Skip to main content
. Author manuscript; available in PMC: 2021 Nov 1.
Published in final edited form as: Comput Toxicol. 2020 Nov 1;16(November 2020):10.1016/j.comtox.2020.100139. doi: 10.1016/j.comtox.2020.100139

Table 2:

Summary of the top 10 descriptors that drive POD predictions identified using feature selection analysis in the Random forest model.

DescriptorNumber Relevant Descriptors Description Feature Importance Value Descriptor Source

1 Study Type The type of study conducted (chronic, subchronic etc.) 0.10 Study data
2 Molar Mass Molar mass 0.06 CDK
3 Molecular Weight Molecular weight 0.06 CDK
4 Species Species in which the study was conducted (rat, mouse, rabbit) 0.06 Study data
5 VABC Volume Descriptor Volume descriptor using the method implemented in the VABCVolume class. 0.05 CDK
6 Atomic Polarizabilities Sum of the atomic polarizabilities (including implicit hydrogens) 0.05 CDK
7 Sv 2D constitutional descriptor (Sum of atomic van der Waals volumes scaled on carbon atom) 0.05 PaDEL
8 ATS0i Autocorrelation descriptor (Broto-Moreau autocorrelation - lag 0/weighted by first ionization potential) 0.05 PaDEL
9 Si Constitutional descriptor (Sum of first first ionization potentials scaled on carbon atom) 0.05 PaDEL
10 Sse Constitutional descriptor (Sum of atomic Sanderson electronegativities scaled on carbon atom) 0.05 PaDEL