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Abstract

Background: Directed acyclic graphs (DAGs) are of great help when researchers try to

understand the nature of causal relationships and the consequences of conditioning

on different variables. One fundamental feature of causal relations that has not been

incorporated into the standard DAG framework is interaction, i.e. when the effect of one

variable (on a chosen scale) depends on the value that another variable is set to. In this

paper, we propose a new type of DAG—the interaction DAG (IDAG), which can be used

to understand this phenomenon.

Methods: The IDAG works like any DAG but instead of including a node for the outcome,

it includes a node for a causal effect. We introduce concepts such as confounded

interaction and total, direct and indirect interaction, showing that these can be depicted

in ways analogous to how similar concepts are depicted in standard DAGs. This also

allows for conclusions on which treatment interactions to account for empirically.

Moreover, since generalizability can be compromised in the presence of underlying

interactions, the framework can be used to illustrate threats to generalizability and to

identify variables to account for in order to make results valid for the target population.

Conclusions: The IDAG allows for a both intuitive and stringent way of illustrating

interactions. It helps to distinguish between causal and non-causal mechanisms behind

effect variation. Conclusions about how to empirically estimate interactions can be

drawn—as well as conclusions about how to achieve generalizability in contexts where

interest lies in estimating an overall effect.
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Background

Directed acyclic graphs (DAGs)1–4 are frequently used in

epidemiology to shed light on causal relationships. Being

composed of nodes, representing variables, and arrows,

representing direct causal effects of one variable on an-

other, DAGs can be used to illustrate concepts such as con-

founding, selection bias and the distinction between total,

direct, and indirect effects. In turn, DAGs are used to de-

termine which variables to condition on in empirical analy-

ses. Whereas DAGs are powerful tools, a fundamental

feature of causal relations which has not been incorporated

into the standard framework is interaction, i.e. when the

effect of some variable A (on a chosen scale) depends on

the value to which another variable Q is set.5,6

Several articles have discussed interaction with refer-

ence to DAGs.7–12 The standard DAG is nonparametric

and as a result, it is of no relevance for the construction of

the graph whether the determinants of an outcome interact

with each other. There are some proposals on how interac-

tion could intuitively be incorporated into DAGs, but these

lack theoretical foundations.8

In this article, we propose a new type of DAG, the inter-

action DAG (IDAG). The IDAG is both intuitive and well

founded in theory for causal inference. In brief, the IDAG

works like any DAG but instead of depicting how different

variables influence the outcome, the IDAG depicts how dif-

ferent variables influence the size of a chosen effect mea-

sure. We describe the approach and discuss several

concepts that naturally follow from the framework, such as

confounded interaction and direct, indirect and total inter-

action. For readers unfamiliar with standard DAGs, we re-

fer to Greenland,2 who provides an accessible introduction.

The IDAG

The concept of interaction employed in this article is simi-

lar to that in previous literature,5,6,10 and refers to a joint

effect. Whereas there are different ways of defining an

‘effect’, the general idea behind interaction is that the effect

of one variable (on some scale) depends on the level to

which another variable is set. Here, we will focus on a bi-

nary treatment A that may interact with one or several

other binary variables, such as Q and X.

Definitions of interaction are often expressed with potential

outcomes.13,14 In structural causal models, a potential (or

‘counterfactual’) outcome Ya;q
i is an outcome that, for a full set

of predetermined background factors which characterize indi-

vidual i, prevails when forcing one or several variables in the

model to assume particular values.15 When defining interac-

tions, at least two variables must be forced to particular values.

If the outcome Y is continuous, we can say that there is ad-

ditive interaction between Q and A in individual i if the follow-

ing inequality holds between differences of potential outcomes:

Ya¼1;q¼1
i � Ya¼0;q¼1

i ¼= Ya¼1;q¼0
i � Ya¼0;q¼0

i (1)

Notice that we here define interaction at the individual

level, in some contrast with previous literature, which fo-

cuses on the expected population level. The left-hand side

of equation (1) is a measure of the causal effect of A on Y

for Q ¼ 1 , and the right-hand side is the same measure for

Q ¼ 0. Interaction between Q and A is thus present if the

size of this causal effect depends on Q. The size of the in-

teraction is given by the difference between the left-hand

and right-hand sides of (1).

When outcomes are binary, focus normally lies on the

probability of a positive outcome. Assuming probabilistic

potential outcomes,16 we can say that additive interaction

between Q and A is present in individual i if the following

inequality holds in this individual:

P½Ya¼1;q¼1
i ¼ 1� � P½Ya¼0;q¼1

i ¼ 1�
¼= P½Ya¼1;q¼0

i ¼ 1� � P½Ya¼0;q¼0
i ¼ 1� (2)

Again, the left-hand side is a measure of the causal ef-

fect of A on Y for Q ¼ 1 , and the right-hand side for

Key Messages

• Directed acyclic graphs (DAGs) are useful in epidemiology, but the standard framework offers no way of displaying

whether interactions are present (on the scale of interest).

• We present a new type of DAG—the interaction DAG (IDAG)—which can be used to analyse interactions.

• We define concepts such as confounded interaction and total, direct and indirect interaction, and show how these

can easily be displayed with the IDAG.

• An applied researcher can use the IDAG to determine which treatment interactions to account for empirically.

• The IDAG can also be used to shed light on mechanisms that compromise generalizability and to determine which

variables to account for in order to make results valid for the target population.
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Q ¼ 0; the interaction is present if the size of this causal ef-

fect depends on Q.

Henceforth, we will denote a causal effect of A on Y by

DYA. Since DYA is a variable that may depend causally on

other variables, it can be included in a causal graph.

We refer to a graph including DYA as an IDAG. If there

is an interaction between some variable and A, there is a

directed arrow (or path) from this variable to DYA. In

contrast, effect measure modification only corresponds to

an association between some variable and DYA, possibly

arising through unblocked backdoor paths. In the

Supplementary Appendix, available as Supplementary data

at IJE online, we discuss more technical details related

to the IDAG, such as d-separation,1 and work through

examples based on structural equations. The IDAG is

quite similar to the standard DAG, except that the out-

come node has been replaced by a node representing a

causal effect, and that the node representing the treatment

variable A is not included. Both figures display causal rela-

tionships between variables, and the causal effect of one

variable on another is not dependent on the graph. Like

any DAG, the IDAG will normally be drawn based on pre-

vious literature, which in the case of the IDAG will have

to include evidence on which treatment interactions are

present.

Causal effects can be measured on different scales; for

example, although equations (1) and (2) defined interac-

tion on additive scales (based on differences), multiplica-

tive scales (based on ratios) could be used as well. Whether

an interaction is present may depend on the scale and, in

fact, two variables that influence an outcome will always

interact on some scales.5,17,18 The appearance of the IDAG

thus depends on the scale chosen, and certain variables

may point to DYA in some versions of the IDAG but not in

others. In general, the additive scale is preferred if the goal

is to evaluate interaction in a ‘mechanistic’ sense.5,6,19

For simplicity, we will assume that there are no interac-

tions not involving A (on the chosen scale), and for this

reason we only consider DYA and not, for example, DYQ.

We will also assume that interactions are constant across

individuals, so the individual-level interactions defined

from equations (1) and (2) are equal to conventional

population-level interactions.

Examples

We now present several examples of IDAGs, explaining their

interpretation and connection to standard DAGs. First, in

Figure 1A, we provide a standard DAG. The outcome Y, say

ischaemic stroke, is assumed to be influenced by a treatment A

and also Q (say, warfarin and smoking), and we want to dis-

play whether these two variables interact (say, on an additive

scale). Indeed, whether there is such an interaction between the

variables is not visible from the standard DAG. This, however,

can be seen in the IDAG in Figure 1B, according to which the

effects of A are influenced by Q.

The graph in Figure 1B is not the only possible IDAG to

accompany the standard DAG in Figure 1A. One could

also conceive of an IDAG without an arrow from Q to

DYA, i.e. a scenario with no interaction between A and Q.

We show this alternative in Figure 1C (in practice, Q could

have been omitted from this figure).

As can be noticed, a node Q with an arrow pointing to

Y in the standard DAG does not necessarily have an arrow

pointing to DYA in the IDAG. On the other hand, there can

be no arrow from Q to DYA in the IDAG unless Q points

to Y in the standard DAG. This follows because the treat-

ment effect depends on the outcomes, so only if a variable

directly influences the outcomes may it also directly influ-

ence the effect size.

Another example of a standard DAG and an accompanying

IDAG is given by Figure 2. We consider a scenario where a

(perhaps naı̈ve) researcher is asking whether there is an interac-

tion between a treatment, such as bariatric surgery, A, and hair

colour, Q, on weight loss Y (on an additive scale). There is an

unobserved variable X (genotype) that influences the outcome

and that also interacts with treatment—the latter illustrated by

an arrow to the causal effect in the IDAG. X also influences

hair colour, which does not itself influence the outcome. The

relationship between X and Q is indicated in both the standard

DAG and the IDAG. Notably, since Q is influenced by X, the

effects of A will vary by Q even though there is no interaction

between Q and A. The phenomenon has been referred to as ‘ef-

fect modification by proxy’7 and is an instance of confounded

interaction, since a simple analysis of a possible interaction be-

tween Q and A will give biased estimates due to the interaction

between X and A.

Further examples of standard DAGs and IDAGs are

given in Figure 3, where Q is assumed to influence the out-

come. X could represent education and Q smoking;

A again is a treatment and Y the disease outcome. We are

interested in whether the benefits of treatment (on an

additive scale) depend on smoking or education (i.e. inter-

actions between treatment and smoking or education), and

whether the potential impact of education on the benefits

of treatment are due to the fact that education influences

smoking. In Figure 3A, we assume that X has no direct im-

pact on the outcome, whereas such an impact is allowed

for in Figure 3B. Figure 3C shows an IDAG compatible

with either of the two standard DAGs. Here, it becomes

clear that Q and A interact; the arrow from Q to DYA

indicates direct interaction. However, there is only indirect

interaction with respect to the variable X; once Q is fixed,

it makes no difference for the causal effect what value
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X assumes. Changing educational levels would only

influence the benefits of treatment to the extent smoking is

influenced.

An alternative IDAG is displayed in Figure 3D. Here,

there is direct interaction with respect to both Q and X.

As for the effects of X, we can distinguish between direct

and total interaction, where the latter operates both di-

rectly and indirectly. Increasing educational levels could

both influence the benefit of treatment indirectly by reduc-

ing smoking, and directly, through other mechanisms omit-

ted from the graph (e.g. adherence). Treatment decisions

should here take both the individual’s educational level

and smoking status into account, whereas in scenario 3 C it

would be enough to take smoking into consideration.

Figure 3D is compatible with the DAG in Figure 3B but

not with the one in Figure 3A, as in Figure 3A there is no

direct impact of X on the outcome.

Estimation

Typical approaches to estimate an interaction between two

variables (Q and A) include stratification and estimation of

one regression on the full data, including the product term

QA. When used together with the standard DAG, the

IDAG provides guidance on how to carry out estimations.

Regarding confounding, a sufficient criterion for uncon-

foundedness in interaction models is that both interacting

variables are unconfounded.5,10 For simplicity, our figures

have so far ignored the possibility of confounding of the

variable A, but in general, variables will need to be condi-

tioned on to make sure A as well as Q is unconfounded.

Conclusions about which variables to condition on can be

drawn from the standard DAG. However, the standard

DAG is uninformative as to what extent stratification or

inclusion of product terms is necessary, as opposed to sim-

ply controlling for main effects.

To illustrate this point, consider the standard DAG in

Figure 3B. In order to estimate the joint effect of Q and A,

it is generally necessary to account for X, for example by

controlling for it in a regression model, at least including a

main term. However, whether it is also necessary to strat-

ify on X or include a product term between X and A

depends on whether X influences the causal effect of A on

Y (conditional on Q). In the IDAG in Figure 3D, causal

Figure 2 Confounded interaction or ‘effect modification by proxy’. A standard directed acyclic graph (DAG) is given in panel A and an interaction DAG

(IDAG) in panel B. Variables X (genotype) and A (bariatric surgery) influence Y (weight loss), with an interaction present. The effect of A is modified

by Q (hair colour), but there is no interaction between A and Q

Figure 3 Two examples of standard directed acyclic graphs (DAGs) (left) and two interaction DAGs (IDAGs) (right). The variable Y (a disease) is di-

rectly influenced by A (treatment), Q (smoking) and potentially also X (education). The DAG in panel A is compatible with the IDAG in panel C,

whereas the DAG in panel B is compatible with either of the IDAGs in panels C and D

Figure 1 An example of a standard directed acyclic graph (DAG) (panel A) and two possible interaction DAGs (IDAGs) (panels B and C). Variables A

(warfarin) and Q (smoking) influence Y (ischaemic stroke). Panel B suggests that Q also influences the effect of A on Y, whereas panel C suggests that

this is not the case
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effects depend on X, giving rise to a backdoor path be-

tween Q and DYA through X. An analysis examining the

interaction between Q and A also needs to account for the

interaction between X and A; failure to do so would result

in confounded interaction. In the IDAG in Figure 3C, how-

ever, causal effects do not depend on X conditional on Q,

so it would be enough to control for X with a main term.

This is reflected by the absence of a backdoor path be-

tween Q and DYA. The reasoning is similar to standard

DAG logic; we refer to the Supplementary Appendix, avail-

able as Supplementary data at IJE online, for more details

and elaborations.

Conclusions about what to condition on to estimate to-

tal or direct effects follow from both the standard DAG

and IDAG. In Figure 3, for example, one must not account

for Q (i.e. must omit Q and the interaction between Q and

A) to estimate the total effect of X and the total interaction

between X and A. In contrast, if interest lies in the direct

effect of X and the direct interaction between X and A, one

must include Q as well as a product term between Q and A

in addition to that between X and A – or, alternatively,

stratify not only on X but also on Q.

IDAGs and generalizability

We now consider the situation where an investigator is not

interested in examining interaction per se, but instead in

determining an overall effect, such as an average causal ef-

fect. If interactions are nevertheless present, sample selec-

tion will often cause problems of generalizability, as the

average causal effect in the selected sample may differ from

that in the target population. In general, this problem will

arise if selection depends on variables that influence the

causal effect under study.

Standard DAGs can be used to show how sample selection

potentially undermines the generalizability of estimates.20 For

instance Hernan,21 and also Westreich et al.,22 considered a

scenario where censoring depended on an unobserved variable

that influenced the outcome, and provided DAGs with a selec-

tion node for illustration. These standard DAGs are informa-

tive about biases that could arise due to non-random sampling,

regardless of the chosen effect measure. However, they are not

informative about whether, for a chosen effect measure, there

actually are interactions with respect to the variables that selec-

tion depends on, and thus whether generalizability is in fact

compromised.

In Figure 4, we reproduce the DAGs from Hernan21

and from Westreich et al.22 and display two alternative

IDAGs. The treatment of interest is given by A. The first

IDAG, shown in Figure 4B, makes it clear that selection on

S would compromise generalizability, a conclusion that

follows since S and DYA are not d-separated. Selected

individuals would tend to have different values on X com-

pared with non-selected individuals, and thus have differ-

ent causal effects DYA. In contrast, this selection issue is

not present in Figure 4C. Although S and Y are not d-sepa-

rated in the DAG, S and DYA are d-separated in the IDAG,

as DYA is not influenced by X. The estimate from the study

sample would here be valid for the target population.

To restore generalizability, weighting methods are typically

applied, where weights are based on the set of variables X

which (together with A) block all paths between S and Y:23–26

For a given effect measure, this set of variables may however be

larger than necessary, as not all of these variables may be re-

lated to the effect size. This point has been highlighted by a few

recent studies,27,28 but these did not provide a graphical frame-

work for understanding the phenomenon. With our presenta-

tion, Figure 4B makes it clear that weighting needs to be done

with respect to X, whereas in the scenario displayed in

Figure 4C, no weighting is necessary.

As noted, any path involving A is considered

‘automatically’ blocked20 in the generalizability frame-

work. For instance, a path S A! Y would not compro-

mise validity. Conveniently, in the IDAG A is not included

and this issue becomes irrelevant.

Discussion

Standard DAGs are highly informative but lack the ability

to depict whether interactions are present on the scale of

Figure 4 Sample selection potentially compromising generalizability.

Individuals are selected based on S. X may represent socioeconomic

status, A some treatment, and Y a disease. The standard directed acy-

clic graph (DAG) in panel A is compatible either with the interaction

DAG (IDAG) in panel B or the one in panel C, where generalizability is

only compromised in the scenario depicted in panel B
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interest. As a result, their usefulness is limited in terms of

understanding the reasons why causal effects vary across

individuals, and which interactions to account for. This ar-

ticle introduced a new version of DAGs, the IDAG, to be

used for these purposes. Conclusions from the IDAG can

be used to achieve internal validity in the sense of uncon-

founded interaction estimates, and also external validity in

the sense of generalizability of estimates of overall effects.

Our framework is distinct from previous attempts to in-

corporate interactions into DAGs. For example,

Weinberg8 proposed illustrating interactions by letting

arrows point to other arrows or merging arrows in the

standard DAG. Although intuitive, this approach is not

theoretically consistent with DAG theory. Another previ-

ous approach29 only applies to synergistic interaction

(‘mechanistic’ interaction based on sufficient causes) and

yet another one11 relies on a mediator between treatment

and outcome.

Whereas standard DAGs are nonparametric, we note

that the IDAG is parametric in the sense that the absence

of an interaction corresponds to a choice of functional

form. This makes the IDAG somewhat less general than

the standard DAG. However, a functional form is inevita-

bly imposed when conducting (parametric) estimation, and

we believe it is rather an advantage that the IDAG narrows

the gap between theory and estimation. As for any DAG,

assumptions on how the variables in the IDAG are related

must be made based on previous evidence.

Several simplifying assumptions were made in this arti-

cle, in particular that there were no interactions not involv-

ing the A variable, and that interactions were constant

across individuals. It will be an interesting avenue for fu-

ture work to elaborate on more general scenarios, where

these assumptions are not fulfilled.

Conclusion

DAGs are useful tools in epidemiology, but one feature of

causal relationships which has not been incorporated into

the standard framework is interaction. However, interac-

tions can be viewed as ‘effects on effects’ and are therefore

conveniently depicted by the IDAG. We expect that our

framework will be useful to guide conversations about in-

teraction analyses and to understand whether estimated

interactions have a causal interpretation. Describing and

guiding analyses in scenarios where sample selection causes

lack of generalizability is another benefit.

Supplementary data

Supplementary data are available at IJE online.
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