Skip to main content
. 2021 May 18;106(2):1453–1475. doi: 10.1007/s11071-021-06504-1

Table 5.

Experimental results of studied feature selection algorithms for dataset 1

Feature selection + classifier Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
SFS+MLP 82.41 84.32 82.57 82.21 83.44 82.39
SFS+SVM 75.72 78.7 75.1 76.44 76.86 75.77
SFS+LR 79.29 85.58 73.86 85.58 79.29 79.72
SFS+DT 80.4 80.97 82.99 77.4 81.97 80.2
SFS+GB 81.07 84.21 79.67 82.69 81.88 80.97
SFS+RF 81.96 83.19 82.16 80.77 82.67 81.46
SFS+XGboost 80.85 81.38 83.4 77.88 82.38 80.64
SFS+AdaBoost 81.07 81.97 82.99 78.85 82.47 80.92
SFFS+MLP 81.96 83.61 82.57 81.25 83.09 81.91
SFFS+SVM 75.72 78.7 75.1 76.44 76.86 75.77
SFFS+LR 79.73 86.41 73.86 86.54 79.64 80.2
SFFS+DT 80.4 80.97 82.99 77.4 81.97 80.2
SFFS+GB 80.62 82.63 80.91 80.29 81.76 80.6
SFFS+RF 82.41 84.32 82.57 82.21 83.44 82.39
SFFS+XGboost 82.85 84.75 82.99 82.69 83.86 82.84
SFFS+AdaBoost 81.07 81.45 83.82 77.88 82.62 80.85
SBS+MLP 80.18 81.15 82.16 77.88 81.65 80.02
SBS+SVM 75.72 78.7 75.1 76.44 76.86 75.77
SBS+LR 77.73 80.26 77.59 77.88 78.9 77.74
SBS+DT 80.62 81.3 82.99 77.88 82.14 80.44
SBS+GB 81.07 84.21 79.67 82.69 81.88 81.18
SBS+RF 82.63 84.98 82.16 83.17 83.54 82.67
SBS+XGboost 82.85 84.75 82.99 82.69 83.86 82.84
SBS+AdaBoost 83.3 85.17 83.4 83.17 84.28 83.29
NSGA-II+MLP 83.52 85.09 82.91 84.19 83.98 83.55
NSGA-II+SVM 79.51 79.83 81.20 77.67 80.51 79.44
NSGA-II+LR 83.07 4.96 82.05 84.19 83.48 83.12
NSGA-II+DT 84.51 82.8 88.46 80 85.54 84.23
NSGA-II+GB 84.41 82.28 89.32 79.07 85.66 84.19
NSGA-II+RF 83.74 85.78 82.48 85.12 84.10 83.8
NSGA-II+XGboost 83.52 85.71 82.05 85.12 83.84 83.58
NSGA-II+AdaBoost 85 90 89.32 85 86.01 87.16

Bold value indicates the highest result