Skip to main content
. 2021 May 18;106(2):1453–1475. doi: 10.1007/s11071-021-06504-1

Table 4.

Classification results with full datasets

Dataset Classifier Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
Dataset 1 MLP 79.96 82.40 79.67 80.29 81.01 79.98
SVM 75.72 78.70 75.10 76.44 76.86 75.77
LR 77.51 80.70 76.35 78.85 78.46 77.60
Decision tree 79.69 79.38 84.65 74.52 81.93 79.58
Gradient boosting 80.40 81.22 82.57 77.88 81.89 80.23
Random forest 81.51 83.19 82.16 80.77 82.67 81.46
XGboost 80.40 81.22 82.57 77.88 81.89 80.23
AdaBoost 79.96 81.86 80.50 79.33 81.17 79.91
Dataset 2 MLP 89.36 89.36 89.36 90.01 89.36 89.68
SVM 92.62 92.62 92.62 93.90 92.62 93.26
LR 92.88 92.88 92.88 94.28 92.88 93.58
Decision tree 85.96 85.96 85.96 86.27 85.96 86.12
Gradient boosting 92.41 92.41 92.41 93.95 92.41 93.18
Random forest 89.36 89.36 89.36 90.01 89.36 89.68
XGboost 92.36 92.36 92.36 93.94 92.36 93.15
AdaBoost 89.35 89.35 89.35 90.01 89.35 89.68

Bold values highlight the best results for the two studied datasets