Skip to main content
. 2020 Sep 4;37(7):1000–1007. doi: 10.1093/bioinformatics/btaa768

Table 2.

Area under the ROC curve estimates for PPI/DTI datasets using 10-fold cross-validation

Method/dataset (Hyper)edge classification
Link prediction
PC ID AI BC MP EC SP RN MM CE AT EZ IC GR NR
Without domain information, |Σ|=1
Section hypergraphlet kernel (τ = 0) 0.647 0.555 0.529 0.546 0.585 0.724 0.639 0.671 0.628 0.762 0.578 0.537 0.542 0.552 0.783
Subhypergraphlet kernel (τ = 0) 0.838 0.633 0.675 0.830 0.787 0.692 0.691 0.651 0.612 0.873 0.681 0.788 0.711 0.579 0.732
Section hypergraphlet kernel (τ = 1) 0.649 0.551 0.521 0.570 0.599 0.708 0.641 0.678 0.628 0.772 0.581 0.535 0.550 0.542 0.791
Subhypergraphlet kernel (τ = 1) 0.834 0.632 0.672 0.827 0.767 0.681 0.686 0.649 0.611 0.871 0.683 0.784 0.702 0.580 0.736
L3 framework 0.717 0.577 0.634 0.573 0.511 0.501 0.629 0.642 0.596 0.505
Preferential attachment 0.814 0.492 0.552 0.498 0.660 0.449 0.534 0.561 0.545 0.497
With domain information, |Σ|={4,8,16}
Σ=ΣGO Σ=ΣGOΣSS Σ=ΣGO Σ=ΣGO Σ=ΣGOΣSS
Random hyperwalk 0.741 0.626 0.807 0.792 0.936 0.815 0.610 0.599 0.588 0.597 0.608 0.523 0.543 0.534 0.548
Cumulative random hyperwalk 0.711 0.837 0.822 0.800 0.937 0.848 0.681 0.647 0.670 0.569 0.637 0.844 0.617 0.550 0.518
Pairwise spectrum kernel (k={3,4,5}) 0.780 0.816 0.584 0.716 0.689 0.754 0.629
Section hypergraphlet kernel (τ = 0) 0.651 0.634 0.681 0.663 0.784 0.861 0.677 0.698 0.655 0.804 0.559 0.633 0.583 0.625 0.775
Subhypergraphlet kernel (τ = 0) 0.940 0.936 0.918 0.935 0.952 0.796 0.740 0.676 0.708 0.846 0.678 0.936 0.879 0.724 0.757
Section hypergraphlet kernel (τ = 1) 0.650 0.635 0.693 0.674 0.795 0.875 0.697 0.706 0.667 0.786 0.574 0.637 0.585 0.619 0.777
Subhypergraphlet kernel (τ = 1) 0.940 0.939 0.922 0.930 0.952 0.812 0.750 0.719 0.736 0.860 0.728 0.944 0.884 0.747 0.764

Note: The highest performance for each dataset is shown in boldface.