Skip to main content
. 2021 May 18;106(2):1453–1475. doi: 10.1007/s11071-021-06504-1

Table 6.

Experimental results of studied feature selection algorithms for dataset 2

Feature selection + classifier Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUC (%)
SFS+MLP 92.62 92.62 92.62 93.90 92.62 93.26
SFS+SVM 92.88 92.88 92.88 94.91 92.88 93.89
SFS+LR 93.75 93.75 93.75 94.90 93.75 94.32
SFS+DT 86.47 86.47 86.47 87.24 86.47 86.86
SFS+GB 92.51 92.51 92.51 93.92 92.51 93.22
SFS+RF 92.62 92.62 92.62 93.90 92.62 93.26
SFS+XGBoost 92.51 92.51 92.51 93.94 92.51 93.23
SFS+AdaBoost 92.52 92.52 92.52 93.91 92.52 93.22
SFFS+MLP 92.62 92.62 92.62 93.90 92.62 93.26
SFFS+SVM 94.01 94.01 94.01 99.60 94.01 96.81
SFFS+LR 95.31 95.31 95.31 98.2 95.31 96.75
SFFS+DT 92.61 92.61 92.61 93.90 92.61 93.26
SFFS+GB 92.62 92.62 92.62 93.90 92.62 93.26
SFFS+RF 91.68 91.68 91.68 92.77 91.68 92.23
SFFS+XGBoost 95.10 95.10 95.10 98.25 95.10 96.67
SFFS+AdaBoost 95.34 95.34 95.34 98.23 95.34 96.79
SBS+MLP 91.68 91.68 91.68 92.77 91.68 92.23
SBS+SVM 92.88 92.88 92.88 94.91 92.88 93.89
SBS+LR 95.12 95.12 95.12 98.20 95.12 96.66
SBS+DT 86.47 86.47 86.47 87.24 86.47 86.86
SBS+GB 92.51 92.51 92.51 93.92 92.51 93.22
SBS+RF 92.62 92.62 92.62 93.90 92.62 93.26
SBS+XGBoost 95.34 95.34 95.34 98.23 95.34 96.79
SBS+AdaBoost 91.68 91.68 91.68 92.77 91.68 92.23
NSGA-II+MLP 91.64 91.64 91.64 95.26 91.64 93.45
NSGA-II+SVM 95.10 95.10 95.10 98.25 95.10 96.67
NSGA-II+LR 94.76 94.76 94.76 98.24 94.76 96.50
NSGA-II+DT 92.52 92.52 92.52 93.91 92.52 93.22
NSGA-II+GB 95.34 95.34 95.34 98.23 95.34 96.79
NSGA-II+RF 92.44 92.44 92.44 93.91 92.44 93.17
NSGA-II+XGBoost 92.62 92.62 92.62 93.90 92.62 93.26
NSGA-II+AdaBoost 95.56 95.56 95.56 98.19 95.56 96.87

Bold value indicates the highest result