Skip to main content
. 2021 May 18;106(2):1453–1475. doi: 10.1007/s11071-021-06504-1

Table 10.

Comparison of our model with similar works for COVID-19 prediction

Dataset Reference Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
Dataset 1 Our model NSGA-II+AdaBoost 85 90 89.32 85 86.01 87.16
Banik et al. [32] Logistic Regression 81.2 79.7 79.7 79.7
Naive Bayesian 75.9 73.9 73.9 73.9
Decision Tree 71.9 70.4 67.3 68.8
LinearSVM 80.2 77.6 80.4 85
Random Forest 80.6 77.8 84 80.8
Dataset 2 Our model NSGA-II+AdaBoost 95.56 95.56 95.56 98.19 96.87
Zoabi et al. [30] Gradient boosting 87.3 71.98 90

Bold values highlight the best results for the two studied datasets