Fig. 3. Start-to-end simulation for the pre-ionized case.
a Plasma density profile in the simulation, according to the actual experimental geometry and measured density profiles for both gas jets. The drive laser pulse propagates to the right. b Electron density distribution in the PWFA stage, 0.8 mm after the foil. The LWFA electron beam excites a plasma wakefield, with the witness beam accelerating at the back of the first cavity. ζ = z − ct represents the co-moving coordinate parallel to the drive beam propagation direction z, with c and t denoting the speed of light and time, respectively. The red line is the on-axis longitudinal electric field and the shaded areas on the bottom show the current profiles of the driver (blue) and witness beam (orange). c Simulated electron spectrum after the LWFA stage (z = 3.3 mm), showing a similar peaked energy distribution of the drive beam (blue) as measured in the experiment. d Just before the foil (z = 3.9 mm), the wakefield driven by the spent laser pulse leads to an energy gain of the LWFA electrons. e After the PWFA stage (z = 6.5 mm), a strong degradation of the driver along with energy gain of the witness beam (orange) is observed.