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Abstract

Statistical learning includes methods that extract knowledge from complex data.

Statistical learning methods beyond generalized linear models, such as shrinkage meth-

ods or kernel smoothing methods, are being increasingly implemented in public health

research and epidemiology because they can perform better in instances with complex

or high-dimensional data—settings in which traditional statistical methods fail. These

novel methods, however, often include random sampling which may induce variability

in results. Best practices in data science can help to ensure robustness. As a case study,

we included four statistical learning models that have been applied previously to analyze

the relationship between environmental mixtures and health outcomes. We ran each

model across 100 initializing values for random number generation, or ‘seeds’, and

assessed variability in resulting estimation and inference. All methods exhibited some

seed-dependent variability in results. The degree of variability differed across methods

and exposure of interest. Any statistical learning method reliant on a random seed will

exhibit some degree of seed sensitivity. We recommend that researchers repeat their

analysis with various seeds as a sensitivity analysis when implementing these methods

to enhance interpretability and robustness of results.
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Introduction

As the data we use for epidemiologic studies become more

complicated—with high-dimensional exposure and out-

come spaces and increasing sample sizes—investigators are

reaching for statistical learning tools, i.e. a set of tools for

modelling and understanding complex datasets more

suited to accommodating big data.1 Indeed, epidemiolo-

gists are increasingly adopting statistical learning methods

to help answer research questions in public health. For ex-

ample, epidemiologists have used clustering algorithms to

determine the effect of atmospheric particulate matter with

a diameter �2.5 micrometers (PM2.5) exposure across cit-

ies with different PM2.5 composition,2 penalized regression

to identify chemical-specific independent associations be-

tween environmental contaminants and birth weight,3 and

tree-based methods to assess potential interactions among

air pollution toxins and their relationship with child cogni-

tive skills,4 among others. These approaches appear better

equipped than traditional methods to accommodate

numerous issues, such as model uncertainty, multi-

collinearity and multiple comparisons.

Most well-established methods for statistical learning

incorporate random sampling, e.g. a tuning parameter that

depends on a random division of the dataset or a random

starting point to begin sampling.5,6 When applying statisti-

cal learning to public health questions, understanding the

role of random sampling in these methods and assessing

the potential variability induced by this randomness can

greatly increase confidence in the results.

Random dataset divisions are used by some statistical

learning methods to split the full dataset to a ‘training’

dataset, to build the model, and a ‘testing’ dataset to (i)

measure the predictive ability of said model and/or (ii) as-

sist in estimating tuning parameters to maximize predictive

accuracy. When no external testing dataset is available,

cross-validation can be used in the full dataset; cross-

validation randomly splits the original dataset in two,

builds the model on one set of the data (i.e. the training

set) and evaluates its performance on the left-out set

(i.e. the testing set). A common extension, k-fold

cross-validation, randomly partitions the original data into

k subsamples and repeats the training k times using all but

a single subsample, while testing the model on the held-out

sample. The predicted values for each held-out sample are

then compared with the observed ones from the same sam-

ple, for example by averaging the k error estimates.6

Cross-validation works well when the objective of the sta-

tistical analysis is prediction; it may not perform as well to

assess sensitivity and specificity or to evaluate effect esti-

mates. Nonetheless, cross-validation is often used for

assessing goodness of fit and selecting tuning parameter

values in epidemiologic models when there is a lack of

other options to optimize statistical learning models for ef-

fect estimation.

The purpose of assessing model performance in a sepa-

rate (‘testing’) dataset is to avoid over-fitting and ensure

generalizability of results. In cross-validation, if each sub-

sample is randomly drawn from the original dataset, then,

on average, each should serve as a representative subsam-

ple. The key phrase here is ‘on average’—it does not mean

that any given subsample is representative of the complete

sample. Researchers can enhance their confidence in the

results simply by running a sensitivity analysis with a dif-

ferent seed, as the seed will determine the splitting. Similar

results on tuning parameters chosen from different splits

that arise from different seeds will increase confidence that

the randomly chosen subsamples are representative of the

whole and will strengthen conclusions regarding

generalizability.

Statistical learning methods that rely on a Bayesian

framework for statistical inference include—but are not

limited to—Bayesian model averaging, e.g. to identify time

windows of exposure to pollutants that produce adverse

health effects;7 Bayesian networks to account for uncer-

tainty, as e.g. in infectious disease epidemiology;8 and

Bayesian hierarchical models, e.g. to investigate day-to-day

changes in coarse particulate matter air pollution and

cause-specific mortality.9 These Bayesian methods involve

a set seed for a different purpose than splitting the dataset

into subsamples. Bayesian methods specify prior

Key Messages

• Statistical learning is increasingly useful for epidemiology applications as data dimensionality and complexity

increase.

• Most statistical learning approaches incorporate random sampling. Defining a seed enables reproducibility.

• Findings may vary across seeds to different degrees, depending on the dataset and the chosen method.

• Sensitivity analyses should assess robustness of results to seed selection.

• If results are highly variable across seeds, a distribution of estimated effects across seeds should be presented.
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distributions that, when combined with a data likelihood,

give rise to a posterior distribution of interest. Calculating

the exact posterior distribution of most models is impossi-

ble or, at least, too computationally expensive to be rea-

sonable. Instead, Markov Chain Monte Carlo (MCMC) is

used to produce samples from a model’s posterior distribu-

tion. The marginal distribution of a Markov chain that has

converged to the stationary distribution can be used to

make inferences that approximate results from the full pos-

terior distribution. MCMC is inherently random and

chains often begin from a random point, which is defined

by the set seed. In theory, if the chain runs long enough to

converge, then the initialization seed should not matter.5

In practice, convergence assessment is not always straight-

forward. Although there are diagnostic tools that quantify

the variation among multiple chains to assess whether the

chains have converged, such as the Gelman–Rubin statis-

tic,5,10,11 these are not always applied in epidemiologic

studies. Similar results from a sensitivity analysis based on

an initialization point assigned by a different seed will also

increase confidence that the results represent the full

posterior.

Assessing robustness of results from statistical learning

methods in epidemiology can be improved by sensitivity

analyses. Here, we present a case study of analytic exam-

ples of sensitivity to seed selection across four statistical

learning models used in environmental epidemiology to as-

sess exposure to environmental mixtures in health analy-

ses, noting that this is but one example in public health.

We discuss best practices to ensure robustness of results

and the benefits of sensitivity analyses when utilizing statis-

tical learning to make inference in public health research.

Methods

The aim of this analysis is to highlight the importance of

incorporating seed sensitivity analyses into epidemiologic

studies that employ statistical learning methods, using as a

case study an environmental epidemiology application. We

employed four methods that depend on a seed, for cross-

validation or as a random start for a sampling chain, to il-

lustrate variability in results across different seeds. We

availed ourselves of existing models from a study present-

ing multiple methods to assess exposure to multipollutant

chemical mixtures in environmental epidemiology.

Specifically, we used information on 18 persistent organic

pollutants (POPs) and data on leukocyte telomere length

(LTL) among 1 003 US adults in the National Health and

Nutrition Examination Survey (NHANES, 2001–2002).12

LTL is the outcome variable in this study. In summary,

LTL refers to the length of the repetitive nucleotide se-

quence at the end of chromosomes that provides stability

and allows for complete DNA replication.13,14 The study

population, POPs mixture and LTL measurements have

been described in more detail previously.15–22 According to

previous work by Mitro et al., we a priori divided the 18

POP exposure mixture into three groups: (i) eight

non-dioxin-like polychlorinated biphenyls (PCBs), (ii) two

non-ortho PCBs (PCBs 126 and 169), and (iii) POPs with

moderate to high toxic equivalency factors (mono-ortho-

substituted PCB 118, four dibenzo-furans and three chlori-

nated dibenzo-p-dioxins), here referred to as mPFD.12,15

We built four models according to Gibson et al.12 in-

cluding the same 18 POPs as predictors of interest, LTL as

outcome, plus covariates. We included two penalized re-

gression methods (lasso and group lasso) for variable selec-

tion that add a regularization term with an associated

tuning parameter (often denoted using k) to a regression

model and chose the tuning parameter using 10-fold cross-

validation to control over-fitting. Lasso constrains the fit

of a regression model with respect to the sum of the abso-

lute values of the coefficients23 and group lasso constrains

the fit of the model with respect to the sum of the absolute

values of a priori defined groups.24 The regularization pa-

rameter k in each model controls the degree of shrinkage

and is tuned to improve model fit and predictive capacity.

In both of these methods, we only penalized the POP varia-

bles, but not the potential confounders included in the

model.

A third model [weighted quantile sum regression

(WQS)] includes a single training and a hold-out set (test-

ing set) to assess generalizability. WQS creates an

empirically-weighted index of chemicals and includes this

index as the exposure term in a regression model.25 Here,

cross-validation is not used to tune the model; instead, the

hold-out dataset is used to determine whether weights gen-

eralize from one random subsample to another. WQS also

estimates a parameter that constrains each chemical weight

to be between 0 and 1 and all weights to sum to 1.

Important chemical components in the mixture are identi-

fied by comparing the weight for each component with a

threshold parameter, s, chosen a priori. Here we use

s ¼ 1=p, where p is the number of chemicals in the mix-

ture, as has been previously suggested.12,26 Because WQS

is inherently one-directional, in that it tests only for mix-

ture effects positively or negatively associated with a given

outcome, we specified a positive unconstrained model.

The fourth model we included, Bayesian Kernel

Machine Regression (BKMR), uses MCMC sampling (with

a random seed for initialization) to estimate the posterior

distributions of the model parameters by simulating realiza-

tions from these intractable posteriors.27 BKMR estimates

chemical-specific exposure–response functions, detects po-

tential interactions among mixture members, and estimates
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the overall mixture effect. Its variable selection feature also

outputs posterior inclusion probabilities. Posterior inclusion

probability values range between 0 and 1 and their magni-

tude indicates relative variable importance.28 For this analy-

sis, we performed hierarchical variable selection for the

three pre-defined groups of congeners. This feature outputs

both group and congener-specific posterior inclusion proba-

bilities, i.e. the relative importance of a congener given that

the group that contains that congener is important.

We ran lasso, group lasso, WQS and BKMR 100 times

each, using a different seed each time. We measured vari-

ability in lasso and group lasso results using the propor-

tion of non-zero beta coefficients, the median and the

inter-quartile range of the beta coefficients for each of the

POPs across seeds. We measured variability in WQS

results using (i) the proportion of weights above our cho-

sen threshold (s ¼ 1=18), the median and inter-quantile

range for each POP across seeds, and (ii) the pooled WQS

index coefficient across seeds calculated using Rubin’s

rule.29,30 We measured variability in BKMR results by vi-

sualizing the full exposure–response curves and using the

median and inter-quantile-range of the posterior inclusion

probabilities for each of the POPs across seeds. All analy-

ses were conducted in R version 3.6.1,31 and all code to

recreate results and figures is available online at https://

github.com/yanellinunez/Commentary-to-mixture-meth

ods-paper.

Results

As expected, for all methods, we observed some variability

in the results based on seed number.

Lasso and group lasso

Lasso models varied slightly across seeds, beginning with

different k values chosen as the optimal tuning parameter

(Figure 1). Whereas there was little difference in predictive

accuracy across seeds (total cross-validation error range ¼
0.041–0.042), the chosen k value based on cross-validation

affected the number of coefficients that were pushed to

zero. The smallest k value selected, chosen by two of the

100 seeds, retained 9 of the 18 congeners in the model.

The largest k value selected, chosen by 11 of the 100 seeds,

retained 4 congeners in the model. Sixty percent of all cho-

sen k values retained 5 congeners. However, independent

of seed, 9 out of the 18 congeners consistently had beta

coefficients of zero (dioxin 1,2,3,4,6,7,8-hpcdd, furans

1,2,3,4,7,8-hxcdf and 1,2,3,6,7,8-hxcdf, and PCBs 74,

138, 153, 170, 187 and 194); and 4 out of the 18 conge-

ners (PCB 99, 118, 126 and furan 2,3,4,7,8-pncdf) consis-

tently had non-zero beta coefficients. Four of the 5 other

congeners, dioxins 1,2,3,4,6,7,8,9-ocdd and 1,2,3,6,7,8-

hxcdd and PCBs 180 and 169 had non-zero coefficients in

�10% of the cases. Only one congener, furan

1,2,3,4,6,7,8-hxcdf, had less consistency, with non-zero

beta coefficients in 71% of the seeds (Figure 2).

In group lasso, the non-dioxin-like PCBs had the most

variability across seeds relative to the other groups. This

congener group had non-zero beta coefficients in 75% of

the seeds. In contrast, the mPFD and non-ortho PCBs con-

sistently had non-zero beta coefficients. The non-dioxin-

like PCBs also showed the widest range of beta values for a

given congener across seeds, particularly PCBs 180 and

153. The non-ortho PCBs had consistent coefficient values

across seeds (Figure 2).

WQS regression

In WQS, weight values varied to a degree across seeds,

which resulted in the number of weight values above the

threshold s and the congener order of importance varying

from seed to seed. Out of the 100 seeds, furan 2,3,4,7–8-

pncdf and PCB 126 had weight values above the threshold

96 and 68% of the time, respectively. These two congeners

also had the largest weight in most instances—in 49 and

15 of the seeds, respectively. PCB 99, PCB 118 and furan

1,2,3,4,6,7,8-hxcdf had weights above the threshold in

�50% of the seeds and presented the largest weight value

in 12, 8 and 4 instances, respectively. The remaining

Figure 1 Cross-validation curves for lasso models over 100 seeds. Grey

curves represent results obtained from each of the 100 seeds. The verti-

cal red line indicates the median of the best fit k values. The inner dot-

dashed lines represent the inter-quartile range of the best fit k values.

The outer dashed lines represent the minimum and maximum of the

best fit k values. All best fit k values fell inside the shaded area.
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congeners showed weights above the threshold in <50%

of the seeds (Figure 3). The regression coefficient for the

pooled WQS index across seeds was significantly positive.

The confidence intervals around the effect estimate for the

WQS index did not include the null value for 97% of the

seeds based on the hold-out data (Figure 4).

BKMR

For MCMC seeds, the order of posterior inclusion proba-

bilities for the congener groups and the highest conditional

posterior inclusion probability within each group (furan

2,3,4,7,8-pncdf for mPFD, PCB 126 for non-ortho PCBs

and PCB 170 for non-dioxin-like PCBs) did not change

based on seed selection (Table 1). Direction and magnitude

of exposure–response functions for individual POPs across

seeds were largely similar, with notable deviations for

PCBs 99, 118, 126, 169 and 180, and furan 2,3,4,7,8-

pncdf. For these 6 congeners, 4 of the 100 seeds produced

null exposure–response curves with no suggestion of a pos-

itive or negative association with LTL. For all other seeds,

the credible intervals around furan 2,3,4,7,8-pncdf did not

include the null value at low levels of the exposure–re-

sponse curve (Figure 5) and we observed suggestive evi-

dence of associations with PCBs 126 and 169. For 96 of

100 seeds, we observed an overall mixture effect, with null

results for the same four seeds.

Discussion

Our goal was to show the value of incorporating multiple

seeds when applying statistical learning methods that in-

volve a random process in epidemiologic studies. We used

an environmental mixtures example as a case study and

ran four methods over 100 different seeds, to illustrate the

benefit of sensitivity analyses. Obtaining results across

multiple seeds increases the generalizability of the results

and the conclusions drawn. We showed that although set-

ting a specific seed may ensure the reproducibility of an

analysis, it does not guarantee generalizability and robust-

ness, highlighting the benefit of estimating parameters for

a given statistical learning model using multiple seeds.

For methods applying some form of cross-validation to

select the optimal tuning parameter for the model, sensitiv-

ity to seed gives rise to variability in the choice of this pa-

rameter (Figure 1). Although there may be no practical

significance in epidemiologic research between two k val-

ues in terms of predictive accuracy measured by cross-

validation error, two similar k values may result in sub-

stantial differences in variable selection. In our case study,

Figure 2 (a) Lasso and (b) group lasso beta coefficients over 100 seeds. Bars correspond to the right axis and indicate the number of times a congener

had a non-zero beta coefficient across all seeds. Data points and boxplots correspond to the left axis. The data points are the congeners’ beta coeffi-

cients in each of the seeds. Boxplots show the median and interquartile range for the beta coefficients of the given congener.
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the number of retained congeners varied between 4 and 9,

depending on the optimal k value selected by cross-

validation error across seeds, with 5 congeners selected in

60% of the seeds. This could result in quite different con-

clusions about the potential toxicity of the examined

congeners.

Variability in k, thus, may affect the stability of beta

coefficients across seeds (Figure 2). In the case of lasso,

nine beta coefficients were consistently pushed to zero and

four consistently pushed to non-zero, across all seeds.

However, 1 congener (furan 1,2,3,6,7,8-hxcdf) had a posi-

tive beta coefficient for 71 out of 100 seeds and 4 other

congeners (dioxins 1,2,3,4,6,7,8,9-ocdd and 1,2,3,6,7,8-

hxcdd and PCBs 180 and 169) had non-zero coefficients

<10% of the time. Thus, if this analysis were run with a

single seed, it would have been possible to find and report

that furan 1,2,3,6,7,8-hxcdf was not predictive of the out-

come or that PCB 180 was. Depending on the context, the

consequences of ruling out a potential association with one

POP or drawing undue attention to another may be trivial

or not. In the case of group lasso, all congeners within a

priori defined groups were penalized together. Congeners

in the mPFD and non-ortho PCB groups consistently had

non-zero beta coefficients over the 100 seeds. Congeners in

the non-dioxin-like PCBs group had non-zero beta coeffi-

cients in 75 seeds, but had beta coefficients of zero in the

remaining 25 seeds. Again, if the analysis were run with

only 1 seed, the predictive power of non-dioxin-like PCBs

may have been missed.

In the case of WQS, the dataset is randomly partitioned

into a training and a testing set. The weights for each con-

gener are then calculated from the training set and subse-

quently used to estimate the index coefficient with the

testing set. Thus, the results can be strongly influenced by

the initial random partition of the data and may be unsta-

ble, especially when the dataset is small. Our analysis, with

a sample size of 1003, showed that the number of conge-

ners with a weight above the threshold and the magnitude

of given weights varied across seeds. Tanner et al.26,32 ad-

dress this issue by using a repeated hold-out validation.

This process repeats the analysis 100 times over randomly

selected seeds, similar to what we did here, then reports

the mean and confidence intervals for the sampling distri-

bution of the weights instead of a single estimate from a

single seed, enhancing generalizability. Code for this tech-

nique is also publicly available (https://github.com/evam

tanner/Repeated_Holdout_WQS). Although we found

some variability in the estimated congener-specific weights,

the conclusion that this mixture had an overall harmful ef-

fect on LTL was robust to seed selection.

BKMR results varied little based on the selected seeds,

but 4 of the 100 chosen MCMC seeds failed to identify

any non-null univariate exposure–response functions or an

overall mixture effect. Since seed should not influence

results if the Markov chain has converged to its stationary

distribution, we believe that the runs based on these 4 seeds

Figure 3 WQS estimated weights over 100 seeds. Bars correspond to

the right axis and indicate the number of times a congener had a weight

value above the threshold, which was calculated as 1/p (1/18¼ 0.05, hor-

izontal line) out of the 100 seeds. Data points and boxplots correspond

to the left axis. The data points are the congeners’ weights in each of

the seeds. The boxplots show the median and interquartile range for

the weights of each congener across seeds. WQS, Weighted Quantile

Sum Regression.

Figure 4 WQS index estimates over 100 different seeds. Black points

and black lines represent estimates for each of the 100 seeds and the

95% confidence intervals, respectively. The red point represents the

pooled estimate across all seeds and its 95% confidence interval. WQS,

Weighted Quantile Sum Regression.
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did not converge. It is likely that the chain became ‘stuck’

in an area with a local optimum and 100 000 iterations

were not sufficient to examine the full distribution. Further

inspection of convergence criteria, however, provided no

indication of failure to converge, supporting our recom-

mendation of sensitivity analyses with multiple seeds or the

use of convergence diagnostics, such as the Gelman–Rubin

statistic.

Recommendations of this sort exist already in various

subject areas. In machine learning, re-fitting a model, such

as a penalized regression or a tree-based method, on boot-

strapped samples of the data has been recommended.24,33

This is another means of capturing variability attributed

here to seed selection. A single regression tree, for example,

is not very stable; a different seed will divide the data into

different training and testing sets that may result in vastly

different trees. A random forest, which trains multiple trees

on bootstrapped samples of observations and uses only a

random subset of variables at each split, is much more ro-

bust. The method we used to pool WQS coefficients across

seeds, Rubin’s rule, is commonly implemented in stochastic

missing-data imputation to combine variance between and

within multiple imputations.29,30 For Bayesian MCMC, it

is often recommended to simulate multiple chains and then

check that they have converged to the same distribution,

i.e. ‘mixed’.34 In this reflection on seed selection in statisti-

cal learning, we aim to connect applied epidemiologic re-

search to these avenues.

A degree of variability across seeds is expected due to

the intrinsic randomness associated with the methods at

hand. However, seed sensitivity is not specific to these four

methods; any statistical learning tool may be susceptible.

Nor is the generalizability and robustness of results only

method-dependent—factors such as sample size or data

heterogeneity should also be considered. Finally, we note

that many statistical learning methods, including lasso and

group lasso, were developed to improve predictive accu-

racy. Their ability to accommodate complex and high-

dimensional datasets make them increasingly appealing

tools for use in epidemiologic analyses; application,

Table 1 Posterior inclusion probabilities for persistent organic pollutant groups and conditional posterior inclusion probabilities

for individual congeners across 100 MCMC seeds

Posterior inclusion probabilities

Group Minimum Median Maximum

mPFDa 0.65 0.86 0.89

Non-ortho PCBsb 0.61 0.67 0.76

Non-dioxin-like PCBs 0.41 0.46 0.68

Group Congener Conditional posterior inclusion probabilities

Minimum Median Maximum

1,2,3,6,7,8-hxcdd 0.01 0.01 0.12

1,2,3,4,6,7,8-hpcdd 0.01 0.01 0.13

mPFD 1,2,3,4,6,7,8,9-ocdd 0.004 0.01 0.12

2,3,4,7,8-pncdf 0.12 0.86 0.89

1,2,3,4,7,8-hxcdf 0.01 0.02 0.13

1,2,3,6,7,8-hxcdf 0.01 0.02 0.13

1,2,3,4,6,7,8-hxcdf 0.01 0.02 0.14

PCB 118 0.05 0.06 0.14

Non-ortho PCBs PCB 126 0.51 0.65 0.68

PCB 169 0.32 0.35 0.49

PCB 74 0.08 0.10 0.13

PCB 99 0.11 0.13 0.16

PCB 138 0.10 0.12 0.14

Non-dioxin-like PCBs PCB 153 0.12 0.14 0.16

PCB 170 0.12 0.17 0.21

PCB 180 0.11 0.13 0.17

PCB 187 0.08 0.09 0.13

PCB 194 0.09 0.10 0.12

aMono-ortho-substituted PCB 118, dibenzo-furans, and chlorinated dibenzo-p-dioxins
bPolychlorinated biphenyls
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nonetheless, to estimate health effects should be performed

with caution.

Conclusion

Running the same analysis under different seeds provides a

better understanding of the results. Thus, we recommend

that epidemiologists employing statistical learning methods

run models that involve a random component with multi-

ple seeds as best practice. Results across seeds should not

be used to select a seed number, but instead as sensitivity

analysis to assess the robustness of the results and enhance

generalizability of study findings. A randomly selected seed

should be used for the main analysis, and results across

seeds should be included as supplementary material. When

results across seeds vary greatly, researchers should con-

sider reporting averages and inter-quartile ranges rather

than an estimate from a single seed.
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