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Supervised dimensionality reduction for big data

Joshua T. Vogelstein 1'2@, Eric W. Bridgeford1'2, Minh Tang1, Da Zheng1, Christopher Douville!,
Randal Burns' & Mauro Maggioni'

To solve key biomedical problems, experimentalists now routinely measure millions or bil-
lions of features (dimensions) per sample, with the hope that data science techniques will be
able to build accurate data-driven inferences. Because sample sizes are typically orders of
magnitude smaller than the dimensionality of these data, valid inferences require finding a
low-dimensional representation that preserves the discriminating information (e.g., whether
the individual suffers from a particular disease). There is a lack of interpretable supervised
dimensionality reduction methods that scale to millions of dimensions with strong statistical
theoretical guarantees. We introduce an approach to extending principal components ana-
lysis by incorporating class-conditional moment estimates into the low-dimensional projec-
tion. The simplest version, Linear Optimal Low-rank projection, incorporates the class-
conditional means. We prove, and substantiate with both synthetic and real data bench-
marks, that Linear Optimal Low-Rank Projection and its generalizations lead to improved data
representations for subsequent classification, while maintaining computational efficiency and
scalability. Using multiple brain imaging datasets consisting of more than 150 million fea-
tures, and several genomics datasets with more than 500,000 features, Linear Optimal Low-
Rank Projection outperforms other scalable linear dimensionality reduction techniques in
terms of accuracy, while only requiring a few minutes on a standard desktop computer.
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upervised learning—the art and science of estimating sta-

tistical relationships using labeled training data—has

enabled a wide variety of basic and applied findings, ranging
from discovering biomarkers in omics datal to recognizing
objects from images2. A special case of supervised learning is
classification, where a classifier predicts the “class” of a novel
observation (for example, by predicting sex from an MRI scan).
One of the most foundational and important approaches to
classification is Fisher’s Linear Discriminant Analysis (LDR)3.
LDA has a number of highly desirable properties for a classifier.
First, it is based on simple geometric reasoning: when the data are
Gaussian, all the information is in the means and variances, so the
optimal classifier uses both the means and the variances. Second,
LDA can be applied to multiclass problems. Third, theorems
guarantee that when the sample size n is large and the dimen-
sionality p is relatively small, LDA converges to the optimal
classifier under the Gaussian assumption. Finally, algorithms for
implementing it are highly efficient.

Modern scientific datasets, however, present challenges for
classification that were not addressed in Fisher’s era. Specifically,
the dimensionality of datasets is quickly ballooning. Current raw
data can consist of hundreds of millions of features or dimen-
sions; for example, an entire genome or connectome. Yet, the
sample sizes have not experienced a concomitant increase. This
“large p, small n” problem is a non-starter for many classical
statistical approaches because they were designed with a “small p,
large n” situation in mind. Running LDA when p > n is like trying
to fit a line to a point: there are infinitely many equally good fits
(all lines that pass through the point), and no way to know which
of them is “best”. Therefore, without further constraints these
algorithms will overfit, meaning they will choose a classifier based
on noise in the data, rather than discarding the noise in favor of
the desired signal. We also desire methods that can adapt to the
complexity of the data, are robust to outliers, and are computa-
tionally efficient. Several complementary strategies have been
pursued to address these p > n problems.

First, and perhaps the most widely used method, is Principal
Components Analysis (PCR)*. According to PubMed, PCA has
been referenced over 40,000 times, and nearly 4000 times in 2018
alone. This is in contrast to other methods that receive much
more attention in the media, such as deep learning, random
forests, and sparse learning, which received ~2000, ~1200, and
~500 hits, respectively. This suggests that PCA remains the most
popular workhorse for high-dimensional problems. PCA “pre-
processes” the data by reducing its dimensionality to those
dimensions whose variance is largest in the dataset. While highly
successful, PCA is a wholly unsupervised dimensionality reduc-
tion technique, meaning that PCA does not use the class labels
while learning the low-dimensional representation, resulting in
suboptimal performance for subsequent classification. Nonlinear
manifold learning techniques generalize PCA3, but also typically
do not incorporate class label information; moreover, they scale
poorly. Deep learning provides the most recent version of non-
linear manifold learning, for example, using (supervised) auto-
encoders, but these methods remain poorly understood, have
many parameters to tune, and typically do not provide inter-
pretable results®. Further, deep learning tends to suffer in the
wide data problem, where the number of samples is far less than
the dimensionality.

The second set of strategies regularize or penalize a supervised
method, such as regularized LDA” or canonical correlation ana-
lysis (CCA)8. Such approaches can drastically overfit in the p>n
setting, tend to lack theoretical support in these contexts, and
have multiple “knobs” to tune that are computationally taxing.
Partial least squares (PLS) is another popular method in this set
that often achieves impressive empirical performance, though it

lacks strong theoretical guarantees and a scalable
implementation®10. Sparse methods are the third common
strategy to mitigate this “curse of dimensionality” 11-13. Unfor-
tunately, exact solutions are computationally intractable, and
approximate solutions have theoretical guarantees only under
very restrictive assumptions, and are quite fragile to those
assumptions'®. Thus, there is a gap: no existing approach can
classify multi-class wide data with millions of features while
obtaining strong theoretical guarantees, favorable and inter-
pretable empirical performance, and a flexible, robust, and scal-
able implementation.

To address these issues, we developed a technique for incor-
porating class-conditional moment estimates, XOX, the simplest
example of which is LOL. The key intuition behind LOL is that we
can jointly use the means and variances from each class (like LDA
and CCA), but without requiring more dimensions than samples
(like PCA), or restrictive sparsity assumptions. Using random
matrix theory, we are able to prove that when the data are
sampled from a Gaussian, LOL finds a better low-dimensional
representation than PCA, LDA, CCA, and other linear methods.
Under relatively relaxed assumptions, this is true regardless of the
dimensionality of the features, the number of samples, or the
number of dimensions in which we project. We then demonstrate
the superiority of techniques derived using the XOX approach—
including (i) LOL, (ii) a variant of XOX which allows greater
flexibility of the class-conditional covariances called Q0Q, and (iii)
a robust variant of LOL called RLOL—over other methods
numerically on a variety of simulated settings including several
not following the theoretical assumptions. Finally, we show that
on several 500 gigabyte neuroimaging datasets, and several multi-
gigabyte genomics datasets, LOL achieves superior accuracy at
lower dimensions while requiring only a few minutes of time on a
single workstation.

Results

Flexibility and accuracy of XOX framework. We empirically
investigate the flexibility and accuracy of XOX using simulations
that extend beyond theoretical claims. For three different sce-
narios, we sample 100 training samples each with 100 features;
therefore, Fisher’s LDA cannot solve the problem (because there
are infinitely many ways to overfit). We consider a number of
different methods, including PCA, rrLDA, PLS, random pro-
jections (RP), and CCA to project the data onto a low dimensional
space. After projecting the data, we train either LDA (for the first
two scenarios) or quadratic discriminant analysis (QDA, for the
third scenario), which generalizes LDA by allowing each class to
have its own covariance matrix!'>. For each scenario, we evaluate
the misclassification rate on held-out data.

Figure 1 shows a two-dimensional scatterplot (left) and
misclassification rate versus dimensionality (right) for each
simulation. Hereafter, LOL will refer to the version of LOL with
a robust estimate of the location (the class medians, related to the
central moment when the population has a symmetric distribu-
tion), and a truncated singular value decomposition to estimate of
the second moment. A robust location estimate tends to make
little difference when a robust estimate was not necessary, and
empirically improves performance in simulations and real-data
examples when a robust estimate was warranted. Alternative
strategies would have been to use robust estimates of the first
moment or second moment directly!®-18. We do not use a robust
estimate of the second moment, as typical robust estimates of the
second moment available in standard numerical packages require
d<n, which is unsuitable for wide data. The top C—1
embedding dimensions for LOL correspond to the performance
after projection onto the class-conditional means, and rrLDA
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Fig. 1 Three simulations demonstrating the flexibility and accuracy of XOX in settings beyond current theorical claims. For all cases, training sample size
and dimensionality were both 100. The top row depicts the values of the sampled points for two of the 100 dimensions to illustrate the classification task.
The bottom row misclassification rate as a function of the number of projected dimensions, for several different embedding approaches. Classification is
performed on the embedded data using the LDA classifier for (A) and (B), and using QDA for (C). The simulation settings are: A Trunk-3 A variation of
Fig. 5b in which three classes are present. B Robust Outliers are prominent in the sample while estimating the projection matrix. LOL is robust to the
outliers due to the robust estimate of the first moment. € Cross The two classes have the same mean but orthogonal covariances. Points are classified
using the QDA classifier after projection. QOQ, a variant of LOL where each class' covariance is incorporated into the projection matrix, outperforms other
methods, as expected. In essentially all cases and dimensions, LOL, or the appropriate generalization thereof, outperforms other approaches.

corresponds to the performance of projection onto the class-
conditional covariance matrix. Figure la shows a three class
generalization of the Trunk example from Fig. 5b. LOL can
trivially be extended to more than two classes (see Supplementary
Note 2 for details), unlike ROAD which only operates in a two-
class setting. Figure 1b shows a two-class example with many
outliers, as is typical in modern biomedical datasets. Both LOL
and PLS perform well, despite the outliers, and efficiently identify
embedding dimensions despite the outliers. Figure 1c shows an
example which should be adversarial for LOL in comparison to
PCA or rrLDA. This is because the difference of means is utterly
informative, so LOL utilizes additional dimensions which are
noise compared to PCA. Further, the class-conditional covar-
iances are orthogonal, whereas LOL assumes the class-conditional
covariance is the same across both classes. While LOL cannot
possibly do as well as PCA in this situation, its performance is
only slightly worse. Further, another XOX variant, quadratic
optimal QDA (QOQ), uses the same difference of means as LOL
and then computes the eigenvectors separately for each class,
concatenates them (sorting them according to their singular
values), and then classifies with QDA instead of LDA. QOQ is able
to identify a slightly more efficient projection for classification
than PCA. This is due to the fact that while the first few
dimensions are uninformative (those spanned by the difference of
the means), the successive dimensions are far more efficient (the
class-conditional covariances). For all three scenarios, either LOL
—or its extended variant QOQ—achieves a misclassification rate
comparable to or lower than other methods, for all dimensions.
These three results demonstrate how straightforward general-
izations of LOL under the XOX framework which incorporate
alternate or robust moment estimates can dramatically improve
performance over other projection methods. This is in marked
contrast to other approaches, for which such flexibility is either
not available, or otherwise problematic.

XOX is computationally efficient and scalable. When the
dimensionality is large (e.g., millions or billions), the main bot-
tleneck is sometimes merely the ability to run anything on the
data, rather than its predictive accuracy. We evaluate the

computational efficiency and scalability of LOL in the simplest
setting: two classes of spherically symmetric Gaussians (see
Supplementary Note 3 for details) with dimensionality varying
from 2 million to 128 million, and 1000 samples per class.
Because LOL admits a closed form solution, it can leverage highly
optimized linear algebra routines rather than the costly iterative
programming techniques currently required for sparse or dic-
tionary learning type problems!®. To demonstrate these compu-
tational capabilities, we built F1ashLOL, an efficient scalable
LOL implementation with R bindings, to complement the R
package used for the above figures.

Four properties of LOL enable its scalable implementation.
First, LOL is linear in both sample size and dimensionality
(Fig. 2a, solid red line). Second, LOL is easily parallelizable using
recent developments in “semi-external memory”20-22 (Fig. 2a,
dashed red line demonstrates that LOL is also linear in the
number of cores). Also note that LOL does not incur any
meaningful additional computational cost over PCA (orange
dashed line). Third, LOL can use randomized approximate
algorithms for eigendecompositions to further accelerate its
performance?>?* (Fig. 2a, orange lines). FlashLFL, short for
Flash Low-rank Fast Linear embedding, achieves an order of
magnitude improvement in speed when using very sparse RP
instead of the eigenvectors. Fourth, hyper-parameter selection for
LOL is nested, meaning that once estimating the d-dimensional
projection, every lower dimensional projection is automatically
available. This is in contrast to tuning the weight of a penalty
term, which leads to a new optimization problem for each
different parameter values. Thus, the computational complexity
of LOL is O(npd/Tc), where n is sample size, p is the dimension
of the data, d is the dimension of the projection, T is the number
of threads, and c is the sparsity of the projection.

Finally, note that this simulation setting is ideal for PCA and
rrLDA, because the first principal component includes the mean
difference vector. Nonetheless, both LOL and LFL achieve near
optimal accuracy, whereas rrLDA is at chance, and PCA requires
500 dimensions to even approach the same accuracy that LOL
achieves with only one dimension. While PCA would also benefit
efficiency wise from a randomized approach, we emphasize that
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Fig. 2 Computational efficiency and scalability of 1.0L. using n = 2000 samples from spherically symmetric Gaussian data (see Supplementary Note 3
for details). A 1L.OL exhibits optimal (linear) scale up, requiring only 46 min to find the projection on a 500 gigabyte dataset, and only 3 min using LFL
(dashed lines show semi-external memory performance). B Error for LFL is the same as LOL in this setting, and both are significantly better than PCA and
rrLDA for all choices of projection dimension, regardless of whether a randomized approach is used to compute the projection dimensions. Note that while
similar scalability enhancements can be made to PCA in (A), our focus is to highlight that LFL maintains the high performance of LOL in comparison to PCA

in (B) despite the randomization technique.

LFL maintains the high performance of LOL in comparison to
PCA despite the randomization technique, with the benefit of
greater computational efficiency compared to LOL.

Real data benchmarks and applications. Real data often break
the theoretical assumptions in more varied ways than the above
simulations, and can provide a complementary perspective on the
performance properties of different algorithms. We describe two
sets of problems, one from brain imaging, and the other from
genomics. In both cases we consider a classification problem. To
classify participants, researchers typically employ substantiative
preprocessing pipelines®® to reduce the dimensionality of the
data. Unfortunately, as debates persist about the validity of pre-
processing approaches, there is no defacto “standard” for the
optimal strategies to preprocess the data. Traditional approaches
typically include a deep processing chain, with many steps of
parametric modeling and downsampling?®-28, We therefore
investigate the possibility of directly classifying on the nearly raw,
high-dimensional data.

The Consortium for Reliability and Reproducibility (CoRR)?°
has generated anatomical and diffusion magnetic resonance
imaging scans from n>800 participants from five processing
sites, each featuring participant-specific annotations for the sex of
each individual. At the native resolution, each brain volume is
over 150 million dimensions, and each dataset consists of between
42 (60 GB of data) and >400 samples (600 GB of data).

We then also consider a large genomics dataset® consisting of
340 individuals: 144 patients with nonmetastatic cancer and 196
healthy controls, of which 198 are male and 142 are female.
Samples are aligned to > 750,000 amplicons distributed through-
out the genome to investigate the presence of aneuploidy
(abnormal chromosomal counts) in samples from cancer patients
(see Supplementary Note 5 for details). The raw amplicon counts
are then used with no further preprocessing. We have two tasks of
interest: classification on the basis of either sex or age.

For each of the above described problems, we first compute an
embedding matrix to project the training data using LOL, PCA,
rrLDA, and RP, and then train LDA to classify the resulting low-
dimensional representations. The held-out set is then projected
and classified using the embedding matrix and trained classifier
respectively, and the average cross-validated error is computed
over all folds of the data. For each problem, the optimal
dimensionality for each strategy is selected to be the number of
embedding dimensions with the lowest average cross-validated
error. We compute Cohen’s Kappa k to compare performance
across methods because it normalizes the performance of the

4

classification strategy between zero (the classifier is equivalent to
the random chance classifier) and one (the classifier performs
perfectly). Finally, for each projection technique, we measure the
effect size for each strategy as the difference x(PCA) — x(embed).
See Supplementary Table 1 for a table detailing the datasets
employed.

Our FlashLOL implementations are the only algorithms that
could successfully run on these data with a single core on a
standard desktop computer. In Fig. 3a, LOL is the only technique
to outperform PCA on all problems. Figure 3b shows the relative
ranks of the average cross-validated misclassification rates for the
LDA classifier on each dataset after projection with the specified
embedding technique. For all problems, LOL is the technique with
the lowest average cross-validated misclassification rate. Further,
LOL performs significantly better than all other techniques
(Wilcoxon signed-rank statistic, all p values = 0.008). The average
misclassification rate achieved at the optimal number of embed-
ding dimensions via LOL is between 5% and 15% across all
datasets, which is the same performance we and others obtain
using extensively processed and downsampled data that is
typically required on similar datasets®!->2. LOL therefore enables
researchers to side-step hotly debated preprocessing issues by
hardly preprocessing at all, and instead simply applying LOL to
the data in its native dimensionality.

Discussion

We have introduced a very simple methodology to improve
performance on supervised learning problems with wide data
(that is, big data where dimensionality is at least as large as
sample size) by using class-conditional moments to estimate a
low rank projection under a generalized framework, XOX. In
particular, LOL uses both the difference of the means and the
class-centered covariance matrices, which enables it to outper-
form PCA, as well as existing supervised linear classification
schemes, in a wide variety of scenarios without incurring any
meaningful additional computational cost. Straightforward gen-
eralizations enable robust and nonlinear variants by using robust
estimators and/or class specific covariance estimators. Our open
source implementation optimally scales to terabyte datasets.
Moreover, the intuition can be extended for both hypothesis
testing and regression (see Supplementary Note 6 for additional
numerical examples in these settings).

Two commonly applied approaches in these settings are PLS
and CCA. CCA is equivalent to rrLDA whenever p < n, which is
not of interest here. When p>n, CCA and rrLDA are not
equivalent; however, in such settings, CCA exhibits the “maximal
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Fig. 3 Comparing various dimensionality reduction algorithms on two real datasets: neuroimaging and genomics. A Beeswarm plots show the
classification performance of each technique with respect to PCA at the optimal number of embedding dimensions, the number of embedding dimensions
with the lowest misclassification rate. Performance is measured by the effect size, defined as x(LD2As PCA) — k(L.DAcembed), where « is Cohen's Kappa,
and embed is one of the embedding techniques compared to PCA. Each point indicates the performance of PCA relative the other technique on a single
dataset, and the sample size-weighted average effect is indicated by the black “x.” LOL always outperforms PCA and all other techniques. B Frequency
histograms of the relative ranks of each of the embedding techniques on each dataset after classification, where a 1 indicates the best relative classification
performance and a 4 indicates the worst relative classification performance, after embedding with the technique indicated. Projecting first with LOL
provides a significant improvement over competing strategies (Wilcoxon signed-rank test, n=7, p value = 0.008) on all benchmark problems.

data piling problem™33 (see Supplementary Note 2.6 for details).
Specifically, all the points in each class are projected onto the
exact same point. This results in severe overfitting of the data,
yielding poor empirical performance in essentially all settings we
considered here (the first dimension of CCA is typically worse
even than the difference of the means). While PLS does not
exhibit these problems, it lacks strong theoretical guarantees and
simple geometric intuition. In contrast to XOX, neither CCA nor
PLS enable straightforward generalizations, such as when there
are outliers or the discriminant boundary is quadratic (see Fig. 1).
Further, across all simulations, XOX outperforms both of these
approaches, sometimes quite dramatically (for example, XOX
outperforms CCA on over all of the simulations considered).
Finally, no scalable nor parallelized implementations are readily
available for these methods (see Fig. 2). One could use stochastic
gradient descent with penalties to solve these other optimization
problems, but they would still need to tune the penalty parameter
which would be quite computationally costly. Neither PLS nor
CCA could be successfully run on the massive neuroimaging
dataset nor the amplicon-level genomics dataset using readily-
available tools.

Many previous investigations have addressed similar chal-
lenges. The celebrated Fisherfaces paper was the first to compose
Fisher’s LDA with PCA (equivalent to PCA in this manuscript)34.
The authors showed via a sequence of numerical experiments the
utility of projecting the data using PCA prior to classifying with
LDA. We extend this work by adding a supervised component to
the initial projection. Moreover, we provide the geometric intui-
tion for why and when incorporating supervision is advanta-
geous, with numerous examples demonstrating its superiority,
and theoretical guarantees formalizing when LOL outperforms
PCA. The “sufficient dimensionality reduction” literature has
similar insights, but a different construction that typically
requires the dimensionality to be smaller than the sample
size3>-3% (although see?® for some promising work). More
recently, communication-inspired classification approaches have
yielded theoretical bounds on linear and affine classification
performance?!; they do not, however, explicitly compare different
projections, and the bounds we provide are more general and
tighter. Moreover, none of the above strategies have imple-
mentations that scale to millions or billions of features. Recent big
data packages are designed for millions or billions of samples#243.
In biomedical sciences, however, it is far more common to have

tens or hundreds of samples, and millions or billions of features
(e.g., genomics or connectomics).

Most manifold learning methods, while exhibiting both strong
theoretical#4-4¢ and empirical performance, are typically fully
unsupervised. Thus, in classification problems, they discover a
low-dimensional representation of the data, ignoring the labels.
This approach can be highly problematic when the discriminant
dimensions and the directions of maximal variance in the learned
manifold are not aligned (see Fig. 4 for some examples). More-
over, nonlinear manifold learning techniques tend to learn a
mapping from the original samples to a low-dimensional space,
but do not learn a projection, meaning that new samples cannot
easily be mapped onto the low-dimensional space, a requirement
for supervised learning. Deep learning methods® can easily be
supervised, but they tend to require huge sample sizes, lack the-
oretical guarantees, or are opaque “black-boxes” that are insuf-
ficient for many biomedical applications. This yields a dearth of
“out of the box” supervised scalable dimensionality reduction
techniques with strong theoretical guarantees with respect to
classification performance bounds designed for wide datasets.
Random forests circumvent many of these problems, but imple-
mentations that operate on millions of dimensions do not exist47,
and often produce embeddings that perform no better than PCA
on wide datasets (Fig. 3).

Other approaches formulate an optimization problem, such as
projection pursuit*® and empirical risk minimization4’. These
methods are limited because they are prone to fall into local
minima, require costly iterative algorithms, lack any theoretical
guarantees on classification accuracy®®. Feature selection strate-
gies, such as higher criticism thresholding effectively filter the
dimensions, possibly prior to performing PCA on the remaining
features®!. These approaches could be combined with LOL in
ultrahigh-dimensional problems. Similarly, another recently
proposed supervised PCA variant builds on the elegant
Hilbert-Schmidt independence criterion°? to learn an
embedding®3. Our theory demonstrates that under the Gaussian
model, composing this linear projection with the difference of the
means will improve subsequent performance under general set-
tings, implying that this will be a fertile avenue to pursue. A
natural extension to this work would therefore be to estimate a
Gaussian mixture model per class, rather than simply a Gaussian
per class, and project onto the subspace spanned by the collection
of all Gaussians.
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Fig. 4 Schematic illustrating linear optimal low-rank (1LOL) as a supervised manifold learning technique. A 300 training samples of the numbers 3, 7,
and 8 from the MNIST dataset (100 samples per digit); each sample is a 28 x 28 = 784 dimensional image (boundary colors are for visualization
purposes). B The first four projection matrices learned by L.OL. Each is a linear combination of the sample images. € Projecting 500 new (test) samples into
the top two learned dimensions; digits color coded as in (A). LOL-projected data from three distinct clusters. D Using the low-dimensional data to learn a
classifier. The estimated distributions for 3 and 8 of the test samples (after projecting data into two dimensions and using LDA to classify) demonstrate
that 3 and 8 are easily separable by linear methods after LOL projections (the color of the line indicates the digit). The filled area is the estimated error rate;
the goal of any classification algorithm is to minimize that area. LOL is performing well on this high-dimensional real data example.

In conclusion, the key XOX idea, appending class-conditional
moment estimates to convert unsupervised manifold learning to
supervised manifold learning, has many potential applications
and extensions. We have presented the first few, including LOL,
Q00Q, and RLOL, which demonstrated the flexibility of XOX under
both theoretical and benchmark settings. Incorporating addi-
tional nonlinearities via higher order moments, kernel methods>4,
ensemble methods®® such as random forests®®, and multiscale
methods*® are all of immediate interest.

Methods

Supervised manifold learning. A general strategy for supervised manifold
learning is schematized in Fig. 4, and outlined here. Step (A): Obtain or select n
training samples of high-dimensional data. For concreteness, we use one of the
most popular benchmark datasets, the MNIST dataset>’. This dataset consists of
images of hand-written digits 0 through 9. Each image is represented by a 28 x 28
matrix, which means that the observed dimensionality of the data is p =282 = 784.
Because we are motivated by the n < p scenario, we subsample the data to select n
=300 examples of the numbers 3, 7, and 8 (100 of each). Step (B): Learn a
“projection” that maps the high-dimensional data to a low-dimension repre-
sentation. One can do so in a way that ignores which images correspond to which
digit (the “class labels”), as PCA and most manifold learning techniques do, or try
to use the labels, as LDA and sparse methods do. LOL is a supervised linear
manifold learning technique that uses the class labels to learn projections that are
linear combinations of the original data samples. Step (C): Use the learned pro-
jections to map high-dimensional data into the learned lower-dimensional space.
This step requires having learned a projection that can be applied to new (test) data
samples for which we do not know the true class labels. Nonlinear manifold
learning methods typically cannot be applied in this way (though see®®). LOL,
however, can project new samples in such a way as to separate the data into classes.
Step (D): Using the low-dimensional representation of the data, learn a classifier. A
good classifier correctly identifies as many points as possible with the correct label.
For these data, when LDA is used on the low-dimensional data learned by LOL, the
data points are mostly linearly separable, yielding a highly accurate classifier.

The geometric intuition of LOL. To build intuition for situations when LOL
performs well, and when it does not, we consider the simplest high-dimensional
classification setting. We observe n samples (x;, y;), where x; are p dimensional
feature vectors, and y; is the binary class label, that is, y; is either 0 or 1. We assume
that both classes are distributed according to a multivariate Gaussian distribution,
the two classes have the same identity covariance matrix (all features are uncor-
related with unity variance), and data from either class is equally likely, so that the
only difference between the classes is their means. In this scenario, the optimal low-
dimensional projection is analytically available: it is the dot product of the dif-
ference of means and the inverse covariance matrix, commonly referred to as
Fisher’s Linear Discriminant Analysis (LDA)> (see Supplementary Note 1.2 for
derivation). When the distribution of the data is unavailable, as in all real data
problems, machine learning methods can be used to estimate the parameters.
Unfortunately, when 7 < p, the estimated covariance matrix will not be invertible
(because the solution to the underlying mathematical problem is under specified),

so some other approach is required. As mentioned above, PCA is commonly used
to learn a low-dimensional representation. PCA uses the pooled sample mean and
the pooled sample covariance matrix. The PCA projection is composed of the top d
eigenvectors of the pooled sample covariance matrix, after subtracting the pooled
mean (thereby completely ignoring the class labels).

In contrast, LOL uses the class-conditional means and class-centered
covariance. This approach is motivated by Fisher’s LDA, which uses the same two
terms, and should therefore improve performance over PCA. More specifically, for
a two-class problem, LOL is constructed as follows:

1. Compute the sample mean of each class.
Estimate the difference between means.

3. Compute the class-centered covariance matrix, that is, compute the
covariance matrix after subtracting the class mean from each point.

4. Compute the eigenvectors of this class-conditionally centered covariance.

5. Concatenate the difference of the means with the top d — 1 eigenvectors of
class-centered covariance.

Note that the sample class-centered covariance matrix estimates the population
covariance, whereas the sample pooled covariance matrix is distorted by the
difference of the class means. Further, as discussed in Methods, the class-centered
covariance matrix is equivalent to “Reduced Rank LDA”%0 (rrLDA hereafter, which
is simply LDA but truncating the covariance matrix). For the theoretical
background on LDA and rrLDA, a formal definition of LOL, and detailed
description of the simulation settings that follow, see Supplementary Notes 1, 2,
and 3, respectively. Figure 5 shows three different examples of 100 data points
sampled from a 1000 dimensional Gaussian to geometrically illustrate the intuition
that motivated LOL. In each case, all dimensions are uncorrelated with one
another, and all classes are equally likely with the same covariance; the only
difference between the classes are their means.

Figure 5 a shows “stacked cigars”, in which the difference between the means and
the direction of maximum variance are large and aligned with one another. This is an
idealized setting for PCA, because PCA finds the direction of maximal variance, which
happens to correspond to the direction of maximal separation of the classes. rrLDA
performs well here too, for the same reason that PCA does. Because all dimensions are
uncorrelated, and one dimension contains most of the information discriminating
between the two classes, this is also an ideal scenario for sparse methods. Indeed,
ROAD, a sparse classifier designed for precisely this scenario, does an excellent job
finding the most useful dimensions'?. LOL, using both the difference of means and
the directions of maximal variance, also does well. To calibrate all of these methods,
we also show the performance of the optimal classifier.

Figure 5b shows an example that is worse for PCA. In particular, the variance is
getting larger for subsequent dimensions, while the magnitude of the difference
between the means is decreasing with dimension. Because PCA operates on the
pooled sample covariance matrix, the dimensions with the maximum difference are
included in the estimate, and therefore, PCA finds some of them, while also finding
some of the dimensions of maximum variance. The result is that PCA performs
fairly well in this setting. rrLDA, however, by virtue of subtracting out the
difference of the means, is now completely at chance performance. ROAD is not
hampered by this problemy; it is also able to find the directions of maximal
discrimination, rather than those of maximal variance. Again, LOL, by using both
the means and the covariance, does extremely well.

Figure 5c¢ is exactly the same as Fig. 5b, except the data have been randomly
rotated in all 1000 dimensions. This means that none of the original features have
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Fig. 5 LOL achieves near-optimal performance for three different multivariate Gaussian distributions, each with 100 samples in 1000 dimensions. For
each approach, we project into the top three dimensions, and then use LDA to classify 10,000 new samples. The six rows show (from top to bottom): Row
1. A scatter plot of the first two dimensions of the sampled points, with class O and 1 as orange and blue dots, respectively. The next rows each show the
estimated posterior for class O and class 1, in solid and dashed lines, respectively. The overlap of the distributions---which quantifies the magnitude of the
error---is filled. The black vertical line shows the estimated threshold for each method. The techniques include: PCA; reduced rank LDA(rrLDA), a method
that projects onto the top d eigenvectors of sample class-conditional covariance; ROAD, a sparse method designed specifically for this model; LOL, our
proposed method; and the Bayes optimal classifier. A Stacked Cigars The mean difference vector is aligned with the direction of maximal variance, and is
mostly concentrated in a single dimension, making it ideal for PCA, rrLDA, and sparse methods. In this setting, the results are similar for all methods, and
essentially optimal. B Trunk The mean difference vector is orthogonal to the direction of maximal variance; PCA performs worse and rrLDA is at chance,
but sparse methods and LOL can still recover the correct dimensions, achieving nearly optimal performance. € Rotated Trunk Same as (B), but the data are

rotated; in this case, only LOL performs well. Note that LOL is closest to Bayes optimal in all three settings.

much information, but rather, linear combinations of them do. This is evidenced
by observing the scatter plot, which shows that the first two dimensions fail to
disambiguate the two classes. PCA performs even worse in this scenario than in the
previous one. rrLDA is rotationally invariant (see Supplementary Note 2.4 for
details), so still performs at chance levels. Because there is no small number of
features that separate the data well, ROAD fails. LOL performs as well here as it does
in the other examples.

When is LOL better than PCA and other supervised linear methods? We desire
theoretical confirmation of the above numerical results. To do so, we investigate
when LOL is “better” than other linear dimensionality reduction techniques. In the
context of supervised dimensionality reduction or manifold learning, the goal is to
obtain low dimensional representation that maximally separates the two classes,
making subsequent classification easier. Chernoff information quantifies the dis-
similarity between two distributions. Therefore, we can compute the Chernoff
information between distribution of the two classes after embedding to evaluate the
quality of a given embedding strategy. As it turns out, Chernoff information is the
exponential convergence rate for the Bayes error!, and therefore, the tightest
possible theoretical bound. The use of Chernoff information to theoretically
evaluate the performance of an embedding strategy is novel, to our knowledge, and
leads to the following main result:

Main theoretical result. LOL is always better than or equal to rrLDA under the
Gaussian model when p = n, and better than or equal to PCA (and many other
linear projection methods) with additional (relatively weak) conditions. This is true
for all possible observed dimensionalities of the data, and the number of dimen-
sions into which we project, for sufficiently large sample sizes. Moreover, under
relatively weak assumptions, these conditions almost certainly hold as the number
of dimensions increases.

Formal statements of the theorems and proofs required to substantiate the
above result are provided in Methods. The condition for LOL to be better than PCA
is essentially that the dth eigenvector of the pooled sample covariance matrix has
less information about classification than the difference of the means vector. The

implication of the above theorem is that it is better to incorporate the mean
difference vector into the projection matrix, rather than ignoring it, under basically
the same assumptions that motivate PCA. The degree of improvement is a function
of the dimensionality of the feature set p, the number of samples #, the projection
dimension d, and the parameters, but the existence of an improvement—or at least
no worse performance—is independent of those factors.

Data availability
Data used within this manuscript are available from https://neurodata.io/lol/and https://
neurodata.io//mri.

Code availability

MATLAB, R, and Python code for the experiments performed in this manuscript and a
docker container for FlashLOL are available from https://neurodata.io/lol/, and an R
package is available on the Comprehensive R Archive Network (CRAN)®2.
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