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Longitudinal single-cell profiling reveals molecular
heterogeneity and tumor-immune evolution in
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The mechanisms driving therapeutic resistance and poor outcomes of mantle cell lymphoma

(MCL) are incompletely understood. We characterize the cellular and molecular hetero-

geneity within and across patients and delineate the dynamic evolution of tumor and immune

cell compartments at single cell resolution in longitudinal specimens from ibrutinib-sensitive

patients and non-responders. Temporal activation of multiple cancer hallmark pathways and

acquisition of 17q are observed in a refractory MCL. Multi-platform validation is performed at

genomic and cellular levels in PDX models and larger patient cohorts. We demonstrate that

due to 17q gain, BIRC5/survivin expression is upregulated in resistant MCL tumor cells and

targeting BIRC5 results in marked tumor inhibition in preclinical models. In addition, we

discover notable differences in the tumor microenvironment including progressive dampening

of CD8+ T cells and aberrant cell-to-cell communication networks in refractory MCLs. This

study reveals diverse and dynamic tumor and immune programs underlying therapy resis-

tance in MCL.
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Mantle cell lymphoma (MCL) is an aggressive and
incurable subtype of non-Hodgkin lymphoma that
exhibits marked clinical, pathological, and genetic

heterogeneity1–9. MCL patients experience disease progression or
relapse after almost any therapy. Currently, Bruton’s tyrosine
kinase (BTK) inhibitor ibrutinib and the BCL-2 inhibitor vene-
toclax are clinical MCL treatment options that produce high
response rates and reasonably durable outcomes in this patient
population10–12. However, resistance to one or both of these
agents frequently develops in MCL, resulting in poor survival
outcomes and necessitating a better understanding of the cellular
and molecular basis of their resistance13,14. Recent work by our
group identified genomic and transcriptomic alterations in
resistant MCL cells, including metabolic reprogramming toward
glutamine-fueled oxidative phosphorylation (OXPHOS) that
drives ibrutinib resistance in MCL15. Yet, these studies were
centered on bulk analysis, and the single-cell landscape and roles
of individual cell populations, such as tumor and immune cell
subsets and their dynamic interactions, in therapeutic resistance
and evolution of MCL, has not been systematically characterized.

The cellular complexity and the dynamic evolutionary char-
acter of cancer are key factors contributing to therapeutic failure
and disease progression in oncology16 and are therefore obstacles
to improving clinical outcomes. The dynamic interactions and co-
evolution of the tumor and tumor microenvironment (TME) in
response to hypoxic and therapy-induced stress lead to con-
tinuous changes in cellular and molecular properties, culminating
in the development of resistance. Therefore, longitudinal tracking
of clonal heterogeneity and evolution of the complex tumor
ecosystems can advance our understanding of how diverse tumor
and immune programs drive therapy resistance and inform novel
therapeutic strategies.

In this work, we dissect the dynamic multicellular tumor
“ecosystem” using the cutting-edge single-cell transcriptome
sequencing (scRNA-seq) technology, coupled with longitudinal
sampling and deep molecular profiling to understand refractory
MCL at an exceptional resolution.

Results
Longitudinal single-cell analysis uncovers dynamic cellular
heterogeneity of MCL. To understand the cellular and molecular
mechanisms of refractory MCL, we performed sequential scRNA-
seq of 21 specimens (discovery cohort) collected at baseline,
during treatment, and/or at disease remission/progression from
three ibrutinib-responsive (R) patients (Pt-V, C, and D) and 2
non-responsive (NR) patients (Pt-B and E). In addition, the
PBMC samples from two healthy donors (N1 and N2) were
included as the normal controls. (Fig. 1a, b and Supplementary
Data 1). Patient V has a typical CLL-type MCL in a leukemic
phase with splenomegaly and widespread infiltration of bone
marrow (BM) but without lymphadenopathy. This patient
responded slowly to ibrutinib and achieved partial remission at
cycle 12 with gradual shrinkage of the spleen size and parallel
decline of lymphocytes in peripheral blood (PB) (Fig. 1b and
Supplementary Data 1). Patient C presented with leukemic MCL
with lymphadenopathies involving multiple compartments
including BM involvement (55%) but without splenomegaly.
Patient D presented with typical lymphadenopathy and a mod-
erate BM involvement (19%) but without being in a leukemic
phase. Patients C and D achieved complete remission after
ibrutinib treatment, at cycle seven and six, respectively. Patient B
was diagnosed as stage IV MCL with splenomegaly and multiple-
compartment lymphadenopathies, PB (70%), and BM (33%)
involvement. Patient B progressed on multiple therapies
including ibrutinib and venetoclax. Patient E is an MCL patient

who relapsed from multiple lines of therapies including
ibrutinib and venetoclax. This patient presented with splenome-
galy, subcutaneous and muscular lesions, and retroperitoneal/
pelvic lymphadenopathies, with BM (40%) involvement and
strong CCND1 staining in the BM biopsy (Supplementary
Fig. 1). Consequently, Patients B and E were defined as refrac-
tory MCLs. Altogether, these characteristics demonstrate a high
degree of clinicopathological heterogeneity across and within
ibrutinib responders and non-responders. Additional clinical
characteristics of the patients are provided in Supplementary
Data 1.

Of 20,004 sequenced cells, 18,794 (94%) passed quality filtering
with an average of ~73,727 reads aligned per cell (Methods).
Dimensional reduction analysis (t-SNE, t-distributed stochastic
neighbor embedding) and unsupervised clustering were per-
formed to classify the cells based on their transcript expression
profiles. The tumor B cells were clustered distinctly from the non-
malignant cells of the TME or the normal B cells from healthy
donors (Fig. 1c and Supplementary Fig. 2). In addition, the tumor
B cells were distantly separated by the patient and therapeutic
response (Fig. 1c), followed by sample collection time point
(Fig. 2a and Supplementary Fig. 2a), demonstrating a high degree
of inter- and intra-tumoral cellular heterogeneity as observed in
other cancers. For example, the tumor cells from patients B, C,
and V formed separate clusters for each sample collected at
different time points during the treatment (Supplementary
Fig. 2b). Interestingly, the malignant cells of tumor B4, collected
at disease progression from patient B, were separated into two
clusters (B4a and B4b) (Fig. 2a, middle), indicating the
coexistence of transcriptomically heterogeneous subpopulations
within the same tumor. In contrast, the non-malignant cells from
MCL patients and normal blood cells were clustered closely by
cell type (Fig. 1c and Supplementary Fig. 2), irrespective of tissue
sources (Fig. 1c, Supplementary Fig. 2). A longitudinal examina-
tion of the cellular composition indicated dynamic changes of
MCL ecosystems during treatment, with the relative fractions of
tumor B cells increasing in NR (e.g., Pt-B) and decreasing in R
(e.g., Pt-V) (Fig. 1d). Consistent with clinical presentation, the
fractions of tumor cells in D1 (PB, 10%) and D2 (BM, 25%)
before ibrutinib therapy were much lower than those in Patients
V (V0–V2, >80%) and C (C1 and C2, >80%) with leukemic MCL
and very few MCL cells were detected from the baseline sample
(E1) collected from the PB of patient E (Fig. 1d and
Supplementary Data 1). Minimal batch effects were detected
and we observed no difference in the tumor/immune cell
composition pre and post batch effect correction17 (Fig. 1d and
Supplementary Fig. 3).

Cellular and molecular heterogeneity and evolution of cancer
hallmark signaling associates with disease progression and
therapeutic resistance. To identify the transcriptomic features
that are common to all MCL cells, we performed differential gene
expression analysis between the MCL cells from samples at
baseline and the normal B cells from healthy donors and com-
pared the overlap between sets of DEGs across the baseline
samples from five patients. We identified 6 downregulated genes
and 20 upregulated genes that were ubiquitous to all baseline
samples from 5 patients (Supplementary Fig. 4a and Supple-
mentary Data 2). The downregulated genes included PIK3IP1 (a
negative regulator of PI3K)18, and DDIT4 (an inhibitor of
mTORC1 signaling)19. The upregulated genes included CCND1,
STMN1 (also named oncoprotein 18, frequently expressed in
high-grade lymphoma)20, MARCKS (the major protein kinase C
substrate that regulates PI3K/AKT signaling)21,22, FCRLA (a
tumor-associated antigen of BCL)23, FCRL2 (a prognostic marker
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of CLL with a strong correlation with mutated IGHV status)24,
and VPREB3 (a pre-B-cell receptor (BCR) associated protein and
a diagnostic marker for identifying c-MYC translocated
lymphomas)25. We note that the expression levels of STMN1 and
MARCKS were significantly elevated in MCL cells from B4 at
disease progression (Supplementary Fig. 4b), suggesting a

potential role of STMN1 and MARCKS in promoting MCL
progression.

Next, we investigated the proliferative heterogeneity of tumor
cells via cell-cycle phase-specific signatures26, based on which a
cell cycle stage was computationally assigned to each cell. The
complexity of proliferative heterogeneity was revealed in the
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fraction of proliferating cells across and within patients,
particularly the tumors from patient B at disease progression
(Fig. 2a). For example, the smaller cell cluster B4b was a highly
proliferative tumor with cells at either the G2/M, or S phase and
displayed high expression of MKI67, CDK4, and other prolif-
erative markers such as PCNA, TK1, and TYMS (Supplementary
Fig. 5a). However, tumor cells present in the larger cell cluster
B4a were relatively quiescent, indicating striking molecular
heterogeneity in sustaining proliferative signaling in cancer cells.

To assess whether the dynamic variability and ITH of tumor
cells affect the manifestation of cancer hallmarks and the
development of therapeutic resistance and progression in
refractory MCLs, we evaluated the pathway activity for 50 cancer
hallmark gene sets curated by the Molecular Signature Database
(MSigDB) and profiled transcriptomic heterogeneity of the cancer
hallmarks associated with ibrutinib resistance. Overall, 13 cancer
hallmarks were significantly upregulated in the MCL cells from
patient B (the non-responder), including MYC, OXPHOS, BCR,
mTORC1, cell cycle, and PI3K/AKT/mTOR signaling (Fig. 2b, c
and Supplementary Fig. 5b, c). We observed dynamic activation
of these signaling pathways, with upregulation over time in
patient B and downregulation in responders (patients C, D, V) in
response to therapeutic pressure (Fig. 2b and Supplementary
Fig. 5d).

Cellular and molecular mechanisms of ibrutinib-venetoclax
dual resistance in patient B. The B4-derived subpopulations B4a
and B4b were disparate with more strikingly increased activity of
cancer hallmark pathways in B4b (Fig. 2c). For example, the
smaller cell cluster B4b was a highly proliferative tumor with cells
at either the G2/M, or S phase (Fig. 2a, right two panels) and
displayed high expression of MKI67, CDK4, and other pro-
liferative markers such as PCNA, TK1, and TYMS (Supplemen-
tary Fig. 5a). However, tumor cells present in the larger cell
cluster B4a were relatively quiescent, indicating striking mole-
cular heterogeneity in sustaining proliferative signaling in
cancer cells.

Moreover, the noncanonical NF-kB signaling was exclusively
activated in B4a, with significantly upregulated BIRC3 (adjusted p
value= 3.48 × 10−11), an important upstream regulator for
noncanonical NF-kB signaling, NFKB2 and RELB (Fig. 2c),
which are downstream transcription factors of NF-kB signaling.
Altogether this indicates that the two progressive subpopulations
of tumor B4 selectively evolved by utilizing different signaling
pathways to promote clonal evolution.

To validate the role of these key signaling pathways in
maintaining the very aggressive behavior of tumor B4, we
established a PDX mouse model using B4 tumor cells (B4-PDX)
which faithfully recapitulated the observed splenomegaly, hepa-
tomegaly, and involvement of BM and PB observed in the NR
patient B. We next performed scRNA-seq of the B4-PDX tumors
(including circulating PDX cells and PDX disseminated cells

collected from the BM, liver, and spleen) using the same protocol
and sequencing platform (Fig. 2d). Integrative analysis of scRNA-
seq data from B4 and B4-PDX suggested that tumor cells from
the B4-PDX model represented the spectrum of cellular and
molecular heterogeneity that was similar to the parental B4 tumor
cell populations (Fig. 2e, f, Supplementary Fig. 6). The B4-PDX
tumor cells formed two distinct cell clusters based on their
expression profiles (Fig. 2d, f). The minor cluster transcriptomi-
cally resembles the subpopulation B4b, which is comprised of
proliferating MCL cells indicated by high expression of cell cycle-
related signature genes such as MKI67 and CDK4 (Fig. 2f) and
increased levels of activity of OXPHOS, mTORC1, and MYC
signaling pathways (Fig. 2e and Supplementary Fig. 5e). In
contrast, the transcription profile of the major cluster was
suggestive of a relatively quiescent cell phenotype, very similar to
that of B4a, with no or low expression of cell proliferation genes,
but high expression of BIRC3, NFKB2, and RELB (Fig. 2f)
indicating activation of non-canonical NF-kB signaling in this cell
population. Our combined data analysis of the patient and PDX
tumor cells demonstrate a single-cell landscape of the cellular and
molecular heterogeneity in NR patient B and confirmed the
essential roles of these cancer hallmarks in MCL tumor
formation, therapeutic resistance, and dissemination.

Temporal clinical and integrated genomic profiling reveals
distinct molecular features between ibrutinib-induced lym-
phocytosis and clonal tumor evolution. Ibrutinib has been
shown in CLL and MCL to induce malignant cell redistribution
from the tissue compartment (spleen and lymph node) into the
PB during the initial weeks of therapy12,27,28, a process also called
ibrutinib-induced lymphocytosis. Prolonged lymphocytosis is
common after ibrutinib treatment and has been associated with
favorable prognostic features29 and considered a surrogate mar-
ker for treatment sensitivity12,28. Clinically, ibrutinib-induced
lymphocytosis is characterized by a rise in the absolute lym-
phocyte count (ALC) in the PB rapidly following treatment
initiation. In this study, increased ALCs were observed shortly
after ibrutinib treatment in all of the ibrutinib responders (C, D,
V) but not in the NR B patient (Fig. 3a, b, representative exam-
ples). We performed a temporal profiling of the clinical, genomic,
and transcriptomic features as well as cellular heterogeneity to
comprehensively characterize ibrutinib-induced lymphocytosis in
MCL patients.

In patient V (R), gradual splenomegaly shrinkage and multiple
ALC peaks were observed following ibrutinib treatment at days 2
(V2), 10 (V2.5), and 22 (V3) after treatment (Fig. 3c) and
documented by the positron emission tomography/computed
tomography (PET/CT) imaging (Fig. 3a). In support of our
clinical observation, deep WES analysis of somatic mutations in
longitudinal samples from patient V identified a cluster of
subclonal somatic mutations in V1 that disappeared in V2, and a
new cluster of subclonal mutations in V2 that were not detected

Fig. 1 Longitudinal scRNA-seq of MCL during treatment. a Schematic view of the experimental design to delineate therapeutic resistance of MCL. The
discovery cohort included scRNA-seq and deep whole-exome sequencing (WES) of MCL cells collected longitudinally from three responders (Rs) and two
nonresponders (NRs), together with normal PBMCs from two healthy donors. The genomic and immune correlates of response identified from the
discovery cohort were then cross-validated by multiple platforms including bulk RNA-seq, WES, and flow cytometry of independent patient cohorts,
scRNA-seq of patient-derived PDX models, as well as in vitro and in vivo functional studies using MCL patient-derived cell lines. b Coronal or axial images
from CT scans pre-ibrutinib treatment (baseline) and post-treatment (disease progression) (left). Spleen sizes were measured and labeled with schematics
of treatment and sample collection time points for scRNA-seq (middle); as well as the kinetics of white blood cell (WBC) counts during the course of
treatment (right). Specimens were collected at multiple time points before and during the treatment when feasible, including pretreatment, on-treatment,
and progression samples. c A t-SNE overview of the cells that passed quality control. Each dot of the t-SNE (t-distributed stochastic neighbor embedding)
plot represents a single cell. Cells are color-coded by subject (MCL patients B–E, V, and healthy donors N1/N2, cells are merged as N), ibrutinib response
status (NR: non-responder; R: responder), and by the cell type. d Cell composition dynamics at different time points during sample collection.
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in V1 (Fig. 3e, Supplementary Data 3). Similarly, the cluster of
subclonal mutations in V2 disappeared in V2.5 and a new cluster
of subclonal mutations emerged, unique to V2.5 (not present in
V1 or V2) (Fig. 3e and Supplementary Fig. 7a), indicating
sequential redistribution of distinct tumor subclonal populations
from compartments, likely spleen, into PB and effective

elimination of these populations within the first 10 days of
ibrutinib treatment.

In contrast to the V patient, ibrutinib failed to induce
lymphocytosis in the NR Patient B, as indicated by the flat
ALC curve (Fig. 3d) with no change in the spleen size (Fig. 3b). In
accordance with this notion, we observed the acquisition and
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clonal expansion of a somatic 17q gain in progressive tumor B3
(collected at splenectomy), which was maintained in B4, and
subclonal expansion of a clone carrying RAD50 somatic mutation
from B3 to B4 (Fig. 3f, and Supplementary Fig. 7a, b). Overall,
these observations indicate the existence of a therapy-induced
clonal expansion and an increase in the degree of genomic ITH
during treatment, which is genomically distinct from ibrutinib-
induced lymphocytosis.

We further characterized the single-cell transcriptomic features
for the two representative cases (Fig. 3g–j). Single-cell clustering
analysis with Seurat revealed that the cells of V2 were
transcriptomically similar to V1, but cells of V3 were very
distinct from those of V0–V2 (Fig. 3g, left). We then applied
SC330, a different approach for unsupervised single-cell con-
sensus clustering analysis and o1bserved very similar results
(Fig. 3g, right, Supplementary Data 4). Cells of V3 were clearly
separated from cells of V0–V2, V5, which were clustered together
with similar features. Interestingly, the V0/1/2 tumor cells were
likely eliminated by ibrutinib at the time point of V3 collection as
no cells were detected in the sample V3 that exhibited similar
expression features with cells of V0/1/2. Similarly, the vast
majority of the V3 tumor cells might have been cleared from PB
at the time point of V4 collection as only a small fraction of cells
remained (the V4 cells that clustered together with cells of V3)
(Fig. 3g, left). The single-cell trajectory analysis clearly demon-
strated V3/V4 as different branches that contribute to a tumor
path development in response to ibrutinib treatment (Fig. 3i),
indicating that new subpopulations of tumor cells redistributed
from the tissues into the PB, likely from the spleen.

Distinct from patient V, our analysis suggested the notion that
tumor cells in B0 (BM) and B1 (PB) at baseline evolved into two
individual subpopulations B4a and B4b at disease progression
(Fig. 3h), supported by both Seurat (Fig. 3h, left) and SC3
clustering analysis (Fig. 3h, right, Supplementary Data 4). Lastly,
both V and B baseline tumors had clonal CCND1 mutations as
detected by the scRNA-seq and confirmed by the bulk WES
(Supplementary Fig. 7c). The CCND1 E277* mutation found in
the founder clone in sample B0 and the CCND1 E36K mutation
identified in V0 was maintained through the subsequent sample
collections over the course of therapy (Supplementary Fig. 7c).

Temporal acquisition of 17q gain in NR patient B. To under-
stand the potential driving source of the observed transcriptomic
heterogeneity, we applied a computational approach (inferCNV)
to infer large-scale copy number variations (CNVs) based on the
scRNA-seq data. Unsupervised clustering demonstrated very
distinct CNV profiles across patients with some shared features
within patients, demonstrating greater inter-patient than intra-
tumoral heterogeneity (Fig. 4a). We noted that tumor cells of B4
were clustered into two primary clusters based on the inferred
CNV profiles (Fig. 4b and Supplementary Fig. 8a), which largely
correlated with the transcriptome-based classification of

subpopulation B4a and B4b. We performed integrative analysis to
link the inferred genomic alterations and transcriptomic pheno-
types. The tumor cells in B4 at disease progression showed
notable differences in its CNV profiles with multiple acquired
copy number gains and losses, especially gains of chromosomal
regions 12p and 17q (Fig. 4a), compared to its baseline samples
(B0/B1). Intriguingly, the 17q gain was nearly exclusive to B4
tumor cells and not observed in cells from responsive patients,
indicating that 17q gain may have contributed to therapeutic
resistance and disease progression of B4 tumor. Notably, the 17q
gain was also identified in all disseminated B4-PDX tumor
samples (spleen, liver, PB, and BM) derived from B4 by scRNA-
seq (Fig. 4c). To validate that this finding truly occurred at the
genomic DNA level, we performed deep whole-exome sequencing
(WES, mean target coverage: 693×) on three samples collected
from patient B, baseline B0, B3 (an additional sample collected at
splenectomy, 3 months prior to B4; also at disease progression),
and B4 samples, and three samples from patient V (V1, V2, and
V2.5). We confirmed the presence of acquired 17q gain in pro-
gression tumors B3 and B4, but not in the baseline sample B0
(Supplementary Fig. 8b, c). Consistently, we did not observe 17q
gain in samples from patient V (Supplementary Fig. 8b–d), sug-
gesting that this chromosomal alteration might have occurred
during the evolution of the tumor to a more aggressive state in
patient B.

To further validate the possible correlation of 17q gain with
therapeutic resistance in refractory MCLs, we inquired our WES
datasets on MCL samples. We identified 17q gain in additional
refractory tumors and in an intrinsically ibrutinib-resistant MCL
cell line Z138 (Fig. 4d). We did not observe the 17q gain in any of
the responsive tumors tested, indicating that the presence of 17q
gain may be exclusive to refractory MCLs. Together, our data
indicated that the 17q gain could be a driver that emerged during
the development of therapeutic resistance in MCL.

Furthermore, we examined the downstream molecular con-
sequence of 17q gain and identified a list of 17q genes with
significantly higher expression in B4 against all other samples,
especially in the cycling cells from the B4B subpopulation (Fig. 4e,
Supplementary Fig. 9a, b left; Supplementary Data 5). A few of
these upregulated genes at 17q are known to be involved in
important oncogenic signaling pathways, such as SMARCE1,
CBX1, BIRC5 (survivin), MIEN1, TK1, HN1, and TRAF431–38.
BIRC5 is a gene located at 17q and its overexpression has been
associated with poor clinical outcome, cell cycle regulation, and
therapeutic resistance39. SMARCE1 and HN1 have been reported
to regulate the metastatic potential of cancer cells31,32,37. CBX1
functions as an oncogene and promote tumor progression in liver
cancer36. Overexpression of MIEN1 and TRAF4 has been
reported in various cancers and functionally regulates the PI3K/
AKT pathway to promote tumorigenesis40,41, and therefore, this
overexpression may contribute to the dysregulated PI3K/AKT
signaling pathway observed in refractory MCLs. Thymidine

Fig. 2 The transcriptomic heterogeneity and evolution of cancer hallmarks is associated with therapeutic resistance. a Color-coded t-SNE plots of the
malignant B cells. Color-coded cell representation by subject (Responders: C, D, V; non-responders: B; and healthy donors: N1, N2), sample collection time,
and by cell cycle stage. b Transcriptomic heterogeneity and evolution of cancer hallmarks associated with ibrutinib resistance. From the Molecular
Signature Database (MSigDB), 50 hallmark cancer gene sets were downloaded, and a pathway activity score was calculated for each single cell. The top 13
cancer hallmark pathways upregulated in the progressive sample are shown. c Heatmap representation of differentially expressed genes (representative
ones) from five selected pathways across cell sub-populations B0, B1, B4a, and B4b from patient B compared to normal samples (N). d Schematic view of
the establishment of B4-derived PDX model and experimental strategy of sample collection for scRNA-seq analysis. e Developmental trajectories
representation of malignant cell populations from patient B (B0, B1, B4a, and B4b) and B4-derived PDX tumors along inferred pseudotime by Monocle2.
Each point corresponds to a single cell; all points are color-coded according to the inferred pseudotime. Monocle 2 was run with default parameters on the
hallmark gene sets (OXPHOS and mTORC1 signaling) downloaded from MSigDB. f tSNE Plots featuring CKD4, MKI67, BIRC3, NFKB2 and RELB genes
expression in cells from patient B tumor and B4-derived PDX tumors.
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kinase 1, encoded by TK1, is a nucleotide enzyme involved in cell
proliferation and often considered as an early tumor detection
marker42, may promote cell proliferation of ibrutinib-resistant
MCL cells. These results suggest that genomic and transcriptomic
ITH are correlated and may cooperatively contribute to disease
progression and therapeutic resistance.

Survivin overexpression at 17q associated with ibrutinib-
venetoclax dual resistance in MCL. Our data (Fig. 4) suggest
that the 17q gain may contribute to disease progression and
therapeutic resistance in tumor B4. 17q gain was more
frequently observed in the B4b than the B4a subpopulation 53%
vs. 35%, fisher test P= 7.04e−07) (Supplementary Fig. 9b, left).
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BIRC5 (encodes survivin), located at 17q, is highly expressed
by the B4b subpopulation (Fig. 5a), especially in the B4b cells at
G2/M phase (Supplementary Fig. 9b, middle). The fraction of
survivin+ cells was present in 0.3% of the B4a population, 45.6%
of the B4b population, and 36.7% of the B4b cells at G2M phase,
and survivin expression was strongly associated with 17q gain
(Fisher test P= 2.23e−10, Supplementary Fig. 9b, right). Our
observation is in line with the previous studies showing that
survivin inhibits cell apoptosis and promotes cell proliferation
at G2/M39.

To functionally validate the potential role of survivin in
maintaining the aggressive behavior of tumor B4, we utilized the
established B4-PDX mouse model and performed an integrative
analysis of the scRNA-seq data generated from patient B tumors
and the B4-derived PDX tumors (Fig. 2d). As described above, we
observed a marked increase in survivin expression in the B4b
subpopulation in the patient tumor and notably, the high level of
survivin expression was maintained in all disseminated tumors of
the B4-derived PDX model (Fig. 5a). In support to the
observation that survivin expression was enriched in tumor B4b
cells at the G2/M phase, single-cell trajectory analysis of MCL
cells from patient B tumors (B0, B1, B4) and the B4-derived PDX
tumors showed a developmental path towards a significantly
increased G2M checkpoint signaling activity in survivin-high
tumors (Fig. 5b). Moreover, we examined cell proliferation
properties and observed an increased proportion of actively
proliferating tumor cells (G2/M or S phase) in B4b and B4-PDX
tumors (Fig. 5c), indicating a strong correlation between survivin
upregulation and rapid cell division.

We further tested the association between survivin expression
and ibrutinib resistance in a second independent MCL patient
cohort (n= 21) that included 15 ibrutinib-responsive and 6 NR
tumors and confirmed higher survivin expression in nonrespon-
ders (Fig. 5d). In addition, survivin has been associated with
clinical resistance and poor outcome in many cancer types.
Indeed, high survivin expression was strongly correlated with
significantly shortened survival in MCL patients, revealed by
survival analysis in two independent MCL cohorts43,44 (n= 71
and 92, respectively) (Supplementary Fig. 10a). These results
indicate an essential role of survivin in driving MCL progression
and resistance.

Targeting survivin overcomes ibrutinib-venetoclax dual resis-
tance in MCL. Based on our evidence showing that survivin was
significantly upregulated in the refractory MCL tumor cells and
closely associated with cell proliferation property, we next
determined the anti-tumor effects of survivin inhibition in MCL
cell lines using the clinically tested survivin inhibitor YM155.
(Fig. 5e and Supplementary Fig. 10b). The cell line panel included
ibrutinib- and venetoclax-sensitive (Mino and Rec-1), ibrutinib-
resistant (Maver and Z138), and venetoclax-resistant (JeKo BTK
KD) MCL cell lines. YM155 displayed potent anti-MCL activity
(IC50= 5–30 nM) in vitro (Fig. 5e) indicated by a significant G1
cell cycle arrest and by induction of cell apoptosis (Supplemen-
tary Fig. 10b) across a wide panel of MCL cell lines. We further
assessed the anti-tumor effects in PDX models (Fig. 5f–h,

Supplementary Fig. 10c–f). Consistently, YM155 effectively
inhibited in vivo subcutaneously implanted tumor growth of the
ibrutinib-venetoclax dual resistant B4-PDX model compared to
the vehicle-treated control (Fig. 5f, top) and significantly exten-
ded mouse survival (Fig. 5f, bottom, Supplementary Data 6) with
only one cycle of 28-day continuous infusion at doses as low as
1.0 mg/kg or 3 mg/kg. Moreover, the effects of YM155 on the
observed splenomegaly, hepatomegaly, and PB/BM involvement
in the B4-PDX mouse model were examined in the ibrutinib-
venetoclax dual resistant dissemination PDX model (Fig. 5g, h
and Supplementary Fig. 10d–f). YM155 significantly reduced the
spleen and liver sizes (Fig. 5g) as well as B2M production in the
mouse serum (Supplementary Fig. 10f) in the dissemination
model. B2M is a prognostic marker for MCL and serves as an
indicator of MCL tumor burden in mouse PDX models45. The
YM155-treated B4-PDX mice (both animal cohorts) did not show
any noticeable toxicities. For example, bodyweight was not sig-
nificantly different between vehicle control and YM155 treatment
group (Supplementary Fig. 10f). These data demonstrate that
targeting key cell cycle regulators such as survivin effectively
overcomes ibrutinib-venetoclax dual resistance and that the dis-
covery of specific signaling pathways upregulated in individual
patients may lead to the development of tailored treatments to
overcome therapeutic resistance.

TME heterogeneity and evolution associated with therapeutic
resistance. The TME acts as a supporting “ecosystem” for tumor
growth and progression. To further understand the cellular het-
erogeneity of TME and the complex interplay between tumor and
immune cells, we performed single-cell analysis of the non-
malignant immune cells from our discovery cohort. The immune
cells from MCL patients clustered separately from the immune
cells of healthy donors that were sequenced on the same batch
(Fig. 6a and Supplementary Fig. 2a). The clustering results before
and after batch effects correction showed no significant difference
(Supplementary Fig. 3b, c), indicating possible transcriptomic
reprogramming of TME cells. Notably, we observed a significant
decrease in the proportion of effector CD8+ T cells in the PB in
non-responders post-ibrutinib treatment, in contrast to a
dynamic increase in the proportion of effector CD8+ T cells in
the samples collected throughout therapy in the responsive
patients (Fig. 6b). In support of this observation, the bulk RNA-
seq data of our validation cohort (Fig. 1a) showed that CD8A
expression was indeed significantly lower (Fig. 6c) in the ibrutinib
nonresponders, suggesting that decreased CD8+ T cell-mediated
antitumor immunity likely a contributing factor to the observed
therapeutic resistance.

To validate this finding in an independent MCL cohort, we
performed flow cytometry analysis on 65 samples collected from
22 patients with no overlap with the discovery cohort (Fig. 6d).
Consistently, the fraction of CD8+ T cells was significantly lower
in samples of the ibrutinib nonresponders, with no significant
changes observed in the fraction of total T cells or CD4 T cells
between the responders and nonresponders (Fig. 6d), suggesting
that CD8 T-cell depletion most likely contributed to therapeutic
resistance in refractory MCL. We further examined the

Fig. 3 Cellular and transcriptomic characterization of ibrutinib-induced lymphocytosis in patient V and clonal evolution in patient B. a, b The coronal or
axial images from PET/CT scan pre- and during ibrutinib treatment. The size of the spleen was measured and labeled. c, d The kinetics of lymphocyte
absolute count (Abs) measured during the course of treatment. Samples subjected to scRNA-seq are labeled. e, f Fish plots showing patterns of clonal
evolution of tumors from patients B and V. Clonal evolution was inferred using somatic mutations and DNA copy number alterations identified by deep
WES. The representative alterations of each clone are labeled. g, h t-SNE plots (left) and SC3 clustering (right) showing the cellular and transcriptomic
characterization of the spleen compartment shift of tumor cells during treatment in patient V (left) and therapy induced evolution in patient B (right). i, j
The developmental trajectories of tumor cells along pseudotime in a two-dimensional state-space inferred by Monocle2.
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relationship between the activity of oncogenic pathways dysre-
gulated in refractory MCL (Fig. 2b) and the abundance of CD8
T cells, and observed a strong negative correlation between the
level of OXPHOS activity in MCL cells and CD8A expression as
well as the proportion of CD8+ T cells in the TME (Fig. 6e),
indicating that increased OXPHOS activity in MCL cells may

have reprogrammed the TME, but this will require further
investigation.

We further analyzed differentially expressed genes (DEGs, NR
vs. R) in CD4 and CD8 T-cell subsets at pre- and post-treatment
(Supplementary Data 7). Our analysis revealed dramatic changes
in the transcriptomic profiles of these cells, particularly in the
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expression of phenotypic markers and genes associated with
cellular functional states (Fig. 7a, b). Interestingly, we observed a
significant increase in the gene expression levels of markers
related to T regulatory cells (Treg) such as CXCR4 and LGALS1
(galectin-1), decreased expression of naïve T-cell-related markers
such as CCR7, and decreased expression of effector CD8 T-cell
markers such as GZMK, particularly in the pretreatment samples,
suggesting predictive potential for therapeutic response of these
markers.

Cell-to-cell communication analysis revealed significant
changes (NR vs. R) in a number of signaling networks (Fig. 7c)
including the increased inter-cellular interactions between MCL
cells and other TME cells including CD4, CD8 T cells and
monocytes via galectin-1->CXCR4/CD69, and TGF-β1->CXCR4
ligand receptor-based interactions. Galectin-1 functions as a
soluble mediator and is employed by tumor cells to evade the
immune response and promotes tumor progression46 through the
upregulation of CXCR4 via NF-kB signaling47. Moreover, CD69
controls T-cell differentiation through its interaction with
galectin-148, and TGF-β-triggered CXCL12/CXCR4 signaling has
been demonstrated to promote tumor invasion, metastasis, and
therapeutic resistance49. Flow cytometry confirmed the increased
fraction of CD69+ T cells both pre- and post-treatment in the
non-responders. Moreover, CXCR4+ cells were highly repre-
sented in the non-responders after treatment in both the CD4 and
CD8 T cells (Fig. 7d). In addition, the PRF1+ CD8+ T-cells
(effector T cells) inversely correlated with CXCR4 expression on
CD8 T-cells (Fig.7e), suggesting that CXCR4 may suppress T-cell
function in MCL, but this will require further investigation.
Together, our results suggest that complex interactions between
MCL cells and the TME may largely influence therapeutic
resistance, warranting the development of strategies to promote
the anti-lymphoma activity of the TME.

Discussion
MCL is a rare refractory disease subject to relapse. Novel tech-
nologies such as single-cell sequencing is underutilized in MCL to
reveal tumor heterogeneity, to track clonal evolution and to dis-
cover resistance mechanisms. The BTK inhibitor ibrutinib and
the BCL-2 antagonist venetoclax are routinely used in practice for
the treatment of relapsed/refractory MCL and are increasingly
used in newly diagnosed MCL in clinical trials. However, the
development of dual resistance to ibrutinib and venetoclax has
become an unmet urgent challenge for MCL patients. It has been
shown that MCL cells developing resistance to ibrutinib through
kinome-adaptive reprogramming mechanism50. In this study, we
examined, at single-cell resolution, the cellular and transcriptomic
ITH of a refractory MCL and characterized the underlying
molecular cues. We demonstrated that therapeutic resistance
likely arises from the high complexity of ITH and clonal evolution
under therapeutic pressure; therefore, dissection of ITH and
clonal evolution is critical for understanding the underlying
mechanisms of therapeutic resistance and for the development of
tailored treatments or precision medicine strategies to overcome
these resistances.

The longitudinal sampling strategy allowed us to investigate
temporal transcriptome evolution of tumor and TME cells during
treatments, which represents a major advantage over single-time
point studies that only capture a single “snapshot” of the evolu-
tionary process. Indeed, although our patient population was
clinically heterogeneous, greater ITH of the tumor cells and TME
was observed in the nonresponders in comparison to the
responders, suggesting a common mechanism underlying ther-
apeutic resistance. For example, as an ibrutinib-venetoclax non-
responder, Patient B was clearly separated from the ibrutinib-
sensitive patients, particularly in the manifestation of cancer
hallmarks such as OXPHOS, mTORC1, G2/M checkpoint, and
MYC. However, these analyses were limited due to a small sample
size. We, therefore, performed multi-platform validation of key
findings at genomic and cellular levels in larger patient cohorts
and also in PDX models. Recently, we functionally validated the
importance of OXPHOS in ibrutinib resistance and showed that
targeting OXPHOS induces pronounced anti-MCL activity in
ibrutinib-resistant PDX models15. In contrast, these signaling
pathways were gradually downregulated in response to ibrutinib
treatment in the ibrutinib-responsive patient V. In addition, the
single-cell analysis revealed the co-existence of molecularly dis-
tinct subpopulations in a progressive tumor (e.g., the two distinct
subpopulations, B4a and B4b, identified in progressive tumor B4),
which was faithfully recapitulated in the tumor-derived PDX
models. These observations suggest a high degree of cellular and
functional ITH in fostering the survival and clonal proliferation
of resistant tumor cells, indicating that rational combinatorial
therapies should be investigated to fully eradicate tumors.

Moreover, this work identified 17q gain in the nonresponders
and linked 17q gain to ibrutinib resistance through integrated
analysis of additional ibrutinib-resistant MCL clinical samples
and cell lines. Interestingly, BIRC5, a gene located at 17q and
encodes survivin, was remarkably upregulated in the resistant
tumor cells; its association with tumor cell proliferation property;
makes it a potential target for refractory MCL. YM155, the small
molecule survivin inhibitor, was highly potent in targeting MCL
cell lines in vitro and demonstrated significant anti-tumor activity
in an aggressive dual resistant B4-derived PDX model. This
demonstrates that single-cell transcriptomic analysis can identify
previously undiscovered targets which has important implications
for therapeutic development and precision medicine for MCL.
Survivin overexpression has been identified in MCL patients in
general51, however, the survivin upregulation has never been
demonstrated to contribute therapeutic resistance in MCL. Tar-
geting survivin by the inhibitor YM155 showed potent anti-MCL
activity to overcome ibrutinib-venetoclax dual resistance in vitro
and in vivo. This indicates that survivin inhibition could be an
alternative approach to be further investigated to overcome
ibrutinib-venetoclax dual resistance in MCL and possibly other
survivin-dependent malignancies.

An interesting vignette is the deep molecular profiling of the
distinct cellular, transcriptomic and genomic features of
ibrutinib-induced lymphocytosis and tumor clonal evolution. We
observed various genomically and transcriptomically distinct cell
populations released into the PB during ibrutinib treatment in the

Fig. 4 DNA copy number alterations and heterogeneity is associated with therapeutic resistance. a Heatmap overview of the inferred copy number
alterations (CNAs) in the malignant B cells across 22 chromosomes. Information on patient response status, patient and sample collection time point, were
annotated in the left tracks. The yellow rectangle highlights the 17q copy number gain significantly enriched in the progression tumor B4. b A dendrogram
based on the global CNV profiles showing intra-tumor cellular heterogeneity in B4 tumor cells between two subpopulations B4a to B4b. c ScRNA-seq
validation of 17q gain in cells from B4-derived PDX tumors. d Cross-platform validation of the 17q gain in additional patient cohorts and resistant MCL cell
lines using deep whole-exome sequencing (WES). The Log2Ratio plots of 4 representative samples are shown. e Expression heatmap showing genes
upregulated in the progression tumor B4 and located at 17q.
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responders, leading to more effective clearance of the tumor cell
populations present in blood circulation and multiple tissue
compartments. Additionally, we profiled therapy-induced clonal
evolution in the nonresponder patients and characterized distinct
features from ibrutinib-induced lymphocytosis, e.g., the clonal
expansion of tumor subpopulations that carried the driver

alterations during disease progression. Of note, the vast majority
of tumor cells were cleared from PB at timepoint V6 (Fig. 1d), but
with scRNA-seq, we were able to detect a single tumor cell in
sample V6 and this tumor cell harbored the CCND1 E36K
mutation, a mutation that associated with ibrutinib resistance52.
This further highlights the sensitivity of single-cell sequencing

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22872-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2877 | https://doi.org/10.1038/s41467-021-22872-z | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


technology, suggests the presence of potential residual disease and
a necessary monitoring approach.

Lastly, we profiled the dynamic TME and tumor-immune
interactions at a single-cell resolution, and our analyses demon-
strated the complexity of the tumor ecosystem and a high degree
of inter-tumoral cellular heterogeneity of the TME. We found
that CD8 T-cell dysfunction likely plays a role in therapeutic
resistance and potential targets are identified by analyzing aber-
rant cell-to-cell interaction networks. Further investigation and
validation is needed to understand how OXPHOS activation
in MCL tumor cells suppresses CD8 T-cell function and the

detailed mechanisms underlying failed immune surveillance.
This work provides a framework for the discovery of new ther-
apeutic options for therapeutically resistant MCL, potentially
influencing patient care, and it provides a foundation for
understanding the cellular and molecular interplay mediating
therapeutic resistance.

Methods
Patients and patient sample collection. Twenty-one patient samples were col-
lected from PB, BM, or apheresis after obtaining written informed consent and
approval from the Institutional Review Board at The University of Texas MD

Fig. 5 Validation of key cancer hallmarks in the B4-derived PDX model and identification of survivin (BIRC5) as a target to overcome ibrutinib-
venetoclax resistance. a Feature plot of BIRC5 expression in cells from patient B tumor and B4-derived PDX tumors (same t-SNE plot as in Fig. 2D) (left).
BIRC5 expression with violin plot (right). b Cells from panel A projected to a two-dimensional space by Monocle2. Each point corresponds to a single cell
and cells are colored according to the inferred pseudotime (blue to red). Monocle2 was run with default parameters on the hallmark gene sets G2M
Checkpoint downloaded from MSigDB. c Feature plot showing the cell cycle stage of each cell inferred by Seurat based on canonical cell cycle-related
markers (left) and the relative proportion of cell cycle phase of cells from patient B tumor and B4-derived PDX tumors (right). d Differential BIRC5
expression via bulk RNA-seq comparing ibrutinib responders (n= 15) and nonresponders (n= 6) in a separate MCL patient cohort. The line in the box is
the median value. The bottom and top of the box are the 25th and 75th percentiles of the sample. The bottom and top of the whiskers are the minimum
and maximum values of the sample. p value corresponds to the two-sided Wilcoxon signed-rank test. e The in vitro efficacy of survivin inhibitor YM155 in
MCL cell lines. YM155-induced cell toxicity in MCL cell lines (red: ibrutinib-resistant; blue: ibrutinib-sensitive) in a dose (left)- and time (right)-dependent
manner. The experiments were performed in triplicate (n= 3). Error bars represent the standard deviation (SD). f Mice (n= 5 per group) were injected
subcutaneously with freshly isolated B4-PDX cells and allowed for engraftment until the tumors became palpable. The mice were then treated with
continuous infusion of YM155 at 0, 1.0 or 3.0mg/kg for 28 days. Mice were sacrificed when tumor size reached 15 mm or at day 99 post cell inoculation as
end point of experiment. Plots representing tumor volume (top) and survival curves (bottom) of control and YM155-treated mice. Error bars represent the
standard deviation (SD). The log-rank test was used for survival analysis. g Images and weights of mouse spleens and livers from B4-PDX mice model
treated with vehicle or YM155. Error bars represent the standard deviation (SD). h The proportion of MCL cells (hCD5+hCD20+) in mouse BM and PM
disseminations in response to YM155 (n= 5) compared to the control vehicle (n= 5). The two-sided Student t test was used for statistical analysis in (g)
and (h). Error bars represent the standard deviation (SD).

Fig. 6 Tumor immune microenvironment diversity and evolution associated with therapeutic resistance. a A t-SNE overview of the immune cells that
passed quality control. Cells are color-coded by the defined cell types. b The dynamics of CD8 T cell proportion during treatment in responders (Rs) and
non-responders (NRs). p Values estimated by the linear regression model. c Differential CD8A (CD8 T cell marker) expression via bulk RNA-seq comparing
ibrutinib responders (n= 15) and non-responders (n= 6) in a separate MCL patient cohort. p= 8.6 × 10−4 from two-sided Wilcoxon signed-rank test. d
Additional patient cohort validation using flow cytometry showing a decreased CD8+ T cell population in ibrutinib-resistant patients compared to ibrutinib-
sensitive patients (n= 65 samples, collected from 22 patients). In c and d, the line in the box is the median value. The bottom and top of the box are the
25th and 75th percentiles of the sample. The bottom and top of the whiskers are the minimum and maximum values of the sample. p Values correspond to
two-side Wilcoxon Signed-rank Test. e Reverse correlation between CD8A expression or CD8+ T cell (%), and the tumor cell OXPHOS activity assessed
by scRNA-seq. The Pearson correlation coefficient (r) is shown. The bounds of shape correspond to 95% confidence band for the regression line. p Values
in b and e correspond to F test of linear regression model.
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Anderson Cancer Center. The patient samples were purified by Ficoll–Hypaque
density gradient centrifugation and cryopreserved before processing for scRNA-seq.

PET/CT for MCL patients. All MCL patient scans were acquired using the Philips C-
PET System. Patients fasted for at least 6 h before the 18F-FDG injection. The serum
glucose level was determined at the time of 18F-FDG injection using a glucometer, and
all patients had glucose levels less than 130mg/dl. Sixty-to-ninety minutes after

intravenous administration of 18F-FDG (0.045mCi/kg with a maximum of 6mCi for
C-PET unit and 0.14mCi/kg with a maximum of 15mCi for the PET/CT units), a
PET/CT imaging study from the skull base to the upper thigh was acquired. Images
were reconstructed by the iterative algorithm (ordered subset expectation maximiza-
tion) with and without attenuation correction. A clinical report was issued at the time of
performance of each scan. For the purposes of this study, all PET scan images and
reports were reviewed again by a nuclear medicine specialist physician to ensure con-
sistency of interpretation and reporting of results.
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scRNA-seq library preparation and sequencing. Single cell suspensions were
isolated by Ficoll-Paque Plus (17144002, GE Healthcare Life Sciences, Pittsburgh,
PA). ChromiumTM Single Cell 3′ Reagent Kits v2 (PN-120237, 10× GENOMICS)
were used to perform single-cell separation, cDNA amplification and library
construction following the manufacturer’s guidelines. A high-sensitivity dsDNA
Qubit kit was used to quantify the cDNA concentration. The HS DNA Bioanalyzer
for cDNA (or lower concentrated libraries) or the DNA 1000 Bioanalyzer was used
to measure the concentration of the libraries. The barcoded library at the con-
centration of 1.6 pm was sequenced on the NextSeq500 v2.5, High Output flow cell
using a 26 × 124 sequencing run format with 8 bp index (read 1).

The cellular suspensions were loaded on a 10× Chromium Single Cell
Controller to generate single-cell Gel Bead-in-Emulsions (GEMs). The scRNA-Seq
libraries were constructed using the Chromium Single Cell 3′ Library & Gel Bead
Kit v3 (P/N 1000092, 10x Genomics). The barcoded libraries were quantified and
then sequenced using the HiSeq4000 System (Illumina, San Diego, CA).

scRNA-seq data processing and analysis
Raw sequencing data processing, QC, data filtering and normalization. The raw
sequencing data were preprocessed (demultiplexed cellular barcodes, read align-
ment, and generation of gene count matrix) using Cell Ranger Single Cell Software
Suite provided by 10× Genomics. Detailed QC metrics were generated and eval-
uated. Genes detected in <0.1% of total sequenced cells and cells where <200 genes
had nonzero counts were filtered out and not included in the analysis. Low quality
cells where >10% of the counts were derived from the mitochondrial genome were
also discarded. Cells with detected genes >6000 were discarded to remove likely
doublet or multiplet captures. Of 20,004 sequenced cells, 18,794 (94%) passed
quality filtering with an average of ~73,727 reads aligned per cell. Possible batch
effects were then evaluated and corrected using FastMNN53 with default para-
meters (d= 50, k= 20). Seurat was applied to the filtered matrix to obtain the
normalized count as previously described54.

Dimensionality reduction, unsupervised cell clustering, determination of major cell
types and cell states. Seurat55 was applied to identify highly variable genes for
unsupervised clustering. The first 15 Principal Components and the top 9,305
highly variable genes were used for clustering at a resolution of 0.6. The t-
distributed stochastic neighbor embedding (t-SNE) method was used for dimen-
sionality reduction and 2-D visualization of the single-cell clusters. Feature plots
were generated of suggested cell-lineage specific markers, and differentially
expressed genes (DEGs) were identified using Seurat55, followed by a manual
review process to determine major cell types and cell states according to the
enrichment of specific markers in each cell cluster, as previously described56.

In addition, we applied SC330 a different approach for unsupervised single-cell
consensus clustering analysis57. The SC3′s parameters k, which was used in the k-
means and hierarchical clustering, was chosen from 2 to 8 iteratively. For each SC3
run, the silhouette was calculated, the consensus matrix plotted, and cluster-specific
genes identified. All these three aspects aid us to empirically determine the optimal
k and n. Once the stable clusters were determined, the above procedure was
iteratively applied to each of these clusters to reveal highly variable genes among
cells in each cluster, and then use these variable genes to identify subclusters. A cut-
off of adjusted p value of <0.01 and Auroc value of >0.6 was applied to identify
most significant DEGs between SC3 clusters. inferCNV was applied to infer the
CNV from scRNA-seq data (inferCNV of the Trinity CTAT Project; https://github.
com/broadinstitute/infercnv). Malignant B cells were distinguished from normal B
cells based on the genomic CNVs, inferred aneuploidy status, and cluster
distribution of the cell.

Inferring cell cycle stage, building single-cell trajectory, pathway enrichment,
and characterization of cell-to-cell communication networks. The cell cycle stage
was computationally assigned for each individual cell using the R code
implemented in Seurat55 as previously described58. The Monocle 2 algorithm59 was
used for single-cell trajectory analysis to order tumor cells in pseudotime to infer
their developmental trajectories. Monocle 259 was run with default parameters on
highly variable genes identified by Seurat55 and on the hallmark gene sets (MYC,
OXPHOS, mTORC1, cell cycle, and PI3K/AKT/mTOR signaling) downloaded
from the Molecular Signature Database (MSigDB). In order to check the robustness

of pseudo time inference, we used three algorithms TSCAN60, Slingshot61, and
SCORPIUS62 which are specifically designed for pseudotime inference. We,
respectively, run these three algorithms with default parameters based on the same
hallmark gene sets (MYC, OXPHOS, mTORC1, and cell cycle). The GVSA
software package63 was applied to identify key signaling pathways that are related
to ibrutinib resistance. The iTALK tool64 was applied to characterize cell-cell
communication signaling networks. The built-in database of the iTALK tool64 was
used to functionally annotate identified ligand-receptor pairs, and the visualization
tool was used to generate circos plots.

Cell culture. The human MCL cell lines JeKo-1, JeKo BTK KD, Mino, Mino ABT-
199 R, Rec-1, Rec ABT-199 R, and Maver-1 cells were maintained within RPMI
1640 medium supplemented with 1% penicillin/streptomycin, 25 mM 4-(2-
hydroxyethyl)-1piperazineethanesulfonic acid (HEPES), and 10% fetal bovine
serum (FBS; Sigma-Aldrich, St Louis, MO). These cells were cultured in a CO2

incubator at 37 °C. The MCL cell lines Rec-1, JeKo-1, Z-138, Maver-1, JVM-2, and
JVM-13 were obtained from the American Type Culture Collection (ATCC). The
Mino cell line was originally established and provided by Dr. Richard Ford at MD
Anderson Cancer Center. The JeKo-BTK KD cell line was generated by the MD
Anderson Core Facility and previously verified and published65. Venetoclax (ABT-
199)-resistant MCL cell lines (Mino-ABT-199 R and Rec-1 ABT-199 R) were
generated from the parental cell lines (Mino and Rec-1) by multistep exposures of
cells to increasing doses (up to 100 nM) of venetoclax for 8 weeks as previously
described66.

Cell viability assay. Cells were seeded at 10,000 cells per well in 96-well plates and
treated with various doses of the indicated compounds in triplicate for 72 h and
lysed with CellTiter-Glo Luminescent Cell Viability Assay Reagent (Promega,
Madison, WI, USA). The luminescence was quantified using the BioTek synergy
HTX Multi-mode microplate reader. The experiments were repeated at least three
times. Ibrutinib (S2680) and YM155 (S1130) were purchased from Selleck Che-
micals (Houston, TX, USA).

Apoptosis assay. Annexin V-binding assay was used to detect apoptosis. MCL
cells were seeded in 48-well plates, treated with vehicle or YM155 (50 nM) for 24
and 48 h, and were stained with Annexin-V and propidium iodide (Abcam,
Cambridge, UK). Flow cytometric analysis was performed immediately with a
Novocyte Flow Cytometer (ACEA Biosciences, San Diego, CA, USA) to determine
the percentages of Annexin-V positive cells. Data were analyzed with NovoExpress
(ACEA Biosciences, San Diego, CA, USA) or FlowJo10 (Tree Star, Ashland, OR,
USA). The experiments were repeated at least three times.

Cell cycle arrest assay. MCL cells in triplicate treated with vehicle or YM155 (50
nM) for 24 h were fixed in 50% pre-cold ethanol and stained with propidium iodide
followed by flow cytometric analysis with a NovoCyte Flow Cytometer (ACEA
Biosciences) to quantify the cell cycle stages. The experiments were repeated at least
three times.

Establishment of B4-PDX model in NSG mice. The Institutional Animal Care
and Use Committee of The University of Texas MD Anderson Cancer Center
approved the experimental protocols. One vial of frozen B4-derived MCL cells was
thawed, and 20 × 106 cells were injected into NSG mice intravenously via the tail
vein. Blood collection and flow cytometry to detect MCL cells in mouse blood
(>1%). The B4-derived MCL cells disseminated to the spleen, liver, BM, blood, and
others, and a PDX model named B4-PDX was established. Freshly isolated PDX
cells from the mouse spleen were used to pass onto the next generation through
intravenous inoculation. Generations G3–G6 were used in this study to test in vivo
drug efficacy in this model.

Collection and scRNA seq analysis of B4-PDX samples. Primary PDX cells were
freshly isolated from the spleen, liver, BM and PB of one B4-PDX mouse with
splenomegaly, hepatomegaly, and high involvement in the BM and PB. The freshly

Fig. 7 Aberrant cell-to-cell communication signaling associated with therapeutic resistance. a Differentially expressed genes (NR vs. R) in CD4+ and
CD8+ T-cells pre- and post-ibrutinib treatment, respectively. Filled circle sizes are proportional to the Log2-scaled fold changes of each gene. Upregulated
genes are shown in red; downregulated genes are shown in blue. Pre: pre-treatment; Post: post-treatment. b Representative genes are shown in violin plots.
c Alterations (NR vs. R) of ligand-receptor-based cell-to-cell communication networks based in pre- and post-treatment samples. d Flow cytometry
validation of upregulated CD69 and CXCR4 expression in ibrutinib nonresponders in comparison to the responders in additional patient cohorts (n=
65 samples collected from 22 patients). The line in the box is the median value. The bottom and top of the box are the 25th and 75th percentiles of the
sample. The bottom and top of the whiskers are the minimum and maximum values of the sample. p Values from the two-side Wilcoxon Signed-rank Test
are shown. e Reverse correlation between the proportion of PRF1+ CD8 T cells (cytotoxic) and the expression of CXCR4 using scRNA-seq. The bounds of
shape correspond to 95% confidence band for the regression line. The Pearson correlation coefficient (r) is shown. p Value corresponds to F test of linear
regression model.
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isolated primary PDX cells were subject to scRNA seq and analyzed as primary
patient samples.

In vivo efficacy of YM155 in the B4-PDX model. In cohort I, freshly isolated
primary PDX cells from the mouse spleen of the B4-PDX model (2 × 106) were
injected into 6–8-week-old female NSG mice intravenously via the tail vein. The
mice started the treatments at 4 weeks post cell inoculation and were treated with 2
cycles of 7-day continuous infusion with vehicle or YM155 (1.0 mg/kg) plus
2 weeks off. The mice were monitored weekly, and the PB was collected every other
week before, during, and at the end of treatment. B2M production in the mouse
serum was measured via ELISA. At the end of the experiment, the mice were
euthanized and dissected for blood, spleen, liver, and BM. The weight of the spleen
and liver was measured, and the cells from the blood, spleen, liver, and BM were
isolated and stained for fluorescence-conjugated human anti-CD5 and human anti-
CD20 antibodies. CD5- and CD20-double-positive cells representing the MCL cell
population present in each organ or tissue were detected by flow cytometry. In
cohort II, freshly isolated primary PDX cells from the mouse spleen of the B4-PDX
model (10 × 106) were injected into NSG mice subcutaneously. When the sub-
cutaneous xenografts were palpable, the mice were continuously infused with
vehicle or YM155 (1 or 3 mg/kg) for 4 weeks and off for the rest of the experi-
mental period. The mice survival and PDX size were monitored twice a week. The
tumor volume was calculated by V= (W2 × L)/2, where V is tumor volume, W is
tumor width, and L is tumor length.

Flow cytometry analysis. Single cell suspensions of the primary patient cells
collected from patient blood or BM were used to perform 17-color flow cytometry
analysis (Supplementary Fig. 11). The antibodies used in this analysis were (Sup-
plementary Data 8): CD28-BUV395 (740308, BD Biosciences, San Jose, CA),
CD127-BUV737 (612794, BD Biosciences, San Jose, CA), CD69-eFluor 450 (48-
0699-42, Life technologies, Calsbad, CA), CD279-SB600 (63-2799-42, Life tech-
nologies, Carlsbad, CA), CD223-SB645 (64-2239-42, Life technologies, Callsbad,
CA), CD3-BV711 (563725, BD Biosciences, San Jose, CA), CD8-SB780 (78-0086-42,
Life technologies, Carlsbad, CA), LAP-Alexa Fluor 488 (FAB2463G, R&D systems
Inc., Minneapolis, MN), CD4-PerCP-Cy5.5 (560650, BD Biosciences, San Jose, CA),
CD272-PE (344506, Biolegend, San Diego, CA), CD197-PE-eFluor 610 (61-1979-42,
Life technologies, Carlsbad, CA), CD19-PE-cy5 (555414, BD Biosciences, San Jose,
CA), CD184-PE-Cyanine7 (25-9999-42, Life technologies, Carlsbad, CA), LGALS1-
AF647 (sc-166618AF647, Santa Cruz Biotechnology, Dallas, TX), CD45RO-Alexa
Fluor 700 (561136, BD Biosciences, San Jose, CA), CD152 (47-1529-42, Life tech-
nologies, Carlsbad, CA), and LIVE/DEAD Fixable Aqua Dead Cell Stain (L34957,
Life technologies, Carlsbad, CA). The cells were washed in phosphate-buffered
saline (PBS) and stained with a cocktail of cell surface antibodies and LIVE/DEAD
Fixable Aqua Dead Cell Stain except for LGALS1-AF647 on ice for 30min. The cells
were then washed in PBS, fixed, permeabilized and stained with intracellular anti-
body LGALS1-AF647 for 20min. The cells were washed again and resuspended in
1% paraformaldehyde fixative solution and analyzed by flow cytometry (LSRFor-
tessa X-20 analyzer) (BD Biosciences, San Jose, CA within 24 h).

Deep whole-exome sequencing. Briefly, indexed libraries were prepared from 500
ng of Biorupter Ultrasonicator (Diagenode, Denville, NJ, USA)-sheared, genomic
DNA using the KAPA Hyper Library Preparation Kit (KAPABiosystems, Wilming-
ton, MA, USA). The indexed libraries were prepared for capture with six cycles of pre-
ligation-mediated PCR amplification. Following amplification and reaction cleanup,
the libraries were quantified using the Qubit™ dsDNA HS Assay (ThermoFisher,
Waltham, MA, USA) and assessed for size distribution using the Fragment Analyzer
(Advanced Analytical, Ames, IA, USA). Library concentrations were normalized, and
the libraries were multiplexed 8 libraries/pool. Each multiplexed library pool was
hybridized to a probe pool from the SeqCap EZ Human Exome Enrichment Kit v3.0
(Roche-NimbleGen, Madison, WI, USA). The enriched libraries were amplified with
eight cycles of post-capture PCR, then assessed for exon target enrichment by qPCR.
The exon-enriched libraries were then assessed for size distribution using the Frag-
ment Analyzer (Advanced Analytical) and quantified by qPCR using the KAPA
Library Quantification Kit (KAPA Biosystems). Sequencing was performed on the
HiSeq4000 Sequencer (Illumina, San Diego, CA, USA), one capture (eight samples)
per lane using the 150 bp paired-end configuration.

WES data processing and genotyping quality check. WES data was processed in
a similar way as described in our recent study15. Raw output of the Illumina exome
sequencing data was processed using Illumina’s Consensus Assessment of Sequence
and Variation (CASAVA) tool (v1.8.2) (http://support.illumina.com/sequencing/
sequencing_software/casava.html) for demultiplexing and conversion to FASTQ
format. The FASTQ files were aligned to the human reference genome (hg19) using
BWA (v0.7.5)67 allowing up to 3 mismatches (2 mismatches must be in the first
40 seed regions). The aligned BAM files were then subjected to mark duplication,
realignment and base recalibration using Picard (v1.112) and GATK (v3.1-1) software
tools68. The generated BAM files were then used for downstream analysis. Geno-
typing quality check was performed to rule out any possible sample swapping or
contamination. Briefly, germline SNPs were called using Platypus (v0.8.1). Samples
from the same patient were confirmed/identified by the percentage of genotyping-

identity between them, which was defined by the fraction of identical germline alleles
among the overlapping SNPs between the two samples. All samples in this study
passed quality check, and no sample swapping or contamination was detected.

Somatic mutation calling, filtering, functional annotation, and analysis of
clonal architecture. MuTect (v1.1.4)69 was applied to identify somatic point
mutations, and Pindel (v0.2.4)70 was applied to identify small insertion and deletions
(Indels). The MuTect and Pindel outputs were then run through our pipeline for
filtering and annotation. Briefly, only MuTect calls marked as “KEEP” were selected
and taken into the next step. For both substitutions and Indels, mutations with a low
variant allelic fraction (VAF < 0.05) or had a low total read coverage (<20 reads for
tumor samples; <10 reads for germline sample), were removed. In addition, Indels
that had an immediate repeat region within 25 base pairs downstream towards it 3′
region were also removed. After that, common variants reported by the ExAc (the
Exome Aggregation Consortium, http://exac.broadinstitute.org), Phase-3 1000 Gen-
ome Project (http://phase3browser.1000genomes.org/Homo_sapiens/Info/Index), or
the NHLBI GO Exome Sequencing Project (ESP6500, http://evs.gs.washington.edu/
EVS/) with a population minor allele frequency greater than 0.5% were removed. The
intronic mutations, mutations at 3′ or 5′ UTR or UTR flanking regions, silent
mutations, small in-frame insertions and deletions were also removed. SciClone71 was
applied to somatic mutation data to infer clonal architectures and tumor evolution
patterns, and R-fishplot72 was used for visualization.

Estimation of total copy numbers and allele-specific copy numbers. Total DNA
copy number analysis was conducted using an in-house application ExomeLyzer73

followed by CBS segmentation74. The copy number segmentation files were loaded
to R for visualization (e.g., Figure 3d). R package “CNTools” (v1.24.0) was used to
identify copy number gains (log2 copy ratios > 0.3) or losses (log2 copy ratios <
−0.3) at the gene level. We used Sequenza75 to infer the allele-specific DNA copy
number alterations. Sequenza was applied to the WES bam files of matched tumor-
normal pairs from patients B and V, respectively. Sequenza outputs (e.g., B allele
frequency and absolute allele-specific copy numbers) were merged and compared
within and across patients and also compared with the inferred copy number
profiles from the scRNA-seq platform.

Statistics and reproducibility. In addition to the bioinformatics approaches described
above for scRNA-seq data analysis, all other statistical analysis were performed
using statistical software R v3.4.3. Analysis of differences in cancer hallmarks and
immunological features (continuous variables) between response (R vs. NR) groups
was determined by the nonparametric Mann–Whitney U test. To control for
multiple hypothesis testing, we applied the Benjamini–Hochberg method to correct
p values and calculated the false discovery rates (q-values). For functional experi-
ments, all assays were performed in triplicate and expressed as mean+ SD. Sta-
tistical analysis was performed using GraphPad Prism v8.00 software. Statistical
significance was determined by the two-sided two-sample t test analysis. Violin plots
were generated using the geom-violin from the ggplot2 R package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
WES and All single-cell expression data generated in this study have been deposited in
the European Genome-Phenome Archive (EGA) database under the accession code
EGAS00001005019. Request for the relevant data can be made to the corresponding
author. The genotyping data is available within this paper and the supporting
information files. In addition to the datasets generated internally for this study, we
downloaded the normalized expression data of two MCL patient cohorts under the access
code GSE1079343 and the website: https://llmpp.nih.gov/MCL/ [https://llmpp.nih.gov/
MCL/proliferation_signature_expression.txt]44, in order to assess the prognostic
significance of survivin upregulation in MCL. 50 hallmark cancer gene sets were
downloaded from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). All
other remaining data are available from the corresponding authors upon request.
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