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Abstract

There is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations.
However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and devel-
opment of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and with-
drawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal
hippocampal (DH) interleukin-13 (IL-1(3). However, other cytokines, such as TNF-&, work synergistically with IL-13 and
may have a role in the development of enhanced fear learning. Based on both translational rodent and clinical studies, TNF-« has
been implicated in hyperarousal states of PTSD, and has an established role in hippocampal-dependent learning and memory.
The first set of experiments tested the hypothesis that chronic heroin administration followed by withdrawal is capable of
inducing alterations in DH TNF-« expression. The second set of experiments examined whether DH TNF-o expression is
functionally relevant to the development of enhanced fear learning. We identified an increase of TNF-& immunoreactivity and
positive cells at 0, 24, and 48 h into withdrawal in the dentate gyrus DH subregion. Interestingly, intra-DH infusions of etanercept
(TNF-« inhibitor) 0, 24, and 48 h into heroin withdrawal prevented the development of enhanced fear learning and mitigated
withdrawal-induced weight loss. Overall, these findings provide insight into the role of TNF-« in opioid withdrawal and the

development of anxiety disorders such as PTSD.
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Introduction

Post-traumatic stress disorder (PTSD), a devastating mental
illness, is highly comorbid with substance use disorder
(SUD), as nearly 40% of individuals diagnosed with PTSD
are diagnosed with SUD [1]. Specifically, opioid abuse has
one of the highest prevalence rates of any comorbid SUD. It
has been reported that 33.2% of individuals with an opioid use
disorder (OUD) currently meet criteria for comorbid PTSD
and 41% of those have a lifetime history of PTSD [2, 3].
Notably, comorbidity estimates of heroin use disorder and
PTSD are as high as 66% [4], and this has substantial clinical
consequences. Co-occurring PTSD in heroin use disorder is
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associated with an earlier addiction onset age, longer addiction
durations, higher rates of attempted suicide, and poorer occu-
pational functioning [4]. Consequently, the mechanisms sur-
rounding this comorbidity present an important area of re-
search in order to improve the treatment, recovery, and out-
comes of clinical populations with these psychopathologies.
Heroin use and withdrawal may give rise to long-term neu-
robiological changes believed to underlie major symptoms of
PTSD, such as the fear learning, hyperarousal, and/or re-
experiencing events, and increased vulnerability future
stressors. Opioid-dependent patients display increased distress
on the perceived stress scale, and interestingly, abnormally
high cortisol levels have been correlated with an individual’s
increased discontinuation risk for recovery [5]. Consistent
with this, patients undergoing opioid withdrawal have mark-
edly elevated salivary cortisol levels [6, 7]. These withdrawal-
induced physiological effects are pronounced during opioid
withdrawal and can have long-lasting consequences [8].
Within the preclinical literature, opioids also have been shown
to increase the production of corticotropin-releasing factor
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mRNA [9], and plasma corticosterone levels in rats [10]. The
elevated cortisol or corticotropin-releasing factor response as-
sociated with opioid use and withdrawal has prominent im-
mune consequences, as it is related to altered cytokine expres-
sion in both human and animal models [11-13] and observed
across multiple anxiety disorders, such as PTSD [14-17].

Our laboratory has previously shown that dorsal hippocampal
(DH) interleukin-1 (IL-1) signaling is responsible for the devel-
opment of stress-enhanced fear learning (SEFL), a reliable and
reproducible animal model of fear-related features of PTSD [18].
Although it is difficult to incorporate all the symptoms of PTSD
into a preclinical animal model, SEFL effectively demonstrates
hyperarousal and greater susceptibility to future fear learning, a
prominent component of human PTSD. In the SEFL paradigm,
rats previously exposed to a severe stressor (inescapable foot
shocks) show an exaggerated or enhanced fear response to a mild
form of stress in a separate, distinct context. The hyperarousal
and enhanced reactivity response captured using the enhanced
fear learning paradigm offers the opportunity to investigate an
important, critical symptom of clinical PTSD. Our laboratory has
shown that exposure to the severe stressor in this model induces a
time-dependent, region-specific increase in interleukin-13 (IL-
13) immunoreactivity within the dentate gyrus (DG) of the DH
[19]. This stress-induced increase in IL-1f3 is causally related to
enhanced fear learning, as blockade of IL-1 signaling with IL-1
receptor antagonist (IL-1RA) following the severe stressor
prevented the development of SEFL [20]. These data suggest
that alterations in hippocampal neuroimmune signaling directly
lead to maladaptive behavioral responses, such as enhanced fear
learning and increased sensitivity to future stressors.

We have recently developed an animal model for chronic
escalating heroin administration and withdrawal that we use in
combination with the enhanced fear learning paradigm [21].
This model produces reliable withdrawal behaviors such as
wet dog shakes, diarrhea, and teeth chattering 24 h after the
last heroin dose. Importantly, this model also produces signif-
icant weight loss in heroin-treated animals, a hallmark sign of
rodent opioid withdrawal. Strikingly, this model of heroin
administration and withdrawal is capable of producing en-
hanced fear learning and long-lasting hyperarousal [21].
This exciting finding suggests that prolonged opioid exposure
and subsequent withdrawal elicit increased stress vulnerability
and produce persistent hyperreactivity in a rodent model. In
addition to the behavioral consequences, heroin withdrawal
induces a similar region-specific increase in IL-1f3 immuno-
reactivity within the DG [21]. Critically, intra-DH IL-1RA
during heroin withdrawal prevented the development of her-
oin withdrawal-enhanced fear learning [21]. These studies in-
dicate that the altered DH IL-1 signaling during heroin with-
drawal produces long-lasting neuroadaptations that result in
exaggerated fear learning behavior.

Although our research has primarily focused on IL-1(3, central
cytokines function in concert to facilitate learning processes [22],
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and there is evidence that IL-13 does not independently influ-
ence heroin withdrawal and enhanced fear learning. Other proin-
flammatory cytokines, such as TNF-«, are critical in learning
processes [23], and alter the response to anxiety and distress.
Interestingly, the literature suggests that TNF-oc and IL-1f3 have
a synergistic relationship in multiple inflammatory mechanisms
[24, 25], as both cytokines stimulate proinflammatory responses
and increase cytokine production. This suggests that the actions
of TNF-o and IL-1{3 are interconnected; however, little is known
about the role TNF-« plays in opioid use and withdrawal, as well
as the development of hyperarousal states of PTSD. TNF-« has
been shown to be upregulated following opioid use [26] and
during withdrawal [27]. Likewise, translational evidence from
both rodent and clinical studies has implicated TNF-« in stress-
related disorders, such as PTSD [28-30]. Moreover, TNF-« has
an integral role in learning and memory processes, as well as
cognitive functioning, suggesting a possible role in fear learning
behaviors [31-34]. Collectively, these studies support the idea
that TNF-« signaling facilitates the ability of chronic heroin ad-
ministration and withdrawal to enhance future fear learning.
The current studies test the hypothesis that chronic heroin and
withdrawal are capable of inducing alterations in TNF-x expres-
sion in the DH, and that this DH TNF-« expression is function-
ally relevant to the development of future enhanced fear learning
and withdrawal symptoms, as indicated by weight loss. To this
end, experiment 1 determined the consequence of chronic heroin
administration and withdrawal on TNF-« expression in the DH.
Our analysis focused on the DH as this region has been shown to
be critical to context-dependent fear learning and conditioning
[35-37]. Specifically, we focused on the DG subregion, as this is
where we observed increased IL-1[3 expression during heroin
withdrawal [21]. We identified increased TNF-o« immunoreac-
tivity within the DG following chronic heroin administration 0,
24, and 48 h into withdrawal. Subsequently, experiment 2 tested
whether blocking DH TNF-« signaling with etanercept, a
TNF-« inhibitor, 0, 24, and 48 h into heroin withdrawal
prevented the development of enhanced fear learning and
withdrawal-induced weight loss. We show that etanercept signif-
icantly attenuated enhanced fear learning, as well as mitigated
withdrawal-induced weight loss. Together, these experiments are
the first to test whether DH TNF-« signaling following chronic
heroin administration and withdrawal is critical to the develop-
ment of enhanced future fear learning and mediates other
withdrawal-related detriments, such as weight loss.

Methods and Materials
Animals
Adult male Sprague Dawley rats (225-250 g, Charles River

Laboratories, Raleigh, NC) were individually housed under a
reversed 12-h light-dark cycle. Rats were given ad libitum
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access to food and water, and were regularly handled through-
out experimentation. All procedures were conducted with ap-
proval from the University of North Carolina at Chapel Hill
Institutional Animal Care and Use Committee.

Drug Administration

Heroin (diacetylmorphine hydrochloride, National Institute on
Drug Abuse (NIDA) Drug Supply Program, Bethesda, MD,
USA) was dissolved in sterile 0.9% saline to produce 1.0, 2.5,
5.0, 7.5, or 10.0-mg/mL solutions and stored at 4°C until time
of injection.

Surgery and Infusion Delivery

For stereotaxic surgery, animals were anesthetized with a
1.0-mL/kg intraperitoneal injection of 9:1 (vol/vol) ketamine
hydrochloride (100 mg/mL) mixed with xylazine (100 mg/
mL). Guide cannulae (26 Gauge, Plastics One, 324
Roanoke, VA, USA) were directed bilaterally at the DH 325
(AP — 3.4 mm, ML £+ 3.1 mm, DV — 2.2 mm, 15°, relative to
bregma). Animals were given 2 weeks for postoperative re-
covery prior to the start of experimental procedures. Animals
were randomly assigned to receive heroin or saline in the
chronic escalating heroin administration and then either a sa-
line or etanercept infusion treatment. Etanercept (Millipore
Sigma, St. Louis, MO, USA), a TNF-« inhibitor, was dis-
solved in sterile saline (2.5 pg/puL). Animals underwent the
chronic heroin escalating administration and were given three
infusions of etanercept or saline at 0, 24, and 48 h into with-
drawal (Standard Infuse/Withdraw PHD 2000 Infusion
Syringe Pump, Harvard Apparatus, Holliston, MA, USA).
Forty-eight hours prior to the first infusion, animals were giv-
en a sham microinjection to allow for habituation to the injec-
tion experience. Animals were microinfused with 1.25 pg of
etanercept or saline vehicle per hemisphere at a rate of 0.25
pL/min, and the injectors were left in place for 1 min to allow
for drug diffusion away from the injection site.

Tissue Collection and Histology

In experiment 1, animals were sacrificed by transcardial per-
fusion 0, 24, 48, and 72 h into withdrawal. Animals that were
perfused 1h following their last heroin injection were classi-
fied to be in the 0-h withdrawal group, as they were consid-
ered to have heroin in their system and, therefore, had not
undergone withdrawal. Animals perfused at 24 h following
the last injection are considered to be in the 24-h withdrawal
group, while the same applies for the animals perfused at 48h
and 72h groups respectively. Animals were terminally anes-
thetized with 9:1 (vol/vol) ketamine hydrochloride (100 mg/
mL) mixed with xylazine (100 mg/mL), and transcardially
perfused with ice-cold phosphate buffer (PB; pH = 7.4)

followed by 4% paraformaldehyde in 0.1 M PB. Brains were
extracted and post-fixed in 4% paraformaldehyde for 6 h, and
used 30% sucrose for cryoprotection with 0.1% sodium azide
at 4 °C. Once the brains were saturated with sucrose, brains
were cut into 40-pum coronal sections on a cryostat (Leica CM
3050 S, Leica Microsystems, Buffalo Grove, IL, USA). For
experiment 2, animals were sacrificed by rapid cervical dislo-
cation and DH cannula placement was verified.

Immunohistochemistry

Experiment 1 used fluorescent immunohistochemistry (IHC)
to examine alterations in DH TNF-« in the DG. The IHC
protocol used here has been described previously [19, 21].
Briefly, tissue sections were washed three times for 10 min
in 0.1M phosphate buffer (PB, pH = 7.4), followed by a 1-h
incubation in 5% normal goat serum (NGS) and 0.5%
TritonX100 in 0.1M PB at room temperature. Tissue was
incubated in primary antibody:rabbit anti-TNF alpha
(1:1000, Abcam, Cambridge, MA, Cat# ab66579), 5%
NGS, and 0.5% TritonX100 in 0.1MPB overnight at 4°C,
washed three times for 10 min in 0.1M PB, and incubated in
secondary antibody:goat anti-rabbit Alexa Fluor-488 (1:1000,
ThermoFisher Scientific, Waltham, MA, Cat #A11008), 5%
NGS, and 0.5% TritonX100 in 0.1M PB for 1 h at room
temperature. Primary antibodies were verified by no primary
control stains. Sections were mounted onto SuperFrost Plus
slides (Fisher Scientific, Pittsburgh, PA) using Vectashield
with DAPI hardset mounting medium (Vector Laboratories,
Burlingame, CA).

Microscopy

Fluorescent microscopy (Leica DM6000 B widefield light
microscope, Leica Microsystems, Buffalo Grove, IL, USA)
was used to capture color images. Positive fluorescence in
images was quantified using automatic Image J (NIH) triangle
thresholding feature. The implementation of the ImageJ auto-
matic triangle algorithm has been previously described [38].
Briefly, the algorithm assumes a maximum peak near one end
of the histogram and searches for intensity toward the end of
the histogram bins. Three to five sections were analyzed bilat-
erally per animal for the dorsal dentate gyrus and values were
averaged and expressed as percent positive stain. In addition,
the number of TNF-«x positive cells overlaid with DAPI, an
indicator of cellular nuclei, in all the images taken was count-
ed manually. All analyses including thresholding and
counting were made blind to treatment conditioning. Tissue
from two poor perfusions (z = 1 0-h saline and » = 1 24-h
saline) that yielded high nonspecific background which inter-
fered with thresholding was dropped from the analysis. In
these perfusions, gross inspection of the brain did not reveal
a fixed appearance—void of blood in circulatory system
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(white to pale yellow color), but instead was found to be reddish,
indicative of blood present. Moreover, automatic thresholding
failed on this tissue and resulted in exclusion from analysis.
The decision to exclude these two samples was made blind to
the treatment group. Publication images were compiled with the
Adobe Photoshop CS software (Creative Cloud Photoshop
v22.1, San Jose, CA, USA). Color levels and background were
reduced for optimal representation with level tools. Images from
all experimental groups were treated equally.

Chronic Escalating Heroin Administration and
Withdrawal

Animals were randomly assigned to drug (heroin or saline)
treatment and heroin withdrawal timepoint (0, 24, 48, or 72 h)
and underwent chronic escalating heroin administration as
described previously [21]. Briefly, rats were injected with her-
oin or saline 3 times daily (subcutaneous, s.c.) over 24-h periods
for 10 days, with a dose increase every other day: 3.0 (3 x 1.0)
mg/kg/day on days 1-2, 7.5 (3 x 2.5) mg/kg/day on days 3-4,
15.0 (3 x 5.0) mg/kg/day on days 5-6, 22.5 (3 x 7.5) mg/kg/day
on days 7-8, and 30 (3 x 10) mg/kg/day on days 9-10 (Fig. 1a).
Animal weights are measured on every dose increase day and
subsequent withdrawal timepoints. This chronic escalating and
withdrawal paradigm has been shown to robustly produce with-
drawal at the 24-h timepoint indicating both dependence of drug
and subsequent withdrawal [21, 39].

Chronic Heroin and Withdrawal-Enhanced Fear
Learning

This procedure has been previously described at length [21].
Briefly, animals undergo chronic escalating heroin adminis-
tration and withdrawal in their home cage. Seven days after
the start of withdrawal, animals were placed into a novel con-
text for 15 min of habituation. On day 8, animals were placed
into the same context for a single scrambled foot shock (ImA,
Is)at3 min and 12 s. Ondays 9, 10, 15, and 22 (test days 1, 2,
7, and 14), animals are placed into the same context for 8 min
and 32 s and behavior was recorded to measure freezing be-
havior, a measure of learned fear (Fig. 2a). The Ethovision XT
video tracking software (Noldus Information Technology
Inc.) was used to analyze freezing behavior. The activity anal-
ysis feature (activity threshold = 10) was used to calculate the
percent of time each animal was inactive during each contex-
tual fear test and at baseline. Weight was measured at each
timepoint to determine withdrawal-induced weight change, as
well as infusion-induced weight change (Fig. 3a).

Statistical Analysis

Experiment 1 was run using separate cohorts for each of the
withdrawal timepoints. Therefore, planned comparisons using
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unpaired, two-tailed Student’s ¢ tests determine specifically
whether drug treatment altered TNF-oc immunoreactivity and
cell counts between the 0-h, 24-h, 48-h, and 72-h timepoints.
In experiment 2, a one-way (heroin, saline) ANOV A was used
to analyze baseline freezing data. A 2 (heroin, saline) x 2
(etanercept, saline) x 4 (test day) repeated-measures
ANOVA was used to analyze freezing behavior. A 2 (heroin,
saline) x 2 (etanercept, saline) x 3 (timepoint) repeated-
measures ANOVA was used to analyze weight change across
withdrawal. Significant interactions for both freezing behavior
and weight change were examined using Tukey’s post hoc
comparisons.

Results

Experiment 1: Chronic Heroin Administration and
Withdrawal Increase TNF-a Immunoreactivity and
Positive Cells at 0-h, 24-h, and 48-h Timepoints

TNF-oc immunoreactivity was significantly enhanced by
chronic heroin administration and withdrawal in the DG of
the DH. TNF-« immunoreactivity was increased during 0-h
heroin withdrawal (75, = —2.727, p = .029) (Fig. 1c), 24-h
heroin withdrawal (¢, =—3.416, p = .003) (Fig. 1d), and 48-
h heroin withdrawal (¢2;,=—3.190, p =.008) (Fig. 1e) relative
to saline controls, but no difference was observed at 72-h
withdrawal (t2;) = —.277, p = —0.603) (Fig. 1f).
Additionally, TNF-o positive cells were significantly en-
hanced by chronic heroin administration and withdrawal in
the DG ofthe DH. TNF-« positive cells were increased during
0-h heroin withdrawal (#,5)= 12.107, p <.001) (Fig. 1g), 24-h
heroin withdrawal (¢, = —2.542, p = .024) (Fig. 1h), and 48-
h heroin withdrawal (f2;, = 5.651, p = .002) (Fig. 1i) relative
to saline controls, but no difference was observed at 72-h
withdrawal (721, = 1.583, p = —0.174) (Fig. 1j). These results
show that both a combination of chronic heroin administration
and subsequent withdrawal is necessary for increased TNF-
immunoreactivity within the DG as TNF-o immunoreactivity
was increased 0, 24, and 48 h following heroin administration
and withdrawal.

Experiment 2: Etanercept (TNF-a Inhibitor) Prevents
Chronic Heroin and Withdrawal-Enhanced Fear
Learning and Mitigates Withdrawal-Induced Weight
Loss

Intra-DH etanercept prevented enhanced fear learning and
mitigated withdrawal-induced weight loss. There was no ef-
fect of heroin treatment or etanercept infusion on baseline
contextual freezing (F3 25y = 2.216, p = .111), indicating that
there is no generalized fear to the novel context. A 2 X 2 x 4
repeated-measures ANOVA revealed a significant main effect
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Fig. 1 Chronic heroin administration and withdrawal increase TNF-« in
the dentate gyrus of the dorsal hippocampus. Experimental timeline (a).
Paxinos and Watson schematic depicting bilateral image acquisition
location for the DG of DH (b). Quantification of positive fluorescence
stain (Alexa-488) of TNF-« at timepoints 0 h (c), 24 h (d), 48 h (e), and
72 h (f) into withdrawal (N = 51, n = 6-8). Quantification of positive cells

of heroin treatment (F(; 55 = 15.366, p < .001) and a signifi-
cant main effect of etanercept treatment (F(; 25, = 8.772, p =
.007). These main effects of heroin treatment and etanercept
treatment were on contextual freezing. There was also a sig-
nificant effect of test day (F3 75y = 42.100, p < .001), indicat-
ing that conditioned freezing behavior diminished over time,
thus suggesting extinction of contextual conditioning.
Importantly, there was a significant heroin treatment by
etanercept infusion interaction (F(; sy = 13.195, p < .001).
On test days 1, 2, and 7, Tukey’s post hoc comparisons re-
vealed heroin-withdrawn, vehicle-treated animals exhibited
significantly higher freezing behavior compared to animals
that were saline controls and vehicle-treated on test days 1
(p=.001),2 (p=.005), and 7 (p = .042) replicating enhanced
fear learning. Heroin-withdrawn, etanercept-treated animals
exhibited significantly less freezing than withdrawn controls
that received intra-DH vehicle on test days 1 (p <.001),2 (p =
.016), and 7 (p = .036). Furthermore, heroin-withdrawn,
etanercept-treated animals exhibited a comparable amount of
freezing behavior (no significant difference) to both saline
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TNF-« at timepoints 0 h (g), 24 h (h), 48 h (i), and 72 h (j) into
withdrawal (N = 51, n = 6-8). Representative images (x20) for saline
and heroin animals at all timepoints taken within the DG of the DH.
Dotted white lines indicate region of interest (k). *, statistically
significant difference relative to respective control. Error bars indicate
SEM

control groups (p > .05) (Fig. 2b). These results indicate that
intra-DH etanercept during heroin withdrawal prevented fu-
ture enhanced fear learning.

A 2 x 2 x 3 repeated-measures ANOVA revealed a signif-
icant main effect of heroin treatment on withdrawal weight
change (F(; 25)=25.410, p < .001). Weight loss in rodents is
a hallmark symptom of opioid withdrawal [40], and may be
observed due to increased diarrhea, decreased appetite, or an-
orexia. Importantly, there was a significant main effect of
etanercept treatment on withdrawal weight change (F 25) =
5.333, p =.029) indicating that intra-DH etanercept infusions
may have prevented the heroin withdrawal decrease in weight.
There was also an overall effect of withdrawal time (F3 50y =
41.192, p < .001), indicating over the course of withdrawal
animals started to gain weight again (Fig. 3b).

Tukey’s post hoc comparisons revealed during the 24-h
withdrawal timepoint, both the saline control groups did not
differ in weight change (p > .05). Importantly, heroin-with-
drawn, vehicle-treated animals had a significantly higher
weight change compared to both the saline control groups (p
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Fig. 2 Etanercept (TNF-« inhibitor) prevents the development of heroin
withdrawal-enhanced fear learning. Experimental timeline (a). Intra-DH
etanercept infusions significantly attenuated enhanced fear learning (N =
31, n = 6-9) (b). Paxinos and Watson schematic with DH cannula

<.001) and heroin-withdrawn, etanercept-treated animals also
had a significantly higher weight change compared to both the
saline control groups (p < .001). Strikingly, heroin-withdraw-
al, vehicle-treated animals had a significantly higher weight
change in comparison to heroin-withdrawn, etanercept-treated
animals (p < .05), indicating that etanercept treatment mitigat-
ed the withdrawal-induced weight loss at 24-h withdrawal
(Fig. 3D).

Similarly, during the 48-h withdrawal timepoint, Tukey’s
post hoc comparisons revealed both the saline control groups
did not differ in weight change (p > .05). Importantly, heroin-
withdrawn, vehicle-treated animals had a significantly higher
weight change compared to both the saline control groups (p <
.001) and heroin-withdrawn, etanercept-treated animals also
had a significantly higher weight change compared to both the
saline control groups (p < .001). Strikingly, heroin-withdrawn,
vehicle-treated animals had a significantly higher weight
change in comparison to heroin-withdrawn, etanercept-
treated animals (p < .05), indicating that etanercept treatment
mitigated the withdrawal-induced weight throughout the 48-h
withdrawal timepoint. During the 72-h withdrawal timepoint,

@ Springer

' -3.84

placements shown. Each circle represents termination site of the
cannula tract (c). *, statistically significant difference relative to
respective control. Error bars indicate SEM

1

both the saline control groups did not differ in weight change
(p > .05), and heroin-withdrawn, vehicle-treated animals had a
significantly higher weight change compared to both the sa-
line control groups (p < .001) (Fig. 3b). Overall, these results
show that the etanercept was able to prevent enhanced fear
learning, as well as mitigate heroin withdrawal-induced
weight loss.

Discussion

The current study demonstrates for the first time that DH
TNF-« signaling mediates some long-lasting maladaptive be-
havioral responses induced by chronic heroin and withdrawal.
We have shown that exposure to chronic heroin administra-
tion and withdrawal induces TNF-« immunoreactivity and
TNF-« positive cell counts within the DG, and disrupting
DH TNF-« signaling during withdrawal blocks the develop-
ment of enhanced fear learning. Critically, this manipulation
also mitigates heroin withdrawal-induced weight loss, a hall-
mark sign of withdrawal in rodent models. These findings
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Fig. 3 Etanercept (TNF-« a
inhibitor) mitigates the heroin
withdrawal-induced weight loss.
Experimental timeline (a). Intra-
DH etanercept infusions
significantly reduced the
withdrawal-induced weight loss
(N =31, n=6-9) (b). Cannula
placements can be seen in Fig. 2c.
*, statistically significant
difference as indicated by bars.
Error bars indicate SEM
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provide new evidence that heroin withdrawal-induced TNF-o
is necessary for the development of future enhanced fear
learning and is a potential mechanism by which opioids and
opioid withdrawal can elicit fear-related and arousal-related
features of PTSD symptomatology.

The present findings suggest that neurobiological changes,
specifically increases in TNF- immunoreactivity, leave the
animals hypersensitive to future stressors. Exposure to chronic
heroin administration and withdrawal increases TNF-oc immu-
noreactivity within the DG up to 48 h into withdrawal. This
finding complements our recently published IL-1 findings
[21]; however, IL-1 was only seen to be upregulated during
the 24-h withdrawal period. The current experiments

demonstrate both chronic heroin administration and with-
drawal increase TNF-o immunoreactivity, as TNF-o was also
increased at the non-withdrawal 0-h timepoint. This suggests
TNF-« levels may elevate at some point during chronic, es-
calating heroin administration and persists well into the with-
drawal period. This is consistent with the literature, as TNF-oc
is elevated following morphine use and withdrawal [41-43],
naloxone-precipitated opioid withdrawal [44], and morphine
withdrawal-driven synaptic plasticity [45]. These opioid-
related neuroimmune alterations can lead to long-lasting neu-
ral adaptations and increase vulnerability to health detriments,
such as anxiety disorders, associated with use [46-48]. The
current experiments establish that TNF-« signaling is critical
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to the learning processes resulting in the formation of a mal-
adaptive behavioral phenotype following heroin use and
withdrawal.

The present study demonstrates that heroin and withdrawal-
induced enhanced fear learning is driven by hippocampal TNF-&
signaling, as inhibiting DH TNF-« signaling disrupts future ex-
aggerated fear conditioning. A significant body of literature im-
plicates TNF-o signaling as an integral component of the learn-
ing and memory processes. Specifically, a local increase of
TNF-« in the hippocampal dentate gyrus activates TNF receptor
type 1, which triggers an astrocyte-neuron signaling cascade
resulting in persistent functional modification of hippocampal
excitatory synapses [33]. Moreover, TNF-o« modulates hippo-
campal synapses via AMPA receptor trafficking and GABA
receptors [49, 50]. This suggests that TNF-« is a key physiolog-
ical regulator of hippocampal synaptic activity and excessive
TNF-o may alter synaptic functioning and learning mechanisms,
potentially impacting the development of enhanced fear learning.
Specifically, the current studies suggest that blocking the TNF-o¢
increase reduced conditioned freezing behaviors, suggesting an
attenuation of enhanced fear learning. Consistent with this, stud-
ies have shown that increases in TNF-« are necessary for
sustained fear learning, both in cued and contextual acquisition
and extinction [33, 51], and inhibiting TNF-o reduces memory
deterioration induced by LPS [32]. These studies as well as the
present work suggest that TNF-« signaling plays a critical role in
learning and memory processes.

The focus of the current work examined the role of hippo-
campal TNF-« in heroin withdrawal for enhanced fear learn-
ing and weight loss, and directly compliments our previous
work indicating that IL-1 signaling is involved in heroin with-
drawal and enhanced fear learning [21]. Evidence suggests
that IL-1(3’s effects may be a result of synergistic interaction
with TNF-o [52]. The interdependent relationship between
IL-13 and TNF-« has been demonstrated in multiple models,
such that TNF-o action promotes additional TNF-« transcrip-
tion, as well as the production and release of IL-1(3 [53, 54].
Additionally, both the TNF-« and IL-1 signaling pathways
lead to the activation of the proinflammatory transcription
factor, NF-kB [55-57], suggesting that these cytokines work
together in multiple neuroinflammatory processes. Studies to
examine the interaction between IL-1 and TNF-« signaling in
heroin withdrawal-enhanced fear learning would provide
more information regarding the long-lasting neuroimmune ad-
aptations driving this behavioral effect.

Evidence suggests that glial activation leads to the release
of proinflammatory molecules that modulate neuronal activity
crucial to the complex syndrome of opioid dependence and
withdrawal. In particular, glial cells appear to be primarily
responsible for TNF-« release [58], which may be mediated
through glutamate release from astrocytes and microglia [59].
Studies have shown that astrocyte-derived TNF-x may alter
hippocampal synapses and modify excitatory synapses [33],
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while microglial production of TNF-x has been implicated as
a key element of sustained fear memory [51]. Additionally,
high levels of TNF-« can signal astrocytes and microglia via
activation of NF-kB to elicit a proinflammatory response
which increases production of a large number of other cyto-
kines, such as IL-1 [57, 60, 61]. Cell-specific studies on both
microglia and astrocytes may increase our understanding to
the origin of TNF-«x in our model, as well as its mechanism in
heroin use and withdrawal to alter future learning and memory
processes. Future studies can extend this line of work to ex-
amine the cellular source and targets of this TNF-« signaling,
as well as the role of glia in modulating exaggerated fear
learning responses.

The present work focused on the DH, a brain region critical
to learning and memory processes. As disruption of TNF-o
signaling mitigated withdrawal-induced weight loss, future
studies should investigate TNF-o¢ expression in other areas
involved in opioid abuse, such as the ventral tegmental area,
locus coeruleus, or periaqueductal gray (PAG). Specifically,
the PAG can be targeted to better understand the effects of
TNF-« in heroin withdrawal and withdrawal symptomology.
Functional studies have implicated the PAG in the expression
of symptoms of opioid withdrawal, but the molecular mecha-
nisms involved are not fully understood. Further studies
should investigate the role of TNF-x expression in other brain
regions involved in opioid abuse, such as the PAG, that may
also contribute to enhance fear learning and alter heroin
withdrawal-induced weight loss or other withdrawal-related
behaviors.

Strikingly, intra-DH etanercept infusions mitigated heroin
withdrawal-induced weight loss. This intriguing finding dem-
onstrates a role for DH TNF-« signaling in both learning
processes and withdrawal behaviors, such as weight loss.
Although this study evaluated weight loss and freezing behav-
ior separately, it would be interesting to study the correlation
between these two behaviors. As regards to weight loss, spe-
cifically, we believe TNF-x may be exerting an anorexic ef-
fect in opposition to ghrelin. Studies have shown that lower
levels of total TNF-o« promoter methylation had higher suc-
cess with a weight loss program [62], and therefore the dys-
regulation of TNF-« following heroin use and withdrawal
may contribute to the weight loss associated with withdrawal.
Although the current study focused solely on weight loss, as it
is a prominent symptom of rodent opioid withdrawal, it would
be interesting to investigate TNF-«’s effect on other with-
drawal behaviors such as wet dog shakes, teeth chattering,
and diarrhea. It is possible that these behaviors may also be
mediated by TNF-« signaling, as it has been previously
shown that downregulating TNF-« signaling in the
periaqueductal gray (PAG) of mice decreased the physical
symptoms of morphine withdrawal [63]. In particular, studies
have shown that heroin administration can directly stimulate
glial toll-like receptor 4 (TLR4) that results in the
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overexpression of TNF-« and injection of TNF-« into the
PAG produces withdrawal symptoms [64]. This suggests
TNF-o regulates symptoms of opioid withdrawal and inhibi-
tion can mitigate these effects. Further studies can investigate
the effect of region-specific infusions of etanercept on other
symptoms of opioid withdrawal. In line with our current find-
ings, we hypothesize that systemic etanercept or peripheral
administration would decrease other behaviors of heroin with-
drawal. Unfortunately, biologic TNF inhibitors, such as
etanercept, do not cross the blood-brain barrier (BBB) [65].
TNF inhibitors have been engineered to penetrate the BBB in
combination with a transgenic mouse line through the fusion
of extracellular domain of the type Il human TNF receptor to a
chimeric monoclonal antibody designed to function as a fu-
sion protein [66]. Further studies can study the peripheral
effect of TNF inhibitors on heroin withdrawal behaviors using
the novel engineered TNF inhibitors. We hypothesize that
given systemically, novel engineered TNF inhibitors may
ameliorate other physical symptoms of withdrawal as the de-
livered inhibitor will reach multiple brain regions as well as
peripheral processes.

In summary, our exciting findings demonstrate that heroin
use and withdrawal increase expression of hippocampal
TNF-«, and inhibition of TNF-« signaling disrupts future
enhanced fear learning, as well as mitigates heroin
withdrawal-induced weight loss. Collectively, these data pro-
vide important new evidence that chronic heroin administra-
tion and withdrawal alter hippocampal neuroimmune signal-
ing and downstream behavioral responses, such as enhanced
susceptibility to future stressors and withdrawal-induced
weight loss. The current study identifies neuroimmune targets
that can be used to alleviate long-term maladaptive responses
stemming from a history of chronic heroin use and protracted
withdrawal.
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