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LIPG endothelial lipase and breast
cancer risk by subtypes
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Maria A. Bermudez’, Roman Perez-Fernandez®, Maria Torres-Espafiol*2, Angel Carracedo? &
J. Esteban Castelao*

Experimental data showed that endothelial lipase (LIPG) is a crucial player in breast cancer. However,
very limited data exists on the role of LIPG on the risk of breast cancer in humans. We examined the
LIPG-breast cancer association within our population-based case—control study from Galicia, Spain,
BREOGAN (BREast Oncology GAlicia Network). Plasma LIPG and/or OxLDL were measured on 114
breast cancer cases and 82 controls from our case-control study, and were included in the present
study. The risk of breast cancer increased with increasing levels of LIPG (multivariable OR for the
highest category (95% Cl) 2.52 (1.11-5.81), P-trend = 0.037). The LIPG-breast cancer association was
restricted to Pre-menopausal breast cancer (Multivariable OR for the highest LIPG category (95%

Cl) 4.76 (0.94-28.77), P-trend=0.06, and 1.79 (0.61-5.29), P-trend =0.372, for Pre-menopausal and
Post-menopausal breast cancer, respectively). The LIPG-breast cancer association was restricted to
Luminal A breast cancers (Multivariable OR for the highest LIPG category (95% Cl) 3.70 (1.42-10.16),
P-trend=0.015, and 2.05 (0.63-7.22), P-trend =0.311, for Luminal A and non-Luminal A breast
cancers, respectively). Subset analysis only based on HER2 receptor indicated that the LIPG-breast
cancer relationship was restricted to HER2-negative breast cancers (Multivariable OR for the highest
LIPG category (95% Cl) 4.39 (1.70-12.03), P-trend =0.012, and 1.10 (0.28-4.32), P-trend =0.745,

for HER2-negative and HER2-positive tumors, respectively). The LIPG-breast cancer association

was restricted to women with high total cholesterol levels (Multivariable OR for the highest LIPG
category (95% Cl) 6.30 (2.13-20.05), P-trend =0.018, and 0.65 (0.11-3.28), P-trend =0.786, among
women with high and low cholesterol levels, respectively). The LIPG-breast cancer association was
also restricted to non-postpartum breast cancer (Multivariable OR for the highest LIPG category (95%
Cl) 3.83 (1.37-11.39), P-trend =0.003, and 2.35 (0.16-63.65), P-trend =0.396, for non-postpartum
and postpartum breast cancer, respectively), although we lacked precision. The LIPG-breast cancer
association was more pronounced among grades Il and Il than grade | breast cancers (Multivariable
ORs for the highest category of LIPG (95% Cl) 2.73 (1.02-7.69), P-trend =0.057, and 1.90 (0.61-6.21),
P-trend=0.170, for grades Il and lll, and grade | breast cancers, respectively). No association was
detected for OxLDL levels and breast cancer (Multivariable OR for the highest versus the lowest
category (95% Cl) 1.56 (0.56—4.32), P-trend =0.457).

The triglyceride lipase gene (TLG) family includes secreted lipases that hydrolyze triglycerides and phospholipids.
The resulting fatty acids are taken up by the surrounding tissue in which they contribute to the intracellular fatty
acid pool after incorporation into cellular lipids. The most well known members of the TLG family are endothelial
lipase (LIPG or EL)"?, lipoprotein lipase (LPL)*, hepatic lipase (HL)*, and pancreatic lipase (PL)°.
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LIPG has primarily a phospholipase activity, also a low triglyceride lipase activity, and an important role in
plasma high density lipoproteins (HDL) metabolism®°. The main substrate of LIPG are phospholipids from
HDL!M. Several studies have shown that LPL plays an important role in carcinogenesis, including colorectal,
pancreatic, and lung cancers'"'2. However, LIPG has not been reported to be associated with any cancer except
testicular germ cell tumors'® and gastric cancer!.

Experimental data have shown LIPG to be a crucial player in breast cancer since it provides the indispensable
extracellular lipids needed for breast cancer cells to grow'>. However, no data exist on the role of LIPG on the
risk of breast cancer in humans. Oxidized Low Density Lipoprotein (OxLDL) is a marker of oxidative stress. A
previous study shows inverse association with breast cancer risk!®.

Using data from the Breast Oncology Galician Network Study (BREOGAN), we will examine the effect of
plasma endothelial lipase (LIPG) and OxLDL on the risk of breast cancer, overall and by major subtypes, as well
as menopausal status, time of diagnosis, grade and morphology, in Spanish women.

Results

Characteristics of study cases and controls have been previously described'’*. Table 1 present the characteristics
of patients and controls of the present study. Briefly, 25% of cases reported having a family history of breast or
ovarian cancer, and 31% of cases reported having used oral contraceptives. The corresponding figures among
controls were 13% and 56%. Eleven percent of the cases were nulliparous and 70% of cases had menarche after
age 12. The corresponding figures among controls were 27% and 78%, respectively. Cases were similar to non-
cases on all other characteristics such as hormonal factors, BMI, and HRT use. Consistent with previous studies,
invasive ductal carcinoma was the most frequent histological type (74%), and the distribution of the Luminal
A, Luminal B, HER2 overexpressed, and TNBC subtypes were 65%, 10%, 3% and 7%, respectively. Mean tumor
size in cm was 2.0.

Table 2 shows breast cancer risk in relation to levels of LIPG and OxLDL. Breast cancer risk increased with
increasing levels of LIPG (Multivariable OR for the highest category (95% CI) 2.52 (1.11-5.81), P-trend =0.037).
No association was detected for OXxLDL levels and breast cancer (Multivariable OR for the highest versus the
lowest category (95% CI) 1.56 (0.56-4.32), P-trend =0.457).

Table 3 presents the association between LIPG and breast cancer risk according to menopausal status. The
LIPG-breast cancer association was restricted to Pre-menopausal breast cancer (Multivariable OR for the highest
category (95% CI) 4.76 (0.94-28.77), P-trend = 0.06, and 1.79 (0.61-5.29), P-trend =0.37, for Pre-menopausal
and Post-menopausal breast cancer, respectively).

Table 4 shows the LIPG-breast cancer association according to the main breast cancer subtypes. The
association was restricted to Luminal A breast cancers (Multivariable OR for the highest category (95% CI)
3.70 (1.42-10.16), P-trend =0.015, and 2.05 (0.63-7.22), P-trend=0.311, for Luminal A and non-Luminal
A breast cancers, respectively), but we did not have sufficient precision for other subtypes of breast cancer.
Similarly, subset analysis only based on HER2 receptor status indicated that the LIPG-breast cancer relation-
ship was restricted to HER2-negative breast cancers (Multivariable OR for the highest category (95% CI) 4.39
(1.70-12.03), P-trend =0.012, and 1.10 (0.28-4.32), P-trend = 0.745, for HER2-negative and HER2-positive
tumors, respectively).

Table 5 shows the LIPG-breast cancer association stratified by total cholesterol levels. The LIPG-breast cancer
association was restricted to women with high total cholesterol levels (Multivariable OR for the highest LIPG
category (95% CI) 6.30 (2.13-20.05), P-trend =0.018, and 0.65 (0.11-3.28), P-trend =0.786, among women with
high and low cholesterol levels, respectively).

Table 6 shows the effect of LIPG in non-postpartum and postpartum breast cancer (defined as a breast
cancer diagnosis within 10 years of last childbirth) among parous women. The LIPG-breast cancer associa-
tion was restricted to non-postpartum breast cancer (Multivariable OR for the highest category (95% CI) 3.83
(1.37-11.39), P-trend =0.003, and 2.35 (0.16-63.65), P-trend =0.396, for non-postpartum and postpartum breast
cancer, respectively), although we lacked precision among postpartum breast cancer (there were only nine cases).
We also examined the LIPG-breast cancer association by tumor grade and histology (Table 6). The LIPG-breast
cancer association was found to be associated with grades II and III breast cancers (Multivariable ORs for the
highest category of LIPG (95% CI) 2.73 (1.02-7.69), P-trend =0.057, and 1.90 (0.61-6.21), P-trend =0.170, for
grades II and III, and grade I breast cancers, respectively). No differences were detected by histology (data not
shown).

Discussion

LIPG is critical for the acquisition of indispensable extracellular lipids that breast cancer cells need to be able to
grow and proliferate'. LIPG increased risk of gastric and testis cancers in previous studies'*!'*. However, very
limited data exists on the role of LIPG on the risk of breast cancer.

In the present study, we found increased levels of LIPG to be associated with risk of breast cancer, especially
breast cancer subtypes Luminal A and HER2-negative. To our information, this is the first examination of plasma
LIPG and breast cancer risk, overall and by major breast cancer subtypes. The association between LIPG and
risk of breast cancer was more pronounced among women with total cholesterol levels higher than 188 mg/dl,
and among grades II and III breast cancer.

One previous study examined LIPG expression levels in urine samples of stomach cancer patients and healthy
volunteers'®. There was approximately a tenfold average decrease in the LIPG expression levels in urine samples
of stomach cancer compared to healthy individuals, producing an AUC of 0.967'. Plasma levels of LIPG may
show, based on the results of this and previous studies, opposing effects on cancer, decreasing or increasing the
risks, similar to what is seen with NLR and gastric and breast cancer in previous studies?!.
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Cases N (%) | Controls N (%) | OR* | 95% CI OR® |95% CI

N 114 82

Mean age (years) 57.0+13.4 52.2+15.4

Age at menarche (years)

<12 32 18 1 1

>12 76 64 0.66 |0.33-1.27 | 0.68 | 0.33-1.37

Age at menopause (years)

>50 22 13 1 1

<50 33 18 1.07 | 0.43-2.63 | 0.98 |0.38-2.50
Family history*

No 85 71 1 1

Yes 29 11 212 | 1.01-4.75 | 270 | 1.19-6.53

Number of pregnancies

0 13 22 1 1

1-2 74 41 2.58 | 1.16-591 |2.27 |0.97-5.44
>3 26 19 1.51 |0.54-4.25 |1.46 |0.49-4.42
P-trend 0.456 0.747
Body mass index (kg/m?)

<25 48 44 1 1

25-29 34 19 1.47 |0.73-3.02 |2.27 | 1.04-5.12
>30 32 19 1.17 | 0.55-2.50 | 1.48 | 0.64-3.50
P-trend 0.792 0.499

Oral contraceptive use

Never 35 18 1 1

Ever 16 23 0.37 | 0.15-0.89 | 0.41 |0.16-1.04

Hormone replacement therapy

Never 49 37 1 1

Ever 3 4 0.52 |0.10-2.54 |0.70 |0.11-3.94
Histology type

Ductal 84 (73.7)

Lobular 6(5.3)

Mucinous 3(2.6)

Mixed 3(2.6)

Other 2(1.7)

Tumor size (cm) 2.0(1.3)

Breast cancer subtypes

Luminal A 74 (64.9)
Luminal B 12 (10.5)
TNBC 8(7.0)

HER?2 overexpressed 4(3.5)

Table 1. Associations between risk/protective factors for breast cancer and breast cancer risk. *Adjusted

for age at diagnosis (cases) and age at interview (controls). *Further adjusted for age at menarche, parity,
menopausal status, BMI, and family history. “Defined as one or more first and/or second-degree relatives with
breast and/or ovarian cancer.

Breast cancer cells need lipids to grow and LIPG is crucial for acquiring the indispensable extracellular lipids
needed for breast cancer cells to grow and proliferate'. LIPG activity is essential for extracellular lipid uptake
which is needed for subsequent proliferation of breast cancer cells. FoxAl and the transcription factors family
regulate the expression of LIPG".

It has been shown that a decrease in LIPG inhibits breast cancer growth, implying that the incorporation of
extracellular lipids, a function of LIPG, is crucial for the growth of cancer cells'®. This is an important finding
since it was amply thought that de novo fatty acid formation was the principal driver of tumor growth?’. Labora-
tory data with breast cancer cells lacking LIPG showed a remarkable reduction of the majority of intracellular
glycerol-lipid intermediates in the formation of triglycerides and their derivatives'. Several lipids and/or deriva-
tives in the media were not reduced in LIPG-depleted cells as much as in untreated cells, therefore implying
that extracellular lipids are the substrates for intracellular lipid formation'®. Specifically, it was demonstrated
the crucial role of extracellular lipid species for breast cancer cell growth in a lipoprotein-depleted medium, a
process building upon LIPG*.
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Number cases/controls OR* 95% CI OR" 95% CI

LIPG <1.18 ng/ml 23/23 1.00 1.00

LIPG 1.18-2.78 ng/ml 21/23 0.89 0.38-2.05 0.88 0.35-2.24
LIPG >2.78 ng/ml 63/23 2.68 1.27-5.76 2.52 1.11-5.81
P-trend 0.009 0.037
OxLDL <68.34 UL 25/16 1.00 1.00

OxLDL 68.34-94.14 UL 35/15 1.30 0.52-3.23 1.70 0.61-4.88
OxLDL >94.14 UL 40/16 1.16 0.46-2.88 1.56 0.56-4.32
P-trend 0.656 0.457

Table 2. LIPG and Oxidized LDL and breast cancer risk. *Adjusted for age at diagnosis (cases) and age at
interview (controls). *Further adjusted for age at menarche, parity, menopausal status, BMI, and family history
of breast/ovarian cancer.

Number cases/controls ‘ OR* ‘ 95% CI ‘ OR" ‘ 95% CI

Pre-Menopausal

LIPG <1.18 ng/ml 8/12 1.00 1.00

LIPG 1.18-2.78 ng/ml 9/6 1.82 |0.34-10.49 |2.13 | 0.34-14.61
LIPG >2.78 ng/ml 28/9 420 10.99-19.86 |4.76 |0.94-28.77
P-trend 0.057 0.060
Post-Menopausal

LIPG <1.18 ng/ml 15/11 1.00 1.00

LIPG 1.18-2.78 ng/ml 12/17 0.52 |0.17-1.51 0.45 | 0.13-1.50
LIPG >2.78 ng/ml 35/14 1.83 | 0.67-5.00 1.79 |0.61-5.29
P-trend 0.183 0.372

Table 3. LIPG and breast cancer risk by menopausal status. *Adjusted for age at diagnosis (cases) and age at
interview (controls). ®Further adjusted for age at menarche, parity, BMI, and family history of breast/ovarian

cancer.
Number cases/controls ‘ OR* ‘ 95% CI ‘ OR® ‘ 95% CI

Luminal A
LIPG <1.18 ng/ml 12/23 1.0 1.0
LIPG 1.18-2.78 ng/ml 16/23 1.29 |0.50-3.40 |1.38 |0.47-4.17
LIPG >2.78 ng/ml 40/23 325 |1.38-7.98 |3.70 | 1.42-10.16
P-trend 0.005 0.015
Non luminal A
LIPG < 1.18 ng/ml 7/23 1.0 1.0
LIPG 1.18-2.78 ng/ml 2/23 0.27 |0.04-1.28 |0.38 | 0.05-2.00
LIPG > 2.78 ng/ml 14/23 1.92 | 0.66-5.96 |2.05 |0.63-7.22
P-trend 0.229 0.311
HER?2 Positive
LIPG <1.18 ng/ml 7/23 1.0 1.0
LIPG 1.18-2.78 ng/ml 1/23 0.13 |0.01-0.84 |0.21 |0.01-1.51
LIPG >2.78 ng/ml 7/23 0.97 |0.28-3.31 |1.10 | 0.28-4.32
P-trend 0.881 0.745
HER?2 Negative
LIPG <1.18 ng/ml 12/23 1.0 1.0
LIPG 1.18-2.78 ng/ml 17/23 1.37 |0.53-3.59 |1.49 |0.51-4.49
LIPG >2.78 ng/ml 47/23 381 |1.63-9.28 |4.39 |1.70-12.03
P-trend 0.004 0.012

Table 4. LIPG and breast cancer risk by subtypes. *Adjusted for age at diagnosis (cases) and age at interview
(controls). ®Further adjusted for age at menarche, parity, menopausal status, BMI, and family history of breast/
ovarian cancer.
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‘ Number cases/controls ‘ OR* ‘ 95% CI ‘ OR® ‘ 95% CI
Cholesterol <188 mg/dl
LIPG <1.18 ng/ml 11/7 1.00 1.00
LIPG 1.18-2.78 ng/ml 5/5 0.61 |0.11-3.31 0.51 |0.05-4.78
LIPG >2.78 ng/ml 17/11 0.74 |0.18-2.81 0.65 |0.11-3.28
P-trend 0.992 0.786
Cholesterol >188 mg/dl
LIPG <1.18 ng/ml 12/16 1.00 1.00
LIPG 1.18-2.78 ng/ml 16/18 1.20 |0.44-3.35 1.30 | 0.41-4.18
LIPG >2.78 ng/ml 46/9 691 |2.51-2041 |6.30 |2.13-20.05
P-trend 0.004 0.018

Table 5. LIPG and risk of breast cancer by total cholesterol. *Adjusted for age at diagnosis (cases) and age at
interview (controls). *Further adjusted for age at menarche, parity, menopausal status, BMI, and family history
of breast/ovarian cancer.

Number cases/controls ‘ OR* ‘ 95% CI ‘ OR® ‘ 95% CI
Non-postpartum breast cancer®
LIPG <1.18 ng/ml 12/15 1.00 1.00
LIPG 1.18-2.78 ng/ml | 8/19 0.53 |0.16-1.67 0.40 | 0.10-1.45
LIPG >2.78 ng/ml 41/16 3.60 |1.35-10.04 |3.83 |1.37-11.39
P-trend 0.003 0.003
Postpartum breast cancer®
LIPG <1.18 ng/ml 1/15 1.00 1.00
LIPG 1.18-2.78 ng/ml | 3/19 3.64 |0.31-9449 |3.34 |0.25-96.25
LIPG >2.78 ng/ml 5/16 4.37 |0.45-102.46 |2.35 |0.16-63.65
P-trend 0.105 0.396
Grade I
LIPG <1.18 ng/ml 8/23 1.00 1.00
LIPG 1.18-2.78 ng/ml | 7/23 0.81 |0.24-2.67 0.67 |0.17-2.48
LIPG >2.78 ng/ml 16/23 1.90 |0.69-5.55 1.90 | 0.61-6.21
P-trend 0.166 0.170
Grade II and ITI
LIPG <1.18 ng/ml 12/23 1.00 1.00
LIPG 1.18-2.78 ng/ml 11/23 091 |0.33-2.49 1.17 | 0.38-3.68
LIPG >2.78 ng/ml 30/23 2.43 | 1.01-6.06 2.73 | 1.02-7.69
P-trend 0.030 0.057

Table 6. LIPG and risk of breast cancer by time of diagnosis and grade. *Adjusted for age at diagnosis (cases)
and age at interview (controls). "Further adjusted for age at menarche, parity, menopausal status, BMI, and
family history of breast/ovarian cancer. “Among parous women only.

In concert with this finding, it has been shown that a high-fat diet was able to rescue the absence of monoacyl-
glycerol lipase, an important intracellular lipase, for cancer pathogenesis, since cancer cells were able to uptake
lipids from the extracellular compartment!>?. It has been shown that this rescue mechanism is not functional
in breast cancer cells in the absence of LIPG or FoxA2'".

It has also been shown that LIPG activity releases fatty acids from HDL phospholipids and these fatty acids
are further employed for intracellular lipid production in the human hepatic cell line HepG22*%.

Breast cancer cells are dependent on a mechanism that allows them to extract lipid precursors from extracel-
lular sources for intracellular lipid production, a process that is needed for cancer cells to be able to proliferate,
and LIPG realizes this function's. Therefore, LIPG is a major player for lipid metabolic adaptations that breast
cancer cells must undergo to continue proliferating'®. De novo lipid synthesis is necessary but not sufficient to
support lipid production needed for breast cancer tumor growth'. Consistent with this notion, previous studies
have reported an association between circulating lipids and risk of breast cancer in women with extensive mam-
mographic density®. This finding may suggest that interventions aimed to reduce circulating lipids may have an
effect on breast cancer risk?. We have previously analyzed the effect of circulating lipids (total cholesterol, LDL,
HDL), and breast cancer stratified by LIPG levels and found opposing effects by LIPG levels*”*. We found total
cholesterol to increase risk of breast cancer at high levels of LIPG, but to decrease risk at low levels (OR (95%
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CI) for high levels of total cholesterol among women with high LIPG levels was 8.61 (95% CI 2.38-36.08) versus
0.15, (0.02-0.74) among women with low levels of LIPG (unpublished data)*®. We previously found circulating
triglyceride and total cholesterol levels to increase the risk of breast cancer?”*. Altogether, these observations
make LIPG activity a crucial player for breast carcinogenesis, specially for lipids-induced breast carcinogenesis.

Cadenas and collaborators also contributed substantially to this topic. They reported that LIPG is increased
during oxidative stress and increases survival of cells that are no longer able to generate a sufficient supply of
fatty acids by de novo synthesis . Similar to Slebe et al.'®, Riederer et al. *° has also shown that LIPG releases
free fatty acids which can be taken up by cells. It has also been shown that overexpression of an oncogenic form
of HER2 leads to strong expression of LIPG* and LIPG has been reported to be associated with tumor growth
15 and with metastasis in triple-negative breast cancer *2.

Cadenas and colleagues also showed that LIPG enables breast cancer cell lines to utilize circulating lipopro-
teins to synthetize and store triglycerides in lipid droplets *°. Furthermore, they showed that oxidative stress
under conditions that block endogenous fatty acid synthesis induces LIPG expression and activity. A critical
finding of the Cadenas et al.?® study is that LIPG upregulation protects the cancer cells from mitochondrial dys-
function and cell death. Cadenas et al., also showed that a small fraction of tumors overexpresses LIPG which
was associated with shorter metastasis-free survival. To summarize, LIPG upregulation seems to be one of the
mechanisms how cancer cells can guarantee fatty acid supply from extracellular sources under conditions where
oxidative stress blocks endogenous synthesis.

We believe that LIPG is an active player in breast carcinogenesis for the following reasons. (1) LIPG upregu-
lation protects cancer cells from mitochondrial dysfunction and cell death, and (2) LIPG increases survival of
cancer cells that are no longer able to generate a sufficient supply of fatty acids by de novo synthesis, in a crucial
survival mechanism for cancer cells. In summary, breast cancer cells need lipids to grow and proliferate and
LIPG is instrumental in proportioning them to the cancer cells.

LIPG is also the major lipase of the TLG family present in the human placenta®, and is dysregulated in con-
ditions such as intrauterine growth restriction®. In placentas from other pregnancy-related conditions, such as
obese GDM pregnancies, LIPG expression was also upregulated by 1.9-fold compared with lean pregnancies®. We
examined the effect of LIPG in postpartum and non-postpartum breast cancer. The LIPG-breast cancer associa-
tion was restricted to non-postpartum breast cancer (Multivariable OR for the highest LIPG category (95% CI)
3.83(1.37-11.39), P-trend =0.003, and 2.35 (0.16-63.65), P-trend = 0.396, for non-postpartum and postpartum
breast cancer, respectively), although we lacked precision for postpartum breast cancer.

We also examined plasma levels of OxLDL and risk of breast cancer. In previous studies, serum levels of
OxLDL are increased in pregnant compared to non-pregnant women?®*. OxLDL is also higher in preeclampsia
compared to normal controls*”. In experimental studies, OXLDL activate both apoptosis and autophagy in can-
cer cells®. However, in the present study, we found no increased breast cancer risk from OxLDL, although we
lacked precision.

Because of the LIPG-HDL interrelationship, we also examined the HDL-breast cancer association. Experi-
mental studies have shown that HDL-C can enhance cellular proliferation of breast cancer cell’”*® supporting the
positive association between HDL-C and breast cancer risk observed in previous studies*. However, we did not
find increased or decreased breast cancer risk associated for HDL levels in the present study (data not shown).

Study limitations. The present study has several limitations. The first limitation is the small sample size
which reduces the power to conduct meaningful stratified analyses. Our study also lacked pre-diagnostic sam-
ples from the patients to be able to conclude that LIPG increases the risk of breast cancer. We also lacked suf-
ficient follow-up data on survival or recurrence of breast cancer, precluding the examination of the LIPG-breast
cancer association on survival or recurrence. On the other hand, a strength of our study is the available informa-
tion on HER?2 receptor status, in conjunction with ER and PR receptor status.

The LIPG levels reported by different studies to date are quite discordant. The LIPG (Endothelial lipase, EL)
ELISA Kit was purchased from CUSABIO as stated in the Material and Methods section. This Kit specifically
detects plasma levels of LIPG with a detection range of 0.625-40 ng/ml. There are several kits for LIPG detec-
tion with different ranges of sensitivity, i.e., LSBIO (0.156-10 ng/ml); Antibodies (0.078-5 ng/ml); MyBioSource
(0.1-2.5 ng/ml), and TaKaRa/Immuno-Biological-Laboratories (0.031-2 ng/ml). There are few studies on plasma
levels of LIPG in cancer and other pathologies, and they are quite discordant, with mean values ranging from
0.05 to 420 ng/ml “-*>. More studies are needed to establish the “normal” range of LIPG levels. All LIPG values
in our study were under the maximum detection level specified by the provider, and both intra-assays and inter-
assays precision was with a CV <10%.

We found a more pronounced association among Luminal A breast cancers. As Luminal A and other breast
cancer subtypes are treated with different chemotherapy treatments, it is tempting to think that the different
effect of LIPG in Luminal A cancers, may be the result of the treatment used to treat that specific subtype of
breast cancer. However, all our breast cancer patients were studied, and their sample taken, before any cancer
diagnosis, therefore before any cancer treatment, chemotherapy or any other type. Thus, although Luminal A and
other breast cancer subtypes are treated with different treatments, it is not possible that any more pronounced
effect of LIPG on the risk of Luminal A tumors was due to treatment differences.

Because of the same reason, i.e., that all our samples were collected before cancer diagnosis, it is not likely that
tumor-secreted LIPG is responsible for high plasma LIPG levels, or that increased LIPG reflects tumor-induced
increased inflammatory state in our patients. However, there is still a possibility that early stages of a latent tumor
may have caused the increased LIPG levels, although it is very small. In addition, since we lacked information on
CRP or IL-6, further studies with these markers may shed light in the LIPG-breast cancer association.
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Conclusions

To our knowledge, this is the first study examining the association between circulating LIPG and breast cancer
overall and by subtypes. Our findings indicate that elevated LIPG levels are associated with increased risk of
breast cancer, especially Luminal A and HER2-negative breast cancers. The LIPG-breast cancer association
appeared to be restricted or more pronounced among women with non-postpartum breast cancer, those with
high levels of total cholesterol, and those with grades IT and III breast cancers.

Experimental studies have shown that, to be able to grow, breast cancer cells need to get lipids from extracel-
lular sources and LIPG is in charge of this'®. This means that LIPG activity is essential for lipid uptake which is
needed for subsequent proliferation of breast cancer cells'®. LIPG could be a new target for chemoprevention
and treatment of breast cancer.

Material and methods

Study population. The Breast Oncology Galician Network (BREOGAN) study is a population-based case-
control study, including 1766 cases and 1205 controls, conducted in the cities of Santiago de Compostela and
Vigo, Spain, within a geographically defined health region that covers approximately one million inhabitants.
Data collection methods have been previously described!’-2447. BREOGAN counts with 1766 women with
invasive breast cancer diagnosed and treated between 1997 and 2014 at the Clinical University Hospitals of
Santiago (CHUS) and Vigo (CHUVI). Controls are 1205 women living in the same population health area as
cases free of cancer, except non-melanoma skin cancer. 114 breast cancer cases and 82 controls had data on
LIPG and/or OxLDL and were included in the present study. Response rates were 98% and 99% for cases and
controls, respectively. Ethics approval for this study was obtained from the Galician Ethics and Research Com-
mittee (CEIC, Comité Etico de Investigacién Clinica de Galicia), responsible for the oversight of both university
hospitals, CHUS and CHUVI, and family clinics from where all participants were recruited. All participants
provided written informed consent. The study was conducted in accordance to the Helsinki Principles of 1975,
as revised in 1983.

Data collection. Risk factor data. Similar to previous studies'®?! risk factor information was collected
through a risk factor questionnaire adapted from the Ella Binational Breast Cancer Study'”*** to meet the
needs of the population in Spain. Clinical and histopathological information was abstracted from computerized
medical records by trained physicians. The following variables were recorded: level of education [uneducated
(less than primary education), primary education, secondary education, vocational training, 3-years degree
(certificate, middle engineering), 5-years degree (graduate school, bachelor’s degree, superior engineering),
and PhD (doctorate)], lifetime breastfeeding [categorized as no breastfeeding, <lifetime breastfeeding dura-
tion (7 months), >lifetime breastfeeding duration (7 months)], age at menarche (categorized as <12, >12), age
at first full-term pregnancy, parity (categorized as never vs. ever pregnant), age at diagnosis, age at menopause
(categorized as <50, >50), menopausal status at diagnosis (categorized as pre and post-menopausal), number of
pregnancies (categorized as none, 1-2, > 3), oral contraceptive use (never, ever), hormone replacement therapy
(HRT) (never, ever), body mass index (BMI) (<25, 25-29, >30), smoking status (never smoker, ex-smoker, cur-
rent smoker), family history (categorized as none vs. one or more first and/or second-degree relatives with breast
and/or ovarian cancer).

Clinic-pathological data. Similar to previous studies'’-*! histopathological information was abstracted from
computerized medical records by trained physicians. Inmunohistochemistry (IHC) analyses on paraffin-embed-
ded material have been previously performed following standard procedures in Galician hospitals to determine
the status of ER and PR. In every tumor, 4-um histological sections were cut and stained with hematoxylin and
eosin for histopathological examination according to the criteria of the World Health Organization*’. Histologi-
cal grading was evaluated using the Nottingham modification of the Bloom-Richardson system>'.

IHC analysis on paraffin-embedded material, as described in our previous study'®, was performed using a
universal second antibody kit that used a peroxidase-conjugated labeleddextran polymer (EnVision, Peroxidase/
DAB; Dako, Glostrup, Denmark), with antibodies for ER (clone 6F11, dilution 1:50, water bath; Novocastra,
Newcastle-upon- Tyne, UK), PR (clone PgR 636, dilution 1:50, water bath; Dako, Glostrup, Denmark)'®. Negative
and positive controls were concurrently run for all antibodies with satisfactory results. Cells were considered
immunopositive when diffuse or dot-like nuclear staining was observed regardless of the intensity of the staining;
only nuclear immunoreactivity was considered specific. The number of positive cells was counted by two different
observers independently. Whenever necessary, a consensus was reached using a double-headed microscope. ER
and PR were considered positive when the percent of immunostained nuclei was > 10%.

Similar to previous studies!’?!, imunohistochemistry (IHC) analyses were performed to determine HER2
status (Dako). No immunostaining (0) or weak membrane immunostaining (1+) was considered low HER2
expression (HER2). Strong membrane immunostaining (3+) was considered HER2 overexpression (HER2+).
Moderate membrane staining (2+) samples were further analyzed using fluorescence in situ hybridization tech-
niques; they were considered to be HER2+ if the ratio of cerb-B2/centromere 17 copy number was >2.0.

Similar to previous studies'’~?!, ER, PR and HER2 status (categorized as positive and negative), grade (cat-
egorized as I—well differentiated, II—moderately differentiated and III—poorly differentiated or undifferenti-
ated), histology type (categorized as invasive ductal carcinoma, invasive lobular carcinoma and other), and
tumor size (mm). As previously described in our studies'®?', of the 1766 women who participated in the study,
100 had unknown ER status, 114 had unknown PR status, and 340 had unknown HER2 status. One hundred
and eighty-four women had unknown grade, 14 had unknown histological type and 144 had unknown tumor
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size'®?!. Sixty-two women had unknown age at menarche, and 48, out of 1443 parous women, had unknown
lifetime breastfeeding'®*!.

Plasma endothelial lipase (LIPG) was measured by ELISA test using the Human Endothelial Lipase, EL ELISA
kit from Cusabio (CSB-E08217h), and Oxidized LDL (OxLDL) was measured by ELISA test using the Human
Oxidized LDL kit from Mercodia (10-132-01). The ELISA tests are solid phase two-side enzyme immunoassays
based on the direct sandwich technique.

Statistical analyses. The association of breast cancer with LIPG and OxLDL was measured by odds ratios
(ORs) and corresponding 95% confidence intervals (CIs) using polytomous logistic regression. Similar to previ-
ous studies®!, analyses were initially adjusted for the following established risk or protective factors for breast
cancer: reference age (age at diagnosis for cases and age at interview for controls), age at menarche, parity, breast-
feeding, menopausal status, weight, height, and family history of first and/or second-degree relatives with breast
and/or ovarian cancer. Results were virtually unchanged after adjustment for all these variables or only age, age
at menarche, parity, menopausal status, BMI, and family history of first and/or second-degree relatives with
breast and/or ovarian cancer, therefore we present results adjusted for the latter. Outcome (dependent) variables
were breast cancer subtypes defined by ER, PR, and HER?2 status (we defined four tumor subtypes (ER+/HER2—
or PR+/HER2- [Luminal A], ER+/HER2+ or PR+/HER2+ [Luminal B], ER—/PR—/HER2+ [HER2 overexpress-
ing or HER2+], and ER—/PR-/HER2-[TNBC])), compared to controls (comparison group), and explanatory
variables were LIPG and OxLDL. Cutoft points for subgroup analysis, i.e., LIPG, OxLDL and total cholesterol,
were calculated based on distribution among controls. Cut points for serum total cholesterol levels were based
on tertile distribution among the control group (<188, > 188), which are equivalent to standard levels of normal
and borderline/high total cholesterol levels (< 200 mg/dl, >200 mg/dl). All statistical analyses were performed
using the R statistical software version 3.3.3. All reported test significance levels (P values < 0.05) were two-sided.
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