Table 10.
Dataset | Reference | Model | Accuracy (%) | Precision (%) | Sensitivity (%) | Specificity (%) | F1-score (%) | AUC (%) |
---|---|---|---|---|---|---|---|---|
Dataset 1 | Our model | 85 | 90 | 89.32 | 85 | 86.01 | 87.16 | |
Banik et al. [32] | Logistic Regression | 81.2 | 79.7 | 79.7 | – | 79.7 | – | |
Naive Bayesian | 75.9 | 73.9 | 73.9 | – | 73.9 | – | ||
Decision Tree | 71.9 | 70.4 | 67.3 | – | 68.8 | – | ||
LinearSVM | 80.2 | 77.6 | 80.4 | – | 85 | – | ||
Random Forest | 80.6 | 77.8 | 84 | – | 80.8 | – | ||
Dataset 2 | Our model | 95.56 | 95.56 | 95.56 | 98.19 | – | 96.87 | |
Zoabi et al. [30] | Gradient boosting | – | – | 87.3 | 71.98 | – | 90 |
Bold values highlight the best results for the two studied datasets