by unsupervised data 
integration, co-expression-based modularization of genes, 
pathway analysis, and integration with interaction networks to 
discover and interpret various features in a cell type–specific 
manner. These findings represent some of the possible mech-
anisms driving the observed phenotypic heterogeneity in CD 
and help identify novel drug targets or provide targets toward 
repurposing drugs to treat particular CD subtypes.
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MATERIALS AND METHODS

Patient Selection
The current study was conducted at the University 

Hospitals of Leuven (Leuven, Belgium). We cross-sectionally 
collected peripheral blood mononuclear cell from 33 genotyped 
CD patients with endoscopy-proven active disease (presence 
of ulcerations). From those patients, disease features including 
disease location and behavior, perianal and upper gastrointes-
tinal (GI) involvement, previous therapies, age, smoking status, 
and disease duration were collected (supplementary material 
online).

Bioinformatic Analyses
In this study, we used various computational and bio-

informatic tools to analyze, integrate, and interpret heteroge-
neous data sets. Furthermore, a list of bioinformatics terms are 
provided in the appendix in supplementary material online.

Multi-omic factor analysis (MOFA)16 is a data integra-
tion tool to help interpret the sources of  variation in each of 
the 3 data sets (monocyte gene expression, CD4+ gene ex-
pression, and genetics) or a combination thereof. Multi-omic 
factor analysis, which is a methodology for the latent variable 
model-driven integration of  multi-omic data sets, is based on 
the mathematical principles of  factor analysis and Bayesian 

modeling for parameter inference. MOFA can be considered 
as a statistically advanced version of  a principal component 
analysis (PCA), which helps interpret representative variables 
that drive the variance in a data set. However in contrast to 
PCA, MOFA enables the dissection of  latent factors (which 
are low-dimensional representative variables of  heterogeneous 
high-dimensional data sets and analogous to principal com-
ponents in a PCA) to help identify hidden factors (features 
such as genes, proteins, metabolites, etc in -omics data sets) 
or a combination of  them that drive the cumulative variance. 
In the literature, there are various tools such as iCluster17 and 
Group Factor Analysis (GFA)18 for the integration of  hetero-
geneous -omic data sets in the latent variable model category. 
Though MOFA was found to be more efficient in terms of 
computational power and time, both GFA and iCluster were 
less efficient in inferring nonredundant/unique latent factors 
and factors with contributions from multiple -omic data sets.16 
In general, in contrast to other data integration methods,19–24 
MOFA has several added functionalities and advantages such 
as the ability to handle missing values by imputation, interpre-
tation of  user-friendly solutions, and flexibility to adopt ap-
propriate likelihood models based on the distribution patterns 
of  the different data sets.16

After the identification of  the latent factors and 
ranking of  features (explained in detail in succeeding 

FIGURE 1. A, Illustrative representation of the workflow used in the study to analyze and integrate the data sets. B, Variance inferred per latent 
factor and distributed across the data sets as inferred by Multi-Omic Factor Analysis.16

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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sections), CEMiTool25 was used to identify co-expression 
modules and integrate gene expression signatures with 
benchmarked molecular interaction networks. Functionally 
coherent genes tend to be co-expressed (ie, having similar 
expression patterns) due to common underlying drivers of 
expression.102 The power of  co-expression network analysis 
can be harnessed to identify sets of  genes that act in concert 
with each other. Moreover, co-expression networks also tend 
to form modules (ie, communities/groups of  co-expressed 
genes) with overrepresented functions, share topological 
(ie, the structure of  the network) similarity with real-world 
networks, capture underlying molecular mechanisms, and 
highlight hubs (ie, genes with a large number of  neigh-
bors).26–28 Various tools have been developed to deal with 
co-expression network analysis. Some of  the prominent ones 
include WGCNA,29 PETAL,30 CoP,31 GNET,32 DiffCoEx,33 
CoExpress,34 DICER,35 and DINGO.36 In comparison with 
these, CEMiTool offers several added advantages such as 
automatic gene filtering, overrepresentation analysis of  the 
modules with respect to the phenotypes, gene set enrichment 
analysis, integration with the interactome, inclusion of  mul-
tiple phenotypic classes, module merging based on similarity 
measures, availability as an R package, automation, and 
computational efficiency.25

For identifying the upstream transcriptional regu-
lators of  a given set of  genes (in our case, genes within the 
CEMiTool identified co-expression modules associated 
with clinical phenotypes), CheA337 was used. Several online 
and standalone databases/tools that help users identify the 
transcriptional regulators for a given set exist in the litera-
ture. These include VIPER,38 DoRothEA,39 BART,27 TFEA.
ChIP,40 oPOSSUM,41 and MAGICACT.42 Based on various 
benchmarking analysis with different data sets, CheA3 was 
found to perform better.37

The underlying sets of physical interactions between 
molecules are the basic rule-based structures which drive the 
phenotypic responses to stimuli. As a source of molecular inter-
actions, we used Parsimonious Composite Network (PCNet),43 
which is a composite molecular interaction network resource 
compiled by merging 21 different interaction databases. PCNet 
was benchmarked on 446 disease gene sets for its performance 
based on disease gene recovery.43 Although various molecular 
interaction network resources exist, we chose PCNet because 
of its performance attributes reported in the benchmarking 
analysis.43

Although PCNet is a good source of molecular inter-
actions, it does not provide the context in terms of signal flow/
signal transduction (ie, signaling pathways). To address this, 
Reactome,44 which is a compendium of curated signaling path-
ways comprising protein-protein interactions, was used to iden-
tify the signaling pathways overrepresented in the gene sets 
investigated.

Data Integration
Multi-omic factor analysis16 was used to integrate the 3 

data sets—namely the gene expression from CD4+ T cells and 
CD14+ monocytes (protocols used for cell separation, RNA 
isolation, sequencing, and genotyping are included in supple-
mentary material online), and the single nucleotide polymor-
phism profiles. The top 2500 genes with the highest variance in 
expression were selected. Default model training options were 
used to construct the MOFA model object with the excep-
tion of  the DropFactorThreshold (representative of  variance 
cutoff) and maxiter (number of  iterations), which were set at 
0.02 and 5000, respectively. The weights and variance con-
tributions were retrieved from the converged MOFA model. 
Latent factors (LFs) with no weight contributions from any 
of  the patients were discarded. Multiple regression was used 
to identify the explanatory LFs that contribute to the clin-
ical traits. Latent factor trait relationships with a nominal P 
value ≤0.1 were considered to be significant.

The data set corresponding to the explanatory LFs were 
identified based on their variance contributions to the LFs. If  
the ratio between the variance contribution of the first and 
second data set was ≥6, only the first data set was considered 
as having contributed to the explanatory LF, or else both the 
data sets were considered as having contributed. Latent fac-
tors that associated with gender were discarded to remove any 
sex-specific signals. Phenotypes with class imbalances were 
discarded.

Co-expression and Network Analysis
The top 1000 genes (ranked by the weights assigned 

to the gene by the corresponding eLF) corresponding to the 
strongest -omic layer(s) of the explanatory LFs were used for 
the co-expression analysis which was performed using the 
CEMiTool.25 Correlation-based associations between genes 
were assigned if  the Pearson correlation coefficient (PCC) was 
≥0.8 or ≤−0.8. Modules with less than 20 genes were discarded. 
The soft threshold beta was selected by testing different beta 
values and evaluating the resulting fitness of the networks/
modules to the scale-free topology.45, 46 The maximum beta 
value, at which the R2 corresponding to the fitness of the net-
works/modules to the scale-free topology levels off, was used as 
the optimal beta.25

The activity of  the gene modules with respect to the 
clinical phenotypes was carried out using the mod_gsea 
function of  the CEMiTool followed by the mapping of  the 
normalized enrichment scores (NES) to the modules. If  the 
modules corresponding to the explanatory LFs are not re-
lated to phenotypes, such LFs were not considered for fur-
ther analysis. To check for the overrepresentation of  the 
modules with specific functions such as Reactome Signaling 
Pathways, the mod_ora function was used. Gene sets corre-
sponding to Reactome Signaling Pathways were retrieved 

from the Molecular Signatures Database v7.0.47 Reactome 
Signaling Pathway gene sets with less than 10 genes were not 
considered for the overrepresentation analysis. Gene sets 
with false discovery rate (FDR) (adjusted P value)  ≤0.05 
were deemed to be significant.

For the network analysis, we used PCNet as the interac-
tion network resource. The plot_interactions function was used 
to superimpose the module-wise co-expression networks onto 
the physical interaction network represented by PCNet. The 
top 50 hubs based on their connectivities in the co-expression 
network were retrieved to be compared with functional gene 
lists representative of a priori knowledge.

Drug Target Analysis
Lists of  molecules targeted by drugs in the case of 

CD, ulcerative colitis (UC), ankylosing spondylitis (AS), 
rheumatoid arthritis (RA), psoriasis (PS) and primary scle-
rosing cholangitis (PSC) and genes associated (based on ge-
netic associations, somatic mutations, RNA expression, text 
mining, and animal models) with CD were retrieved from 
the Open Targets database as of  November 19, 2019.48 In 
the case of  genes for which the CD associations were in-
ferred from their transcriptomic expression levels, the ex-
pression measurements were confined to samples derived 
from the colon, intestine and rectum. The expression quan-
titative trait loci (eQTL) data were retrieved from Di Narzo 
et al,49 and information on genes corresponding to barrier 
function, antimicrobial peptides, cell adhesion molecules/
chemokines/chemokine receptors, and IBD susceptibility 
loci was obtained from Vancamelbeke et  al,50 Arijs et  al,51 
Arijs et al,52 and Mirkov et al,53 respectively. Regulator pri-
oritization was performed by using the ChEA3 tool.37

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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from the Molecular Signatures Database v7.0.47 Reactome 
Signaling Pathway gene sets with less than 10 genes were not 
considered for the overrepresentation analysis. Gene sets 
with false discovery rate (FDR) (adjusted P value)  ≤0.05 
were deemed to be significant.

For the network analysis, we used PCNet as the interac-
tion network resource. The plot_interactions function was used 
to superimpose the module-wise co-expression networks onto 
the physical interaction network represented by PCNet. The 
top 50 hubs based on their connectivities in the co-expression 
network were retrieved to be compared with functional gene 
lists representative of a priori knowledge.

Drug Target Analysis
Lists of  molecules targeted by drugs in the case of 

CD, ulcerative colitis (UC), ankylosing spondylitis (AS), 
rheumatoid arthritis (RA), psoriasis (PS) and primary scle-
rosing cholangitis (PSC) and genes associated (based on ge-
netic associations, somatic mutations, RNA expression, text 
mining, and animal models) with CD were retrieved from 
the Open Targets database as of  November 19, 2019.48 In 
the case of  genes for which the CD associations were in-
ferred from their transcriptomic expression levels, the ex-
pression measurements were confined to samples derived 
from the colon, intestine and rectum. The expression quan-
titative trait loci (eQTL) data were retrieved from Di Narzo 
et al,49 and information on genes corresponding to barrier 
function, antimicrobial peptides, cell adhesion molecules/
chemokines/chemokine receptors, and IBD susceptibility 
loci was obtained from Vancamelbeke et  al,50 Arijs et  al,51 
Arijs et al,52 and Mirkov et al,53 respectively. Regulator pri-
oritization was performed by using the ChEA3 tool.37

RESULTS

Identifying Strongest Axes of Variation Linked to 
Clinical Traits

Using MOFA to integrate the various -omic layers, we 
identified 13 latent factors that captured independent sources 
of phenotypic variation spread across the different -omic layers 
(Fig.  1B, Supplementary Fig. 1, and supplementary material 
online). The 13 identified LFs together explained about 58% of 
the variation in the CD14+ (monocytes) gene expression, 67% 
of the CD4+ gene expression data, and 3% of the variance in 
the mutational data.

Notably, the strongest LF (LF1) was active in both 
transcriptomic data sets (CD14 + 18.46%; CD4 + 9.81% var-
iance contribution, respectively), whereas LF6 was associ-
ated with both CD4+ gene expression and mutational data 
(Fig. 1B, supplementary material online). We also identified 
explanatory LFs (eLFs), which are defined as LFs that explain 
the heterogeneity of  the patients in terms of  their clinical 
phenotypes (Fig. 2A, supplementary material online). Though 
7 of  the 13 LFs could significantly (P < 0.1) explain at least 1 
of  the 13 clinical traits considered in this study, 2 LFs correl-
ated with at least 2 traits each, barring LF6 which was gender-
associated. Latent factor 5, with a strong contribution from 
monocyte gene expression for example, was associated with 
the number of  antitumor necrosis factor (TNF) agents used 
and previous exposure to vedolizumab (VDZ). Conversely, 
LF11 was active in both CD4+ and monocyte gene expres-
sion and was associated with 1 trait only—disease behavior. 
Other prominent examples of  single trait LFs include LF12, 
which is active along monocyte gene expression and is asso-
ciated with disease location (Fig. 2A). Both LF11 and LF12 

FIGURE 2. A, Table depicting the explanatory LFs, which are defined as LFs associated with at least one clinical trait. The figure also shows the 
respective data sets that contribute to the variance explained by the LFs. By tracing the variance contributions to the LFs associated with the clin-
ical traits, we could identify the -omic data sets contributing to the clinical trait. Latent factors associated with gender were discarded to exclude 
sex-specific signals. B, Summary of modules (derived from co-expression analysis, see methods section “Bioinformatic analyses” for more details), 
their relevance to the corresponding phenotypes (indicated by the column “Module activity in phenotype”), and the overlap between the hubs (top 
50 genes) in each of the modules and targets of drugs used in intestinal inflammatory disorders such as Crohn’s disease and ulcerative colitis, other 
inflammatory disorders such as ankylosing spondylitis, rheumatoid arthritis, psoriasis, and sclerosing cholangitis, associations with CD, role as CD 
eQTLs or genes relevant to CD in terms of their activity (antimicrobial peptide functions, barrier functions, chemokine functions, and cell adhesion). 
^ - if the total number of genes in a module was less than 50, all the genes in the module were considered as hubs. In the last column, the active 
modules with the highest percentage of unique overlapping hubs are indicated.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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were associated uniquely to disease behavior and disease loca-
tion, respectively, making them specific in capturing the sig-
nals that could be driving these phenotypes. Furthermore, no 
other eLFs were found to be associated with the 2 axes of 
clinical phenotypes. Analyzing the weights and factors (sup-
plemental material online) corresponding to the LFs revealed 
the functional characteristics captured by each of  the LFs 
across different data sets. We observed significant (FDR 5%) 

enrichment of  signaling pathways (with a minimum of  at least 
30 pathways) in 10 of  the 13 LFs associated with CD4+ gene 
expression (Supplementary Fig. 2A).

Latent factor 7 (along CD4+ transcriptomics), with the 
highest number of overrepresented gene sets for example, was en-
riched with signaling pathways associated with Fc epsilon receptor, 
MyD88, Toll-like receptors, and induction of interferon-mediated 
responses among others (Supplementary Fig. 2B). Interleukin (IL) 

FIGURE 2. Continued.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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enrichment of  signaling pathways (with a minimum of  at least 
30 pathways) in 10 of  the 13 LFs associated with CD4+ gene 
expression (Supplementary Fig. 2A).

Latent factor 7 (along CD4+ transcriptomics), with the 
highest number of overrepresented gene sets for example, was en-
riched with signaling pathways associated with Fc epsilon receptor, 
MyD88, Toll-like receptors, and induction of interferon-mediated 
responses among others (Supplementary Fig. 2B). Interleukin (IL) 

signaling pathways were found to be top overrepresented gene sets 
as weighted by LF3, the second strongest LF along the CD14+ 
gene expression layer (Fig. 1B, Supplementary Fig. 2C, D).

Unsupervised Clustering Along Explanatory 
Latent Factors Identifies Patient Groups With 
Distinct Clinical Traits

To confirm the relevance of  the eLFs in segregating 
the patients along the corresponding clinical traits, we per-
formed unsupervised clustering of  patients along the eLFs, 
that is, using the weights assigned to the samples by the 
eLFs. With this step, we could identify clusters that were 
aligned with corresponding clinical traits associated with the 
eLF (Table 1, supplementary material online). In 7 of  the 8 
LF-trait associations, we observed significant correlation be-
tween the cluster membership and clinical traits of  samples, 
suggesting that the eLFs help capture the underlying clinical 
classes. Three of  the LF-trait associations were also charac-
terized by the enrichment of  the corresponding clinical traits 
within the identified clusters (Table 1, supplementary mate-
rial online). For example, the 2 clusters obtained by sample 
aggregation along LF12, which aligned with monocyte gene 
expression, were explanatory of  heterogeneity with respect 
to the occurrence of  disease location. Similarly, clustering 
of  samples based on the weights of  LF11 which is domi-
nant in both monocyte and CD4+ gene expression, could 
achieve the separation of  patients along the axis of  disease 
behavior (Table  1, supplementary material online). Dual 
trait-associated LFs include LF5 and LF9. Latent factor 9 
was associated significantly—positively with the phenotype 
of  perianal disease (R2 = 0.45) and inversely with smoking 
(R2 = −0.33), potentially capturing a link between perianal 
subtypes and incidence of  smoking.

Integration of Co-expression Modules and 
Interaction Networks Reveal Communities and 
Hubs Potentially Involved in Mediating Disease 
Heterogeneity

To identify communities (groups of genes that work in 
concert with each other) and hubs (highly connected genes) 
involved in mediating disease heterogeneity, we carried out 
modularization based on co-expression and integration thereof. 
Modularization was performed on the expression of ranked 
(based on the weights provided by the eLF) genes from the data 
set contributing strongly in terms of variance to the eLF. The 
modules obtained (Fig. 2B) were not only related to the corre-
sponding phenotypes of  the eLF but were also enriched with 
signaling pathways (supplementary material online). For in-
stance, the activity of  modules (Fig. 3A, supplementary mate-
rial online) inferred (optimal soft threshold beta = 8, Fig. 3A) 
from the monocyte gene expression data sets corresponding to 

LF11 associated with disease behavior could distinguish the 
different subtypes of  patients characterized by disease beha-
vior—namely, inflammatory, fibrostenotic, and penetrating 
CD (Fig. 3B). Of the 10 determined modules that were gen-
erated in the previously mentioned case, 6 of  them displayed 
activity to varying extents on at least 1 subtype of disease be-
havior. Though modules 4 and 5 had polarized effects on the 
fibrostenotic and inflammatory phenotypes, module 2 was ac-
tive along the fibrostenotic and penetrating behaviors of CD.

Upon deeper investigations inquiring in to the role of 
the genes that make up these modules, we gained a proper un-
derstanding of  the functional landscape. Overrepresentation 
analysis of  module 5 genes displayed an enrichment of  path-
ways related to IL-1, IL-10, and IL-13 signaling, NLRP3 
inflammasome formation, RIP (receptor-interacting serine/
threonine-protein kinase)-mediated NFKB activation, TAK1 
(nuclear receptor subfamily 2 group C member 2)-mediated 
activation of  NFKB by phosphorylation, and activation of 
IKKs complex among others at the top (FDR ≤ 0.05; Fig. 3C). 
Module 4 meanwhile was enriched in G alpha (i) signaling 
(which is involved in the downstream segment of  G-protein 
coupled receptor pathway) and the DAG/IP3 signaling 
pathway (Supplementary Figure 3). Interestingly, module 8, 
which did not display any activity on the sample classes based 
on disease behavior, was enriched with interferon alpha/beta 
signaling pathways and their induction (Fig.  3D). We also 
observed other co-expressed communities such as modules 
1, 6, and 9, which were unique to particular disease behavior 
classes. For example, module 9 was active with respect to the 
penetrating phenotype (Fig. 3B) and was uniquely and prom-
inently enriched with pathways associated with signaling and 
induction of  interferon gamma, presentation of  soluble ex-
ogenous antigens, and IL-12, IL-27 pathways (Fig. 3E). The 
network graph of  module 9 (Fig. 3F) also highlights impor-
tant network hubs (characterized by co-expression and inter-
actions) such as STAT1, UBE2L6, and WARS, among the 
top 10.

As discussed previously, LF11 is associated with CD di-
sease behavior and has a contribution from CD4+ expression, 
as well (supplementary material online). Interestingly, 5 of the 8 
modules (modules 1, 2, 3, 7, and 8) derived from CD4+ expres-
sion were active across disease behavioral subphenotypes but 
were confined to the inflammatory and penetrating type of CD 
disease behavior (Fig.  4A). Genes within module 2, which is 
active only in the penetrating subtype, were enriched with path-
ways (Fig. 4B) corresponding to chemokines and their recep-
tors, G-protein coupled receptor signaling, and IL-10 signaling, 
among others. The top 10 hubs within module 2 included 
GZMH, FGFBP2, and PRF1 (Fig. 4C). Modules 1, 3, and 7—
despite being active—did not display any enrichment in terms 
of signaling pathways. However, module 3 harbored biologi-
cally relevant hubs (Fig. 4D), such as OGT, JMJD7-PLA2G4B, 
CDK5RAP3, LUC7L3, and DDX26B, which are relevant 

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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for orchestrating post-translational and post-transcriptional 
mechanisms.

As for explaining variability in disease location, re-
sults from similar analysis revealed 11 different modules 
(Supplementary Fig. 4A), 4 of  which were active across ileal 
and ileocolonic CD. Module 8 in particular was observed to 
have strong signals emerging from the expression of  genes 
encoding proteins and enzymes especially in pathways such 
as the respiratory electron transport, tricarboxylic acid 
(TCA) cycle, and complex 1 biogenesis (NADH,-ubiquinone 
oxidoreductase or NADH dehydrogenase; Supplementary 
Fig. 4B).

Hubs From Phenotype-Related Modules 
Capture Novel/Known Therapeutic Targets and 
Disease-related Genes

The top hubs in modules also overlapped (Fig. 2B, sup-
plementary material online) with previously known targets 
of  drugs aimed to treat CD and ulcerative colitis (UC), in 
addition to other inflammatory diseases such as ankylosing 
spondylitis, rheumatoid arthritis, psoriasis, and primary scle-
rosing cholangitis. The hubs could also be annotated as di-
sease relevant genes such as those known to be CD eQTL 
genes, IBD susceptibility loci and/or those encoding intes-
tinal barrier proteins, antimicrobial peptides, cell adhesion 
molecules, chemokines, and their receptors. For a partic-
ular phenotype-module combination, modules active for the 
corresponding phenotype were bound to harbor the highest 
number of  functional hubs (defined as high-ranking proteins 
known to be previous drug targets in UC, CD, AS, RA, PS, 
and PSC). In 4 of  the 5 phenotype-module combinations por-
trayed in Figure 2B, the module with the highest percentage 
of  functional hubs was active across the corresponding phe-
notype. For instance, 64% of  the hubs in module 9, which is 
active across disease behavior in monocytes (Fig. 5, supple-
mentary material online), were either annotated as already 
known drug targets and/or associated with CD and/or rele-
vant to CD.

One of the prominent module 9 hubs (expressed in mono-
cytes) associated with disease behavior and a CD drug target 
is CXCL10 encoding the C-X-C motif  chemokine. CXCL10 
is not only known for its role in recruiting pathogenic T cells 
to inflamed sites54 but also in mediating the production of 
pro-inflammatory cytokines such as IL-12 and IL-23 in IFN-
gamma primed monocytes.55 Interestingly, module 9 genes 
corresponding to disease behavior in monocytes were also 
overrepresented in IFN-gamma and IL-12 signaling pathways 
(Fig. 3E). Yet another intriguing CD drug target captured by 
our analysis includes TYK2, which was identified as a CD4+ 
hub gene in an active module (M7) associated with disease be-
havior. TYK2 is a nonreceptor tyrosine-protein kinase/Janus 
kinase involved in modulating pathways of various interleukins 
including IL-12 and IL-23.56, 57 TYK2 is targeted in the context TA
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of multiple disorders including rheumatoid arthritis58, 59 and 
CD60 by various anti-inflammatory drugs, but specific TYK2 
inhibitors are now also under study in IBD.61

In addition to identifying hubs previously targeted in 
Crohn’s disease, we discovered several potential targets used in 
other inflammatory disorders. Of the 37 hubs that were known 
as targets used to treat ulcerative colitis, ankylosing spondylitis, 
rheumatoid arthritis, psoriasis, and sclerosing cholangitis, only 
27% were previously targeted in CD (supplementary material 
online). The remaining 73% (27) of the hubs were found to be 
targeted only by any 1 of the UC, AS, RA, PS, or PSC drugs, 
thus throwing open the door for repurposing such hubs for CD. 
Two thirds (18 of 27) of these repurposable hubs were associ-
ated with monocyte gene expression modules active across the 
phenotypes of disease behavior or disease location. For instance, 
ADORA3, CXCR2, FLT3, PRKCE, IL1A, IL1R1, and CD40 
belong to the previously mentioned category of repurposable 
hubs in monocyte gene expression modules which are active with 
respect to the phenotype of disease behavior (Table 2). Many of 
these hubs are either reported to play critical roles in inducing 
hyperinflammatory responses in monocytes or in mediating 

interactions of monocytes with other cell types (Table 2). In the 
case of disease location, repurposable hubs in monocytes included 
various subunits of the NADH-ubiquinone oxidoreductase en-
zymatic complex, FAAH, and SELL encoding the L-selectin pro-
tein (supplementary material online). As a calcium-dependent 
lectin that mediates cell-cell adhesion, L-selectin is involved in re-
cruiting CD4+ T cells to chronically inflamed small intestinal tis-
sues.62 It also plays a role in the pathogenesis of IBD by virtue of 
its role in the post-translational modifications of adhesions such 
as mucosal addressin cell adhesion molecule 1 (MAdCAM-1).63

Distinct Regulatory Programs Drive CD Subtypes 
by Modulating the Expression of Active 
Gene Modules

Distinct modules that drive the phenotypes are also 
expected to have specific regulatory programs driving their 
expression. By mining orthogonal libraries containing infor-
mation on transcription factor-target gene information, we pri-
oritized transcription factors governing the expression of the 
various modules (supplementary material online). Exclusive 

FIGURE 3. A, The “scale-free” aspect of the modules (inferred from the monocyte gene expression) obtained over a window of values for the soft 
threshold beta parameter. Modules corresponding to the beta value of 8 was chosen because there was a plateauing of the observed “scale-free”-
ness or aspect. Many real biological networks display scale-free behavior captured by the scale-free topology model fit R2 value plotted on the y 
axis. B, The activity profile of the monocyte gene expression modules in relation to the disease behavioral phenotype. Only the modules active with 
respect to the phenotype are displayed. The NES score represents the z-score normalized expression of the samples within each phenotype and is 
used to assess the alterations of module activity with respect to the phenotype. C, Overrepresented Reactome gene sets at FDR ≤ 0.05 in module 
5, (D) in module 8 (E), and in module 9. F, The top 10 genes (hubs) identified in module 9 after integrating the co-expression network derived from 
module 9 with the benchmarked interaction network PCNet.43 Hubs are defined as nodes (genes) with a high connectivity (ie, number of neighbors) 
in the network and represent nodes that could play an active role in the given context.
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regulatory control was observed at 3 different levels: first at 
the level of traits, secondly between modules corresponding to 
the same clinical trait in the same cell type, and finally between 
modules corresponding to the same clinical trait from different 
cell types. At the level of individual traits overall, of the 126 
transcription factors (TFs) that were identified as regulators of 
genes from all the modules active in the phenotypes as men-
tioned in Figure 2B, 70% of the TFs were specific to particular 
traits in a single cell type (Fig. 6A).

Within active modules in the same cell type, for example, 
in the case of  monocytes in the context of  disease behavior, we 
could point out a high degree of  exclusivity in terms of  the 
TFs that regulate the modules (Fig. 6B). Of  the 50 TFs con-
trolling the expression of  the active modules, only 5 (MXD1, 
NR4A3, NFIL3, CSRNP1, BATF3) potentially modulated 
the expression of  more than 1 active module. Modules with 
a greater number of  enriched Reactome signaling pathways 
(M5 with 13 pathways, M9–11, M4, and M2 two each, and 

none in M1 or M6) were observed to have a higher propor-
tion (M9, 55%; M5, 40%; M4 and M6, 16% each; M2, 17%; 
and M1, 12%) of  their genes as targets of  the identified TFs 
(Fig.  6B, supplementary material online). Among the func-
tional hubs in module 9 (which has the highest coverage in 
terms of  target coverage of  transcription factors), 4 hubs 
(STAT1, BATF2, IRF1, ZNF595) were annotated as tran-
scription factors, of  which 3 (STAT1, BATF2, IRF1) were 
already identified (Fig. 6C, Supplementary data 13) as regu-
lators of  genes within the module. Cumulatively, STAT1, 
BATF2, IRF1, which were also known to be among the genes 
associated with CD, regulated 73% of  the genes expressed 
in module 9 (Fig. 6D), possibly as a result of  complex inter-
plays among the regulators (supplementary material online). 
In effect, we identified STAT1, BATF2, and IRF1 acting as 
primary transcriptional modulators driving the expression of 
module 9 and thereby potentially the disease behavioral phe-
notype among CD patients.

FIGURE 4. A, The activity profile of the CD4+ gene expression modules in relation to the disease behavioral phenotype. Only the modules active 
with respect to the phenotype are displayed. B, Overrepresented Reactome gene sets at FDR ≤ 0.05 in module 2. C, The top 10 genes (hubs) identi-
fied in module 2 and (D) module 3 after integrating the co-expression network derived from the corresponding modules with the benchmarked in-
teraction network PCNet.43 Genes encoding proteins such as OGT (UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase) and which 
play important roles in mediating T-cell responses83 are identified as hubs.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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FIGURE 5. The functional profile of the genes in the monocyte-gene expression derived module 9 active across the disease behavioral phenotype. 
Sixty-four percent of the module 9 hubs were annotated as being targets of drugs used to treat intestinal inflammatory disorders such as CD and 
UC, other inflammatory disorders such as ankylosing spondylitis, rheumatoid arthritis, psoriasis, and sclerosing cholangitis, associations with CD, 
role as CD eQTLs or genes relevant to CD in terms of their activity (antimicrobial peptide functions, barrier functions, chemokine functions and cell 
adhesion). Genes marked in orange denote transcription factors. **Indicates TFs that are identified as being relevant regulators (of the genes in the 
same modules) by ChEA3.37 The figure indicates that more than half of the genes were previously identified as involved in the pathogenesis of CD as 
recorded in the Open Targets database.48
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As the third example of  regulatory exclusivity, we in-
vestigated the active modules corresponding to different cell 
types and relevant for the same trait, as exemplified by di-
sease behavior–associated modules in CD4+ cells and mono-
cytes (supplementary material online). Of  the 77 TFs inferred 
as regulators of  the modules active with respect to disease 
behavior, the majority (86%) was specific to either mono-
cyte or CD4+ associated modules, whereas the remaining 
TFs could regulate active gene modules in both CD4+ and 
monocytes. For instance, BATF3 was identified as a regu-
lator of  module 9 (enriched with interferon gamma signaling 
pathways) in monocytes and modules 1 and 2 (enriched 
with signaling pathways of  chemokines including IL-10 and 
G-protein coupled receptor-mediated events; Supplementary 
Fig. 6, supplementary material online). On the other hand, 
and interestingly enough, master regulators such as NR4A3, 
STAT1, and EGR2 were confined to regulating the active 
modules solely in monocytes and not any of  the active mod-
ules in CD4+ cells. Along with NR4A3, NFIL3 and MXD1 
were found to regulate the expression of  multiple active mod-
ules in monocytes (Supplementary Fig. 6).

DISCUSSION

The clinical heterogeneity of Crohn’s disease is well 
known. Due to the complexity of CD and the involvement of 
diverse immune and other cell types, untangling the mechan-
isms behind the observed heterogeneity has been challenging. 
However, the collection of electronic clinical records and the 
advent of cell type–specific data generation, next generation 
sequencing techniques, data integration tools, and biological 
networks has made it possible to investigate patient-derived 
data sets and provide biological insights into the pathogenesis 
of CD subtypes. In this study, we integrated genomics, CD4+ 
T cell and monocyte (CD14+) transcriptomics from CD pa-
tients to identify molecular features explaining CD heteroge-
neity such as disease behavior, disease location, and exposure 
to anti-inflammatory agents. Given that CD has underpinnings 
in both the innate and adaptive arms of the immune system,64 
we focused on CD14+ monocytes as a cell type from the in-
nate arm; and from the adaptive arm, we zoomed in on CD4+ 
T cells since CD is believed to be a disease concerning the 
Th1:Th17:Treg axis.

FIGURE 6. A, Overlap of the transcription factors inferred for the active modules derived from gene expression in monocytes and CD4+ cells for 
the associated phenotypes. B, Transcriptional regulatory network showing the TFs modulating the expression of the monocyte modules active with 
respect to the disease behavior phenotype. Orange nodes represent the modules, purple nodes the TFs exclusively regulating the modules, and 
blue nodes the TFs regulating more than one module. The numbers within parentheses inside the orange nodes represent the number of Reactome 
signaling pathways enriched (FDR ≤ 0.05) within the genes found in the module. The thickness of the edges denote the percentage of genes of the 
module which are regulated by the TF. The figure indicates that the functionally distinct modules (as shown earlier by the set of Reactome pathways 
uniquely overrepresented in each of them) also have mostly distinct regulatory control, with very few transcription factors controlling the mul-
tiple modules. Visualization was performed using Cytoscape.90 C, Bar chart displaying the integrated mean ranks (from across orthogonal TF-target 
libraries) of the top 10 TFs for the genes in module 9 (enriched in interferon-gamma related pathways) derived from monocyte gene expression 
and active with respect to the disease behavioral phenotype. D, The distribution profile of genes in module 9 as targets of the most relevant TFs 
identified.

http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
http://academic.oup.com/ibdjournal/article-lookup/doi/10.1093/ibd/izaa281#supplementary-data
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Using MOFA, we identified latent factors (defined as 
hidden variables inferred from the set of observed variables) and 
used them as proxies by which the variance within the -omic data 
sets is captured. Among the 5 identified eLFs, monocyte gene ex-
pression was the single largest contributor to variation. Two of 
the 5 eLFs were associated with multiple traits, suggesting that 
certain molecular profiles might have overlapping mechanisms. 
Synergistic traits (ie, traits which are related to each other in pos-
itive or negative manner) could have precipitated the emergence 
of multi-trait LFs. However, the large number of known and un-
known clinical covariates or confounding factors could explain 
some of the not so significant LF-clinical trait associations in the 
study. Although sex-specific differences exist in terms of IBD in-
cidence rates65 and may impact immune responses,66 we decided 
to focus on the most clinically relevant clinical phenotypes re-
lated to disease activity and disease state.

The fact that the genomic layer does not relate to any of 
the clinical axes of  heterogeneity suggests that disease suscep-
tibility single nucleotide polymorphisms do not contribute to 
disease heterogeneity, which is in agreement with previous ob-
servations made by Cleynen et al.8 In other words, nongenetic 
components such as gene expression seem to be more relevant 
to CD heterogeneity than genetic ones. The higher variance 
contribution from the dynamic gene expression layer could su-
persede the low contribution from the genomic layer due to 
network-wide propagation of disruptive effects of  albeit a small 
number of mutations with inadequate effect sizes. However, it 
has to be mentioned that this bias could also be linked to the 
small number of features in the genomic layer (since we focused 
only on previously known disease susceptibility loci) compared 
with the 2 gene expression data sets. Furthermore, disease sus-
ceptibility loci are likely to be different from genes driving di-
sease phenotypes and disease outcomes.67 In our cohort, for 
example, none of the patients harbored NOD2 mutations 
(known to be associated with CD subtypes68, 69) linked to CD 
susceptibility despite the presence of other nonsusceptibility-
associated NOD2 mutations at a genome-wide level which were 
not considered in this analysis. To identify the molecular fea-
tures that contribute to the heterogeneity, we looked into the 
individual data sets that contributed the strongest to the ex-
planatory latent factors and identified features at the gene ex-
pression level that discriminated the different categories within 
the same axis of  clinical heterogeneity. Some of the identified 
features at the gene expression level were previously known to 
be involved in Crohn’s disease pathogenesis, thus supporting 
our inferences.

Using modularization based on co-expression, func-
tional analysis of  the resulting modules followed by inte-
gration with interaction networks, we identified prominent 
pathways and hubs that drive the clinical heterogeneity. For 
example, the modulation of  interferon-gamma expression and 
associated pathways in monocytes was associated with di-
sease behavior as characterized by inflammatory, penetrating, 

and/or fibrostenotic subphenotypes. In addition, and un-
surprisingly, some of  the prominent hubs such as STAT1 
when dysregulated result in inflammatory responses70 and in 
maintaining the balance between protective and pathogenic 
effects in the gut.71 Furthermore, other hubs such as GBP1 
and GBP2 are involved in imparting protection against a 
broad range of  pathogens including viruses.72, 73 Previous 
studies have also reported an increased interferon activation 
in mononuclear cells isolated from both the peripheral blood 
and lamina propria of  CD patients.74, 75 Even though intes-
tinal interferon production is under strong negative control 
in normal conditions and significantly upregulated in active 
CD,76 we report that there are differences in interferon expres-
sion in circulating monocytes as a function of  disease beha-
vior. Some of  the differences might be due to the hyperactive 
state of  the immune system in the inflammatory behavioral 
subtype of  CD patients. Concomitant with the modulation of 
interferon-activity, pathways related to antiviral mechanisms 
were also overrepresented, suggesting that alterations in the 
virome77, 78 could trigger the hyperactive state of  the immune 
system in such inflammatory phenotypes. Interferon-gamma, 
for example, is involved in mediating CD pathologies in a dex-
tran sodium sulfate–induced mice colitis model as a result of 
the cumulative effects of  particular host susceptibility genes 
and exposure to viral infections.79 Even though we did not 
evaluate the microbiome or the virome in this study, exploring 
the link between the virome and responses to anti-inflamma-
tory drugs80 would help in understanding the basic mechan-
isms associated with drug responses in CD.

We also identified signatures of monocyte gene expres-
sion via the 4 different active modules (modules 4, 6, 8, and 
9)  that help explain a link with disease location. However, 
module 8 had an overrepresentation of pathways related to 
TCA cycle and electron transport chains. Previous studies have 
suggested that activity of the TCA cycle, among other func-
tional categories of genes, could distinguish the ileal and co-
lonic types of CD.6 Although this observation was made from 
intestinal tissue specimens, such underlying signatures in the in-
testine could perhaps explain the priming of monocytes with a 
similar metabolic pattern, given that certain fractions of mono-
cytes are often accumulated81 and released into the bloodstream 
as a result of intestinal shedding82 after chronic inflammation 
which characterizes CD.

Yet another finding is the alignment of various post-
translational and post-transcriptional regulators with the 
heterogeneity axis of disease behavior. Of notable mention 
is the identification as a top hub of OGT, which encodes the 
110  kDa subunit of UDP-N-acetylglucosamine--peptide 
N-acetylglucosaminyltransferase in CD4+ cells. We know that 
OGT plays key roles in mediating the addition of glycosyl 
groups to serine/threonine residues of proteins in response to 
antigenic challenges, particularly in T cells.83 Not only does 
OGT contribute to the heterogeneity of CD4+ expression data 
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FIGURE 7. Graphical summary of the clinical, experimental, and bioinformatic workflow used in the study. Some of the prominent results are also 
depicted.
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along the axes of disease behavior but it also is expressed at 
a higher level in 75% of the patients with the inflammatory 
subtype of the disease. This could partly be explained by the 
fact that the inflammatory subtype of CD is exposed to a high 
load of antigens, which constantly challenges the immune cells, 
especially the CD4+ cells which then help the B cells to pro-
duce specific antibodies, elicit macrophages toward enhanced 
microbicidal activity, etc.84 In addition, OGT is also known to 
glycosylate proteins like NOD2 (whose activity has consider-
able effects in determining CD susceptibility) and the latter’s 
ability to initiate the inflammatory cascade via the NF-kB 
pathway.85 Furthermore, deletion of OGT predisposes the 
mammalian gut to inflammation.86 Thus by enhancing expres-
sion of post-translational regulators like OGT, CD4+ cells are 
able to elicit enhanced inflammatory responses to antigenic 
challenges in the gut.

To demonstrate the functional and therapeutic relevance 
of the identified hubs in monocytes and CD4+ cells, we checked 
if  these hubs have previously been targeted in inflammatory dis-
eases or if  they are relevant to the disease in terms of the bio-
logical functions. Although some of the hubs (such as TYK2) 
we identified were previously targeted by therapeutics used in 
CD (Fig. 2B), their specificities with respect to the cell type and 
disease subtypes were not previously defined. In addition, we 
also point out the relevance of novel hubs (such as ADORA3, 
CXCR2, FLT3, PRKCE, IL1A, IL1R1, and CD40, among 
others) for drug repurposing based on drug target information 
from different nongut-related inflammatory disorders and also 
highlight their potential use as targets for different subgroups 
of CD patients. Such hubs can therefore be used to design drug 
repurposing strategies targeted toward specific CD subtypes.

Despite the promising CD subtype–specific signatures 
that we uncovered in this study, there exist many limitations. 
First, due to the complex nature of CD and the inflammatory 
cascades, there are several other immune and nonimmune cell 
types that propel the disease87 and the plethora of phenotypes 
associated with it. We have explored just 2 different cell types, 
namely the monocytes and CD4+ lymphocytes. Secondly, we 
have also not considered interactions between cell types88, 89 that 
dictate many of the dynamics in terms of the immune responses 
in CD. Thirdly, we have not profiled other -omic layers such as 
proteomics, metabolomics, etc. which capture molecular activ-
ities that may be closer to the phenotype. Also, our findings 
warrant validation in an independent cohort.

CONCLUSION
To summarize, we used a combination of different com-

putational approaches including statistical and network-aided 
mechanistic data integration to interpret multiple -omic data 
sets (genotype and transcriptomic readouts from CD4+ T cells 
and CD14+ monocytes) from CD patients with different clin-
ical profiles in terms of disease heterogeneity (Fig. 7). Although 
our study was constrained by the lack of longitudinal data from 

multiple cell types for a significantly larger number of patients to 
track potential progression of different subtypes of disease, we 
provided a first attempt into inferring the biological mechanisms 
that characterize CD heterogeneity in 2 specific cell types, namely 
CD4+ T cells and CD14+ monocytes. Although these 2 cell types 
are known to contribute to IBD pathogenesis,103–105 their roles in 
CD heterogeneity have not been explored. We identified sets of 
genes, pathways, and hubs that collectively distinguish CD sub-
types and could be used to further our understanding of CD het-
erogeneity in addition to developing new therapeutic strategies.

SUPPLEMENTARY DATA
Supplementary data is available at Inflammatory Bowel Dis-

eases online.
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that characterize CD heterogeneity in 2 specific cell types, namely 
CD4+ T cells and CD14+ monocytes. Although these 2 cell types 
are known to contribute to IBD pathogenesis,103–105 their roles in 
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