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Abstract

The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is one of the most important transcription factors
involved in the regulation of inflammatory signaling pathways. Inappropriate activation of these pathways has been linked
to autoimmunity and cancers. Emerging experimental evidences have been showing the existence of elaborate spatial
organizations for various molecular components in the pathways. One example is the scaffold protein tumor necrosis factor
receptor associated factor (TRAF). While most TRAF proteins form trimeric quaternary structure through their coiled-coil
regions, the N-terminal region of some members in the family can further be dimerized. This dimerization of TRAF trimers
can drive them into higher-order clusters as a response to receptor stimulation, which functions as a spatial platform to
mediate the downstream poly-ubiquitination. However, the molecular mechanism underlying the TRAF protein clustering
and its functional impacts are not well-understood. In this article, we developed a hybrid simulation method to tackle this
problem. The assembly of TRAF-based signaling platform at the membrane-proximal region is modeled with spatial
resolution, while the dynamics of downstream signaling network, including the negative feedbacks through various
signaling inhibitors, is simulated as stochastic chemical reactions. These two algorithms are further synchronized under a
multiscale simulation framework. Using this computational model, we illustrated that the formation of TRAF signaling
platform can trigger an oscillatory NF-κB response. We further demonstrated that the temporal patterns of downstream
signal oscillations are closely regulated by the spatial factors of TRAF clustering, such as the geometry and energy of
dimerization between TRAF trimers. In general, our study sheds light on the basic mechanism of NF-κB signaling pathway
and highlights the functional importance of spatial regulation within the pathway. The simulation framework also
showcases its potential of application to other signaling pathways in cells.
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INSIGHT BOX

The NF-κB signaling pathway is a signaling pathway regulating inflammatory responses. Recent experiments showed
that the molecular components in the pathway can organize into high-order structures in cells. However, the molecular
mechanism of these spatial organization and their functional impacts remain unclear. Here, we developed a new
computational method to tackle this problem. Using this method, we demonstrated that the assembly of high-
order spatial structure is a critical factor to regulate the downstream oscillatory dynamics in the NF-κB signaling
network. Interestingly, mutations either weaken or strengthen the assembly can cause the abolishment of oscillation
in the pathway. This observation suggests that molecular elements and their interactions in a signaling network are
elaborately designed to carry out their appropriate functions.
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INTRODUCTION

The innate immune system constitutes the first line of host
defense during infections by invading pathogens [1]. This defen-
sive response, called inflammation, is a complicated process
orchestrated by many different cellular components [2, 3]. At
the onset of inflammation, cytokines are released from immune
cells, such as macrophage, after they capture infected cells [2].
The nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) is a critical transcription factor, which regulates the
expressions of cytokines that stimulate inflammatory responses
[4, 5]. Under normal condition, NF-κB is retained in the cytoplasm
with an inhibitory factor, IκB [6, 7]. The NF-κB activation is started
from the binding of membrane receptors, mainly in tumor necro-
sis factor (TNF) receptor superfamily to their extracellular lig-
ands [8]. The ligand binding of receptors triggers the recruit-
ment of adaptor proteins, such as TNF receptor-associated fac-
tor (TRAF), to their cytoplasmic domains [9]. Although the C-
terminal domain of TRAF maintains interactions with upstream
receptors, the N-terminal regions function as platform to medi-
ate the process of poly-ubiquitination [10]. The ubiquitination
leads to the degradation of IκB, so that NF-κB can be released and
enter cell nucleus to initiate gene expression [11, 12]. It has been
found that spatial organizations of proteins are highly involved
in signaling pathways [13, 14]. Such phenomena have also been
observed in NF-κB signaling pathway [15]. For instance, in vivo
experiments have shown that TRAF proteins can aggregate to
higher-order spatial patterns as a response to receptor stimula-
tion [16, 17]. The structural evidences further indicate that the
N-terminal region in some TRAF proteins, such as TRAF6 and
TRAF2, is dimeric [16, 18, 19]. The capability of high-order pat-
tern formation can be abolished by a mutant that disables this
dimerization. As a result, it was proposed that the dimerization
can lead to a 2D clustering of trimeric TRAF protein complexes.
However, it is not fully understood how this spatial organization
regulates the dynamics in NF-κB signaling pathway.

Due to the functional importance of NF-κB in immunity,
the molecular mechanisms of its signaling pathway are under
intensive investigation [20]. Comparing with other traditional
wet-laboratory experiments, computational modeling is more
convenient to explore the complexity of a biological system on a
mechanistic level. As a result, a large variety of models have been
developed on different scales of the pathway. The original model
focused on the role of IκB in regulating the temporal dynam-
ics of NF-κB by using a set of ordinary differential equations
(ODE) [21, 22]. More recently, stochastic simulations and agent-
based modeling (ABM) approaches were applied to generate new
hypotheses on the behavior of various molecular components in
the NF-κB pathway [23–26]. However, information about spatial
organization of these components, such as the oligomerization
of TRAF proteins, has not been incorporated into these models.
On the other hand, methods in another class of simulation
technique, including MCELL [27], Smoldyn [28, 29] and more
recently SpringSaLaD [30, 31], use lattice-based or particle-based
models to implement the diffusions of biomolecules within a
more realistic cellular environment. They can be used to sim-
ulate the formation of spatial patterns on the subcellular level,
such as protein complex assembly or phase separation [32–40].
Unfortunately, these methods are intractable to be applied to
study the dynamics of an entire signaling pathway because of
their high demands for computational resources. Overall, it is
highly challenging to develop a simulation method, which is able
to capture a signaling event with both spatial resolution and its
functional impacts on the whole signaling networks.

In order to overcome this challenge, a hybrid simulation
approach is presented to describe the dynamics in the NF-κB sig-
naling pathway. The method contains two coupled systems. The
assembly of TRAF-based signaling platform at the membrane
proximal region is modeled by a rigid body-based diffusion–
reaction algorithm, whereas the downstream signaling events,
including the recruitment of IκB kinase (IKK), phosphorylation of
IκB and activation of NF-κB, are simulated as stochastic chem-
ical reactions. These two levels of simulations are integrated
together, so that how spatial variations in the signaling platform
affect the rest of the pathway can be quantitatively analyzed.
The signaling network is further regulated by negative feedbacks
through different inhibitors such as IκB and A20, which leads
to an oscillatory NF-κB response. We demonstrated that the
temporal patterns of downstream signal oscillations are closely
correlated with the spatial organization of upstream platform
assembly. Our simulation results also suggested that the cellular
dynamics of NF-κB signaling pathway can be fine-tuned by
a single pair of molecular interaction between TRAF proteins.
Altogether, this study sheds light on the basic mechanism of NF-
κB signaling pathway and highlights the functional importance
of spatial regulation. The hybrid simulation framework also
showcases its potential of application to other systems of cell
signaling pathways.

RESULTS AND DISCUSSIONS

General description of the outputs from simulations
of the signaling network

Most members in TRAF family contain a RING domain at their
N-terminus, a TRAF-C domain at their C-terminus and a coiled-
coil region in the middle [41]. Although the C-terminal domain
of TRAF maintains interactions with upstream receptors,
the N-terminal regions function as platform to mediate the
downstream poly-ubiquitination, as well as the cis-interactions
between themselves [18]. Moreover, most members in TRAF
family form trimeric quaternary structure through their coiled-
coil regions [42]. We are mainly focusing on the spatial clustering
of TRAF trimers and its impacts on regulating the downstream
signaling dynamics. The formation of upstream ligand–receptor
complex is beyond the scope of this study. As a result, we assume
that the ligand–receptor complexes have already preformed on
cell surface before our simulations and the trimeric scaffold
proteins have already bound to the cytoplasmic domains of
receptors (Fig. 1a). Based on this assumption, the TRAF trimer
and the ligand–receptor complex are modeled as one single
rigid body attached to the cell membrane. Each rigid body
contains three binding sites to maintain the cis-interaction
between TRAF trimers. The movements of each TRAF trimer
are confined within the 2D membrane proximal area. The
multiple cis-interactions involved in each TRAF trimer and its
2D movements can further result in the higher-order clustering,
which is simulated by a diffusion–reaction algorithm. Detailed
model representation of TRAF trimers and the follow-up
algorithm used to simulate their clustering are described in
the Methods.

The formation of a cis-interaction between two TRAF trimers
further facilitates the assembly of linear ubiquitin chain assem-
bly complex (LUBAC) [43]. The LUBAC further provides the scaf-
fold to enable the activation of the kinases IKK. Upon activa-
tion, IKK can induce the phosphorylation of IκB, which forms
a complex with the transcription factor NF-κB as an inhibitor
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Figure 1. The dynamics of the NF-κB signaling pathway is simulated by a computational method consisting of two coupled systems. The assembly of TRAF-based

signaling platform at the membrane proximal region is modeled by a rigid body-based diffusion–reaction algorithm, as shown in (a). We assume that each TRAF trimer

has bound to its upstream ligand–receptor complex and therefore is modeled as a single rigid body, in which movements are confined within the 2D membrane proximal

area. The formation of a cis-interaction between two TRAF trimers thus facilitates the assembly of linear ubiquitin chain assembly complex (LUBAC). The LUBAC further

provide the scaffold to enable the activation of downstream signaling pathway, for which diagram is sketched in (b). The dynamics of the signaling network are simulated

by Gillespie algorithm. Finally, the diffusion–reaction and Gillespie algorithms are synchronized under a multiscale simulation framework, as described in the Methods.

[11]. The complex will be dissociated after the phosphorylation
of IκB, so that the transcription factor can be freely released. The
phosphorylated inhibitor later undergoes ubiquitin-dependent
proteolysis, whereas the released transcription factor enters cell
nucleus and bind to the promoter and turn on its target genes.
The genetic regulation of two proteins is specific modeled in
the network. The first is the inhibitor IκB itself. The newly
synthesized IκB enters cytoplasm and associates with free NF-κB
to block its function as a transcription regulator [44]. The second
protein in which gene is also turned on by NF-κB is A20. Upon
synthesis, the protein also functions as an inhibitor to diminish
the activation process of IKK [45]. The diagram of the network
is shown in Fig. 1b, whereas its mathematical description is
presented in the Method.

Based on the mathematical representation of all reactions in
the signaling network, the dynamics of the system is simulated
stochastically by Gillespie algorithm. The signaling network has
further been coupled with the spatial clustering of TRAF trimers
under a hybrid simulation framework. The specific procedure
of the hybrid simulation, which combined Gillespie algorithm
with the spatial model of TRAF clustering, is delineated in the

Method. The results from this hybrid simulation are summarized
in Fig. 2. Specifically, 200 TRAF trimers were randomly placed
in the 2D membrane proximal region as an initial configuration
(Fig. 2a). The length of each side in this square region is 1000 nm,
along both X and Y directions, which gives a total area of 1 μm2.
Some representative snapshots of the clustering process are also
plotted along the simulation trajectory. We found that TRAF
trimers start to aggregate into small oligomers (Fig. 2b). These
oligomers are organized into hexagonal lattice based on the
spatial symmetry of three binding sites in each trimer. The
formation of these oligomers is a very dynamic process. TRAF
trimers constantly left one oligomer and joined another one.
As a result, small oligomers either disappeared or merged into
neighboring larger oligomers, leading into a configuration in
which the number of clusters became smaller and their sizes
continued growing, as shown in Fig. 2c. Ultimately, most trimers
aggregated together into a final larger cluster and the system
reached equilibrium, as shown in Fig. 2d.

The number of cis-interactions formed between TRAF trimers
was further plotted in Fig. 2e as a function of simulation time
steps. The figure shows that the number of cis-interactions
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Figure 2. The initial configuration of the diffusion–reaction simulation is shown

in (a). Some representative snapshots along the simulation trajectory were

selected in (b) and (c). The configuration that the system reached equilibrium

is further shown in (d). In (e), we plotted the number of cis-interactions between

TRAF trimers observed in the system along with the simulation time steps. The

kinetic profiles of molecular components in the downstream signaling network

were further plotted as functions of simulation time steps. These profiles are the

numbers of NF-κB molecules, which bind to IκB and DNA, as shown by the blue

and orange curves in (f), and the total number of free IκB in the system, as shown

by the red curve in (g).

increased very fast at the beginning of the simulation, indicat-
ing an initial seeding process. The increase of cis-interactions
became slower as the oligomers in the system grew, and finally
reached saturation after 4.5 × 105 simulation time steps, cor-
responding to the formation of the final cluster. The kinetic
profiles of molecules in the downstream signaling network were
further plotted in the following figures. Specifically, the numbers
of NF-κB molecules, which bind to IκB and DNA, are shown in
blue and orange curves in Fig. 2f, respectively. A periodic boost
of DNA-bound NF-κB is displayed in the figure, corresponding
to the timing of dissociation between NF-κB and IκB. Following
the cycle of NF-κB, the total number of free IκB in the system
also oscillated along the simulation, as illustrated in Fig. 2g.

This oscillatory behavior is the result of the negative feedback
regulation in the network, which is implemented by IκB and
A20. In addition, we found that the oscillation was initiated
after the number of total cis-interactions between TRAF trimers
almost stop changing, indicating that the formation of large
clusters is critical to activate the downstream signaling pathway.
In summary, our simulation results showcased the oscillatory
dynamics in the NF-κB signaling pathway and its correlation
with the spatial organization of molecular components in the
pathway.

The comparison of signaling dynamics in systems with
and without TRAF clustering

In order to further elucidate the functional importance of TRAF
clustering in regulation of downstream signaling pathway, we
carried out two separate simulations with different scenarios.
The TRAF trimers in the first scenario, as we descried before,
contain three binding sites. As a result, each trimer can simul-
taneously form cis-interactions with three structural neighbors,
leading into the formation of a highly ordered spatial pattern. In
contrast, a control system was designed in the second scenario.
In this control system, we disabled the possibility of high-order
clustering among TRAF proteins. This was achieved by assigning
only one binding site to each TRAF protein instead of three, so
that only cis-dimers can be formed between two proteins. As
the initial configuration of the first scenario, 200 rigid bodies
of TRAF trimers were randomly placed on a 2D square surface
with an area of 1000 × 1000 nm2. On the other hand, the control
simulation contains 600 rigid bodies randomly distributed on the
surface with the same area to maintain the same level of possible
total interactions as in the first scenario. All the other param-
eters in the diffusion–reaction simulation of control scenario
such as diffusion and binding constants remain unchanged. The
binding affinity of cis-interactions in both systems equals −10 kT.
Moreover, in the stochastic simulations of downstream signaling
network, the same values of rate constants were used for the
second scenario as for the first scenario.

The comparison of simulation results between these two
scenarios is summarized in Fig. 3. The total number of cis-
interactions formed between TRAF trimers along the simulation
in the first system is plotted by the red curve in Fig. 3a, whereas
the total number of dimerized cis-interactions formed in the
control system is plotted by the red curve. The figure shows that
the number of cis-interactions in the system, which can form
clusters, grew more slowly, but reached a much higher level than
the system, which can only form dimers, although the binding
affinity and total binding sites in both systems are the same.
Moreover, the level of fluctuations in the first system is also
lower than the second one. The final configurations at the end of
two simulations are compared with each other in Fig. 3c and d,
respectively. Different from a small number of large clusters
oligomerized in the first system, a large number of dimers are
randomly distributed in the control system.

In order to quantitatively estimate the statistical signifi-
cance of observed differences between these two systems, a two-
sample student’s t-test was carried out to the data collected
from these two trajectories, in which distributions are plotted
as histograms in Fig. 3b. In detail, the average number of cis-
interactions in the distribution of dimerized system is 75.51
and its standard deviation equals 7.16. Relatively, the average
number of cis-interactions in the distribution of oligomerized
system is 182.53 and its standard deviation equals 3.04. The null
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Figure 3. Two simulation scenarios were designed to elucidate the functional importance of TRAF clustering in regulation of downstream signaling pathway. The TRAF

trimers in the first scenario contain three binding sites and can simultaneously form cis-interactions with three structural neighbors, whereas in a control system,

only one binding site was assigned to each TRAF protein. The numbers of cis-interactions formed along the simulations in these two scenarios are plotted in (a). The

distributions of fluctuations in the number of cis-interactions are shown as histograms in (b). The final configurations at the end of two simulation systems are compared

with each other in (c) and (d). Finally, the outputs from the downstream signaling networks of these two systems, e.g. the numbers of NF-κB molecules, which bind to

IκB and DNA, are also compared with each other in (e) and (f), respectively.

hypothesis is that no difference exists between two distribu-
tions. It was tested at a 95% confidence interval. The calculated
t-score equals 650.28 with the P value <0.0001. This small P value
from the t-test indicates that the null hypothesis can be rejected
and the alternative hypothesis can be accepted, i.e. the spatial
arrangement of TRAF oligomers lead into significant change in
the level of cis-interactions comparing with the system in which
oligomers are not allowed to form.

The outputs from the downstream signaling networks of the
two comparative systems are shown in the following panels of
the figure. The changes of NF-κB that bound to IκB or DNA in the
first system are plotted as a function of the simulation time with
blue and yellow curves in Fig. 3e. The oscillations were observed
in the system, in which the number of NF-κB/DNA complexes

was boosted periodically after the clusters of TRAF trimers were
stabilized, corresponding to the red curve in Fig. 3a. The impulse
of NF-κB/DNA complexes is coincident with the drop of NF-
κB/IκB complexes, which is due to the phosphorylation of IκB
by activated IKK. This oscillatory dynamic of components in the
network indicates that the signaling pathway was turned on by
the clustering of TRAF trimers. In contrast, the number of NF-
κB/IκB complexes remained at its initial level throughout the
simulation in the second system. As a result, no NF-κB/DNA
complex was obtained before the end of the simulation, corre-
sponding to the curves plotted in Fig. 3f. This result suggests that
the signaling pathway could not be effectively turned on due to
the less numbers and higher fluctuations of cis-dimers formed
in the control scenario.



114 Integrative Biology, 2021, Vol. 13, No. 5

In summary, this comparative study demonstrated the pos-
sibility that systems with the same sets of rate parameters
can evolve into very different temporal dynamics, only because
of the different spatial organizations of signaling molecules.
More specifically, a threshold-like behavior is controlled by the
geometric arrangement of cis-interaction between TRAF scaffold
proteins. Multiple binding sites in TRAF trimers lead to their
high-order aggregation at membrane proximal region. Compar-
ing with the regular dimer, each trimer in a cluster is simultane-
ously involved in three cis-interactions with its neighbor. These
interlocked systems are kinetically more difficult to be dissoci-
ated. Consequently, they provide stable platform to downstream
signal activation. Without this trimeric quaternary structure, on
the other hand, TRAF proteins can only dimerize. Comparing
with the highly ordered oligomers, these dimers are easier to be
dissociated, although the binding affinity of the cis-interaction
remains unchanged. As a result, the poly-ubiquitination facili-
tated by dimerized TRAF proteins alone cannot pass the thresh-
old of downstream signal activation.

Change in the binding constants in the oligomerization

We have estimated the importance of TRAF trimers’ multiple
cis-binding sites not only in their assembly into higher-order
structures, but also in the initiation of NF-κB signaling pathway.
In this section, we further explore the energetic impacts of
this cis-interaction on spatial–temporal dynamics of the system.
Specifically, the binding affinity for a given pair of binding sites
between two TRAF trimers was charged to different values in
the diffusion–reaction simulation. Three scenarios were tested
separately. A weak binding affinity (−6 kT) was used in the first
scenario. In comparison, a strong binding affinity (−14 kT) was
used in the second scenario. In addition to these two systems, a
moderate value of binding affinity (−8 kT) was also tested as the
third scenario. All the other parameters in both TRAF clustering
section and signaling network section of the simulations are the
same. The kinetic profiles generated from the simulations of
these three systems are plotted in Fig. 4.

The numbers of cis-interactions formed in the three scenarios
are plotted in Fig. 4a as a function of simulation time steps. The
profile with the weak binding affinity is shown by the black
curve, which indicates a low number of cis-interactions. On
the other hand, a much higher level of cis-interactions were
derived in the system with strong binding affinity, as shown by
the blue curve. A more interesting kinetic profile was observed
in the system with moderate binding affinity, corresponding
to the red curve in Fig. 4a. The figure suggests that a small
reduce of affinity from −6 to −8 kT significantly increased
the level of cis-interactions. Surprisingly, the number of total
interactions formed by the end of the simulation with moderate
binding affinity is >200, even higher than the number found
in the system with much stronger cis-interactions. Moreover,
comparing with the system of strong affinity, which reached
equilibrium at the very early stage of simulation, the number
of cis-interactions in the system of moderate binding affinity
increased much slower.

The dynamics in the downstream signaling networks of three
systems are further shown in Fig. 4b. The changes of free IκB are
plotted as a function of simulation time steps. An oscillation on
the level of IκB was observed in the system of moderate binding
affinity, as shown by the red curve in the figure. The oscillation
was started when the stimulation time reached 1 × 105 steps,
consistent with the stage as the number of cis-interactions in
the system did not further increase (shown by the red curve

in Fig. 4a). In contrast, no free IκB was observed in the system
with weak binding affinity. This is due to the low level of cis-
interactions formed in the system. The poly-ubiquitin chains
recruited by this small number of cis-interaction between TRAF
proteins were not enough to active IKK in the system and pre-
vented the IκB from being phosphorylated. As a result, the genes
regulated by NF-κB cannot be turned on throughout the simu-
lation. It is worth mentioning that no oscillation of free IκB was
also obtained in the system with strong binding affinity. The IκB
was produced at very late stage of the simulation after the time
passed 4 × 105 steps. However, it reached to a very low level, but
then start to decay all the way through the end of the simulation,
as shown by the blue curve in Fig. 4b. The results from the
simulations of these three systems therefore suggest that the
oscillatory patterns of the signaling dynamics are very sensitive
to the strength of cis-interaction between TRAF proteins.

In order to test the correlation between the oscillatory pat-
terns of the signaling pathway and the binding affinity of the cis-
interaction on a more statistically meaningful level, systematical
tests were carried out to systems in which binding affinities of
cis-interaction were ranged from −6 to −15 kT, with an interval
of 1 kT. Multiple trajectories were generated for each system,
while a longer simulation time (2 × 106 steps) was given for
each trajectory. At the end of all simulations, we counted the
number of oscillatory periods observed in each trajectory. The
average number of oscillatory periods was then calculated for
each system depending on the values of binding affinity. The
calculated results are summarized in Fig. 4c as striped bars in
the histogram. The figure confirms that oscillations were not
observed under weak binding affinities, but suddenly appeared
when affinities are below −7 kT, suggesting that there is phase
transition in the system. Further enhancement of binding affin-
ity does not change the frequency of oscillation too much until it
becomes stronger than −12 kT. Above this region, the oscillatory
frequency will be gradually reduced if the cis-binding affinity
increases. Finally, no more oscillation exists after the binding
affinity equals −15 kT. This is consistent with the signaling
outputs illustrated in Fig. 4b.

In parallel, the same systematical tests were carried out to the
control systems. Specifically, binding affinities of cis-interaction
were also assigned from −6 to −15 kT, with an interval of 1 kT.
The same values were applied to all the other simulation param-
eters, except that only cis-dimers can be formed between two
TRAF proteins in the control system. After all simulations are
completed, we calculated the average number of oscillatory
periods for different testing values of binding affinity. The cal-
culated results are shown by black bars in the histogram of
Fig. 4c. In contrast to the oligomerization system, oscillations
can only be observed in the dimerization system when the
binding affinity of cis-interactions is stronger than −13 kT. The
comparison of these two systems thus highlights the functions
of TRAF oligomerization in regulating the downstream signal-
ing as follows. First, signaling can solely be activated by the
oligomerization of TRAF proteins if the binding affinity of their
cis-interactions is in the moderate range between −8 and −13 kT.
If the binding affinity becomes stronger, oscillation can be acti-
vated without oligomerization due to the increasing number of
cis-interactions formed in the system. Interestingly, our simu-
lation results suggest that oligomerization under these strong
cis-interactions will inhibit downstream signaling. As described
later, the inhibition was achieved by kinetically segregating TRAF
trimers in small clusters. This provides a potential mechanism
to suppress the original signaling. Therefore, our study demon-
strated that the dynamic outcome of a signaling network can be
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Figure 4. In order to explore the energetic impacts of the cis-interaction between

TRAF trimers on spatial–temporal dynamics of the system, three scenarios with

the weak-, moderate- and strong-binding affinities of these cis-interactions were

tested separately. The numbers of cis-interactions formed in these three scenar-

ios are plotted in (a) as a function of simulation time steps, whereas the numbers

of free IκB in the system are shown in (b). More systematical tests were further

carried out, in which we changed the binding affinities of cis-interaction from

−6 to −15 kT, with an interval of 1 kT for both dimerization and oligomerization

systems. The average numbers of oscillation periods were derived from the

multiple trajectories of these systems and were plotted as histogram in (c) as

a function of cis-binding affinity. The results from the oligomerization system

are shown by the striped bars, whereas the results from the dimerization control

system are shown by the black bars.

modified either positively or negatively by the spatial organiza-
tion of protein–protein interactions in the system, depending on
the strength of their binding affinity.

Unfortunately, there is no experimentally measured binding
affinity available in the literatures for the cis-interaction between
TRAF trimers. The only experimental data is the dimerization in
the crystal structure of TRAF6 through their N-terminal RING
and zinc finger domains [16]. The crystal structure (PDB ID
3HCS) shows the binding interface buries a total of 1270 Å2

surface areas. Furthermore, most intermolecular interactions
in the binding areas are hydrophobic, but not electrostatic
interactions, which could lead to stronger binding. Using the
size of buried surface areas and their hydrophobic nature,
we estimate that the dissociation constant of cis-interactions
between TRA6 is within a moderate range from millimolar
to micromolar, which corresponds to the binding affinity
between −9 and −13 kT. This estimation is based on a previous
statistical analysis of correlation between buried surface areas
and experimentally measured dissociation constants for 113
protein complexes [46]. As shown above, within this range of
binding affinity, the oscillation of NF-κB signals can only be
activated through the spatial oligomerization of TRAF trimers.
Finally, it is worth mentioning that this is just an insight only for
TRAF6. Binding affinities could variate among members in the

Figure 5. To illustrate the relation between the spatial properties of TRAF

clusters and the strength of their cis-interactions, the final configurations from

the systems in which binding affinities equal −7 and −8 kT are plotted in (a) and

(b). These two plots show that the clustering can generate very different spatial

pattern with only a slight change in the binding affinity. On the other hand,

the final configurations from the systems in which binding affinities equal −13

and −15 kT are plotted in (c) and (d), respectively. These two plots suggest that

systems with stronger binding affinity contain more clusters with smaller sizes.

TRAF family. Also, the real binding between TRAF in cellular
environments could also be very different from the in vitro
measurements.

To further understand how NF-κB signals can be spatially
regulated by TRAF protein clustering, the final configurations
from some of the simulation systems were plotted in Fig. 5. The
final configurations from the systems in which binding affinities
equal −7 and −8 kT are shown in Fig. 5a and b, respectively.
With only a slight change in the binding affinity, very different
spatial pattern was derived in the figures. This difference can
be explained by the phase transition of TRAF clustering, which
drives the system from a scattered distribution of trimers to
their condensation into a single cluster. The network of trimers
formed within the cluster stabilizes the cis-interactions and thus
facilitate the signal activation of downstream pathway. In com-
parison, the final configurations from two systems selected from
the other end of the binding affinity are shown in Fig. 5c and d.
These figures show that systems with stronger binding affinity
contain more clusters with smaller sizes. Comparing with the
signal big cluster formed in the system with binding affinity
of −8 kT, five clusters were obtained in the system with bind-
ing affinity of −13 kT and each cluster on average contains 40
trimers, as shown in Fig. 5c. When the binding affinity reaches
−15 kT, as shown in Fig. 5d, the number of clusters in the system
increases to 20 and each cluster on average only contains 10
TRAF trimers. These results suggest that the strong binding
affinities kinetically trap TRAF trimers into small clusters, which
plays negative role in activating the oscillations in the down-
stream signaling network.

More specifically, the formation of a single larger cluster
is resulted from the competition among different oligomers,
in which TRAF trimers constantly leave one oligomer and
join another. Through this dynamic process, oligomers with
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Table 1. The information about the simulation parameters in the signaling network.

Index Description Mathematical representation Parameter Value Remark

1 Deactivation of IKK r1[a · IKK(t)] r1 0.2 s−1 Rate of transition
2 Activation of IKK r2[i · IKK(t)] ×

[LUBAC(t)]N

[LUBAC(t)]N+[K2×(1+[A20(t)]/KI)]
N

r2 0.4 s−1 Maximal rate of catalysis
K2 240 nM Saturation coefficient of

catalysis
KI 10 nM Inhibition coefficient of

catalysis
N 25 Hill coefficient

3 Phosphorylation of IκB r3[a·IKK(t)][IκB/NF-κB(t)]
[IκB/NF-κB(t)]+K3

r3 0.08 s−1 Maximal rate of catalysis
K3 500 nM Saturation coefficient of

catalysis
4 Dissociation of IκB/NF-κB

complex
r4[IκB · P/NF-κB(t)] r4 0.4 s−1 Dissociation rate

5 Degradation of IκB d5 d5 0.8 nMs−1 Degradation rate
6 Association of IκB/NF-κB

complex
r6[IκB(t)][NF-κB(t)] r6 0.008 nM−1s−1 Association rate

7 Synthesis of IκB s7[NF-κB·DNA(t−τ )]
[NF-κB·DNA(t−τ )]+K7

s7 0.8 s−1 Maximal rate of
synthesis

K7 50 nM Saturation coefficient of
synthesis

8 Synthesis of A20
s8[NF−κB·DNA(t−τ )]

[NF−κB·DNA(t−τ )]+K8
s8 0.4 s−1 Maximal rate of

synthesis
K8 100 nM Saturation coefficient of

synthesis
9 Association of NF-κB with

DNA
r9[NF-κB(t)] r9 0.8 s−1 Transition rate

10 Dissociation of NF-κB from
DNA

r10[NF-κB · DNA(t)] r10 0.08 s−1 Transition rate

11 Degradation of A20 d11 d11 0.1 nMs−1 Degradation rate

smaller sizes gradually dissolve or merge into neighboring
oligomers. Meanwhile, TRAF trimers join and are then stabilized
by oligomers with larger sizes, leading into their continuous
growth. Protein complexes are difficult to dissociate into
monomers under strong binding affinities, whereas the
multivalency of TRAF trimers makes dissociation much more
difficult after they were initially captured by an oligomer.
Consequently, these small oligomers are maintained throughout
the simulations. It is worth mentioning that the segregation of
TRAF trimers into small oligomers under strong binding affinity
is only a kinetic phenomenon within our limited simulation
timescale. Thermodynamically, the system still prefers the
formation of a single larger cluster. As reflected by the blue
curve in Fig. 4b, although extremely slow, the number of cis-
interactions under strong binding affinity still keeps increasing
until the end of the simulation. Therefore, we believe that the
system will ultimately reach equilibrium by forming a large
cluster by the time the oscillations will be activated. However,
this process is beyond the timescale that our computational
simulation can observe. It might also be beyond the real
timescale required for cell signaling pathways and becomes
less biologically meaningful.

Taken together, our simulation results show that the increase
of cis-binding affinity triggers the phase transition of TRAF
clustering. This phase transition results in a threshold-like
signal response from the downstream pathway. Moreover, the
large-scale TRAF clusters is kinetically slow to assemble, but
highly stable after its formation. This slow kinetics of the
assembling process and high stability of the clustered structure
assure that the signaling pathway only response to a persistent
and high dose of extracellular stimulations, and, therefore,
promote the fidelity of signal transduction within stochastic

cellular environments [47]. Finally, the oscillation of NF-κB
signals can only be archived through a very dynamic process
by cis-interactions with moderate binding affinities. The TRAF
proteins with overly strong cis-interactions will be kinetically
trapped in small clusters, and further impede their function in
activating the downstream signal oscillation. This suggests that
the molecular interactions in the NF-κB signaling pathway are
tuned within a specific range by natural selection to maintain
its appropriate functions.

CONCLUSIONS

NF-κB signaling pathway is one of the most important cell
signaling pathways involved in inflammatory responses [48].
Recent experimental evidences started to show that signal trans-
duction in the pathway is spatially modulated by its different
molecular components [49]. However, the molecular mecha-
nism of these spatial regulation and their functional impacts
are not well understood. In order to tackle this problem, we
developed a hybrid model in which the NF-κB signaling path-
way is decomposed into two simulation scenarios. The physical
process of TRAF clustering at membrane proximal region is
simulated by a rigid body-based diffusion–reaction algorithm,
whereas the downstream signaling network is simulated by
stochastic simulation with Gillespie algorithm. These two algo-
rithms are further synchronized under a multiscale simulation
framework. Using this simulation method, we illustrated that the
formation of TRAF-mediated 2D signaling platform is a critical
factor to regulate the downstream oscillatory dynamics in the
signaling network. The modification of cis-interaction between
TRAF proteins leads to the changes of their clustering patterns
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at membrane proximal regions, and further affects the NF-κB
response. Interestingly, our results show that mutations either
weaken or strengthen this cis-interaction and can cause the abol-
ishment of oscillation in the pathway. This observation suggests
that molecular elements and their interactions in a signaling
network are elaborately designed to carry out their appropriate
functions. In summary, the hybrid simulation developed in this
study shows possibility to model a signaling system with both
spatial resolution and functional implication. The results from
the simulations provides the general biological insights to the
interplay between the spatial assembly of individual signaling
molecules and the threshold-like output from the entire sig-
naling network, which offers a potentially new way to control
signaling pathways in cellular systems.

METHODS

Mathematical representation of the signaling network

Following the spatial assembly of TRAF signaling platform, the
changes of population for each type of molecular components in
the downstream signaling network are quantitatively described
by a set of ODE. Specifically, the numbers of active IKK and
inactive IKK in the system at time t are changed by solving the
following two equations:

d [a · IKK(t)]
dt

= −r1 [a · IKK(t)] + r2 [i · IKK(t)]

× [LUBAC(t)]N

[LUBAC(t)]N + [
K2 × (

1 + [A20(t)] /KI
)]N (1)

d [i · IKK(t)]
dt

= r1 [a · IKK(t)] − r2 [i · IKK(t)]

× [LUBAC(t)]N

[LUBAC(t)]N + [
K2 × (

1 + [A20(t)] /KI
)]N (2)

In above equations, [a·IKK(t)] and [i·IKK(t)] are the numbers of
active IKK and inactive IKK at time t, respectively. The first term
on the right-hand side of equation (1) represents the transition of
IKK from its active form to inactive form, where the parameter
r1 indicates the rate of the transition. The second term on the
right-hand side of equation (1) represents the transition of IKK
from its inactive form to active form. This reaction is catalyzed
by the upstream poly-ubiquitin chains LUBAC, in which r2 and K2

are the maximal rate and saturation coefficient in the catalysis.
The number of poly-ubiquitin chains in the system [LUBAC(t)]
is determined by the number of cis-interactions between TRAF
trimers in the upstream signaling platform. After forming cis-
interactions, it has also been observed that the N-terminal RING
domain of TRAF6 functions as an E3 ubiquitin ligase. It recruits
the E2 ubiquitin-conjugating enzyme such as Ubc13 so that the
poly-ubiquitin chains can be formed, leading into the assem-
bly of LUBAC [50]. Therefore, in current study, the number of
cis-interactions between TRAF trimers in the upstream signal-
ing platform and the number of polyubiquitin chains in the
system [LUBAC(t)] have a one-to-one relationship. Ideally, the
LUBAC assembly could be modeled by an extra reaction as
[cis − int eraction(t)] → [LUBAC(t)], because it takes a non-zero
amount of time to form these poly-ubiquitin chains once cis-
interactions are formed. In order to minimize the complexity of
our system, this first-order reaction was not incorporated into
the model. We assume that this additional step would not affect

the global dynamics of the signaling network and thus change
the conclusions of our study.

Considering that LUBAC itself is a highly ordered signaling
machinery, a Hill coefficient [51] N is further used to model the
cooperativity in its assembly and its recruitment of IKK. Finally,
the catalysis of this transition reaction is also restrained by pro-
tein A20 as a competitive inhibitor. The efficiency of inhibition is
controlled by the concentration of A20 and the parameter KI.

The activated IKK kinase further phosphorylates the
inhibitory IκB subunit in the IκB/NF-κB complex. The number
of phosphorylated complexes in the system at time t can be
changed by solving the following equation:

d [IκB · P/NF-κB(t)]
dt

= −r4 [IκB · P/NF-κB(t)]

+ r3 [a · IKK(t)] [IκB/NF-κB(t)]
[IκB/NF-κB(t)] + K3

(3)

In above equation, [IκB/NF-κB(t)] and [IκB·P/NF-κB(t)] are the
numbers of phosphorylated and unphosphorylated complex at
time t, respectively. The second term on the right-hand side of
equation (3) describes the phosphorylation process, in which
rate depends on the concentration of activated IKK [a·IKK(t)].
The parameters r3 and K3 in the reaction are the maximal rate
and saturation coefficient in the phosphorylation, as described
by Michaelis–Menten kinetics. The first term on the right-hand
side of equation (3) describes the dissociation reaction of IκB/NF-
κB complex due to the phosphorylation of IκB, in which r4

represents the rate constant of dissociation.
On the other hand, the number of unphosphorylated

complex in the system is decreased by the IKK-induced
phosphorylation, but increased by the association reaction
between monomeric IκB and NF-κB, as described by the following
equation:

d [IκB/NF-κB(t)]
dt

= − r3 [a · IKK(t)] [IκB/NF-κB(t)]
[IκB/NF-κB(t)] + K3

+ r6 [IκB(t)] [NF-κB(t)] (4)

The parameter r6 in equation (4) is defined as the rate con-
stant, which regulates the association between monomeric IκB
and NF-κB in cytoplasm. Their numbers at time t, [IκB(t)] and [NF-
κB(t)] are changed by the following two equations:

d [IκB(t)]
dt

= s7 [NF-κB · DNA (t − τ)]
[NF-κB · DNA (t − τ)] + K7

− r6 [IκB(t)] [NF-κB(t)] (5)

d [NF-κB(t)]
dt

= r4 [IκB · P/NF-κB(t)] − r6 [IκB(t)] [NF-κB(t)]

+ r10 [NF-κB · DNA(t)] − r9 [NF-κB(t)]
(6)

The second term on the right-hand side of equation (5) delin-
eates the dissociation of IκB/NF-κB complex, as described above.
In addition, the dissociation of NF-κB from phosphorylated IκB
enters cell nucleus and binds to its targeted DNA sequence as a
transcription factor. The formation of NF-κB·DNA complex regu-
lates the expression of specific genes, including its own inhibitor
IκB, which corresponds to the first term on the right-hand side
of equation (5). We introduced the constant τ in the reaction to
describe the time delay between NF-κB·DNA formation and IκB
expression. We assume that the expression rate of IκB depends
on the concentration of activated transcriptional factors [NF-
κB·DNA(t−τ )] and reaches a maximum value s7. The parameter
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K7 is the saturation coefficient in the regulation of protein syn-
thesis, as described by Michaelis–Menten kinetics. In equation
(6), on the other hand, the first two terms on its right-hand
side have been introduced above, whereas the next two terms
described the dynamic process in which NF-κB is translocated
from cytoplasm into cell nucleus and binds to its target gene.
Correspondingly, the parameters r9 and r10 indicate the rates
for the association and dissociation of the NF-κB·DNA complex,
respectively. Given these two rate constants, the number of the
NF-κB·DNA complex in the system at time t can be changed by
solving the following equation:

d [NF-κB · DNA(t)]
dt

= r9 [NF-κB(t)] − r10 [NF-κB · DNA(t)] (7)

Although the NF-κB dissociated from the IκB·P/NF-κB com-
plex can either bind to DNA or reassociate with unphosphory-
lated IκB, the phosphorylated IκB that is dissociated from the
IκB·P/NF-κB complex will be degraded with a rate constant d5,
as described by the following equation:

d [IκB × P(t)]
dt

= r4 [IκB · P/NF-κB(t)] − d5 (8)

Finally, the change of protein A20 is defined by the following
equation:

d [A20(t)]
dt

= s8 [NF-κB · DNA (t − τ)]
[NF-κB · DNA (t − τ)] + K8

− d11 (9)

Similarly, its expression is regulated by the NF-κB·DNA com-
plex, as represented by the first term on the right-hand side of
equation (9). The same constant τ is introduced to describe the
time delay between NF-κB·DNA formation and A20 expression.
The parameters s8 and K8 in the catalysis of protein synthesis
give the maximal rate and saturation coefficient of the reaction,
as described by Michaelis–Menten kinetics. The second term on
the right-hand side of the equation determines the degradation
rate of A20.

Numerical algorithm of the hybrid simulation

The dynamics of the signaling pathway is simulated by two
coupled modules. The oligomerization of TRAF scaffold pro-
teins is simulated by a diffusion–reaction algorithm, whereas
the downstream signaling events are simulated by the Gillespie
algorithm. In the diffusion–reaction algorithm, we assume that
the TRAF trimers have bound to the upstream ligand–receptor
complexes. Therefore, their movements are confined within
the membrane proximal area, which is modeled by a layer of
2D flat surface. Each TRAF protein, together with its upper-
bound ligand–receptor complex, is modeled as a single rigid
body. In order to capture the basic structural information of
the trimeric scaffold protein, the rigid body further contains
four connecting groups. The three TRAF-C domains and coiled-
coil regions are placed at the center, surrounded by three other
groups representing their RING domains. The angle between
every two surrounding groups is 120◦. Each surrounding group
also contains a binding site to mimic the cis-interaction between
RING domains.

Given the model representation, the diffusion–reaction sim-
ulation is started from an initial configuration, in which a large
number of TRAF rigid bodies are randomly distributed within the

2D membrane proximal region. The kinetic Monte Carlo algo-
rithm was implemented to operate the simulation. Each time
step �t in the simulation is broken down into two scenarios [52].
During the first scenario, all TRAF trimers are chosen by random
order to undergo diffusions within the 2D area. The rotations of
each trimer are restricted along the surface normal, whereas the
translational movements are confined in the plain. The periodic
boundary condition is applied so that any trimer leaving the
2D simulation box will enter its opposite side. More specifically,
for translational diffusion, each TRAF trimer moves along a
randomly selected direction in the plain with a fixed length, �x.
The probability of this random movement, PT, is calculated by
PT = 4DT�t/�x2, in which DT is the 2D translational diffusion
constant. For rotational diffusion, each TRAF trimer is randomly
rotated along the surface normal within the maximal value of
DR × �t, in which DR is the effective rotational diffusion constant.
After diffusion, if the center-to-center distance between two
TRAF trimers, based on their new position, is smaller than the
sum of their radii, the movement will be rejected to avoid poten-
tial collisions in the system. The values of diffusion coefficients
were adopted from our previous studies as follows [53, 54]. The
translational diffusion constant of a TRAF trimer equals 5 μm2/s,
and its rotational coefficient equals 0.25◦ per ns. Moreover, for
the computational simplicity, if more than two TRAF trimers
form a cis-interaction, they will stop diffusing as an initial seed
to facilitate further oligomerization.

Following the scenario of molecular diffusions, the binding
kinetics of cis-interaction between TRAF trimers are simula-
tion in the second scenario. The association between two TRAF
trimers can be triggered if (1) the distance between any binding
sites within these two trimers is below a predetermined cutoff
and (2) their packing angle equals 180◦, as shown in Fig. 1a.
Previous experimental evidences showed that the N-terminal
RING domain of TRAF proteins can be dimerized both in the
crystal and in solution [16]. It was further proposed that this
dimerization of TRAF trimers can lead into the formation of
a 2D hexagonal lattice, in which two trimers maintain a 2-
fold symmetry through their cis-interaction [55, 56]. Based on
these experimental insights, we assume that the packing angle
between two TRAF trimers needs to be 180◦. If a cis-interaction is
formed between two trimers, they will stop diffusing to facilitate
further oligomerization. On the other hand, dissociation of a
cis-interaction occurs with a probability that is determined by
its binding affinity. After dissociation, two trimers can either
reassociate as a geminate recombination if the distance and
packing angle between any pair of their binding sites satisfy the
association criteria, or diffuse farther away from each other. The
new configuration is updated at the end of each simulation time
step after both diffusion and reaction scenarios are sequentially
performed. Finally, the iteration of above diffusion–reaction pro-
cess will not be terminated until the dynamics of the simulated
system reaches equilibrium.

The high-order clusters formed by TRAF scaffold pro-
teins provide a platform to recruit the poly-ubiquitin chains.
The downstream signaling processes activated by the poly-
ubiquitination are modeled by non-spatial stochastic simulation
algorithm. This algorithm was developed by Gillespie in order to
study biochemical reactions [57]. Given the initial condition of
a signaling network, the populations of each molecular species
in the system are propagated in a digitalized and stochastic
manner. In detail, within each simulation step, the rates for
all reactions are sequentially calculated by the mathematical
formulas described in the previous section of the method. A
cumulative distribution function is generated by adding up
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all these rates. A random number is used to select one of
these reactions based on the cumulative distribution function.
Populations for all species are then updated according to the
selected reaction. The simulation moves forward iteratively
by above procedure. This Gillespie algorithm has further been
coupled with the diffusion–reaction model [58], so that the
spatial information of TRAF clustering can be integrated into
the downstream signaling processes. Specifically, after the
diffusion–reaction simulation, the number of newly formed cis-
interactions between TRAF trimers can be obtained. Based on
current knowledge about the function of TRAF protein in NF-
κB signaling pathway, we assume that poly-ubiquitin chains
are recruited at each cis-binding interface of TRAF trimers.
Therefore, the number of LUBAC will be simultaneously updated.
This new number of LUBAC enters the next step of the Gillespie
simulation to guide the activation of IKK. In turn, the outputs
from the Gillespie simulation affect the diffusion–reaction
simulation as follow. Based on the Gillespie algorithm, the time
of the simulation system is moved forward by a specific time
interval τ . Given this new time interval, n steps of the diffusion–
reaction simulation are carried out to generate a new spatial
configuration. The number n is calculated as τ /�t, in which �t
is the length of the diffusion–reaction simulation time step.
This calculation is to ensure that the timescale between spatial
processes of TRAF clustering and the downstream signaling
pathway can be synchronized.

We described a generic framework of NF-κB signaling net-
work in which some factors have not been simulated before.
It is not realistic to derive consistent model parameters from
various experimental measurements or previous computational
models. As a result, the values of all parameters were chosen on
a heuristic basis from the biologically meaningful range, so that
the oscillatory nature of the pathway under a persistent ligand
stimulation can be qualitatively reproduced within the timescale
that is close to the experimental observation. The values of
these parameters in the simulation are listed in the Table 1. The
variations in these parameters will not significantly affect the
general dynamic patterns of the system. It is more important to
recognize how the spatial–temporal dynamics of the signaling
system is quantitatively modified by a small perturbation in the
parameters space.
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