Skip to main content
. 2020 Aug 12;15(3):346–353. doi: 10.5009/gnl20186

Table 1.

Clinical Studies of Artificial Intelligence for the Detection of Colorectal Polyps

Author (year) Study design Algorithm type Dataset Processing time Results
Wang et al.
(2019) 21
Randomized
controlled study
Convolutional neural network 5,545 Images 25 fps with 77 ms latency 9% Increase of ADR
Klare et al.
(2019) 22
Prospective
In vivo
Convolutional neural network 55 Live colonoscopies 50 ms latency Sensitivity 75%/polyp
ADR 29% (31% in endoscopist)
Urban et al.
(2018) 20
Retrospective
Ex vivo
Convolutional neural network Image dataset: 8,641 polyps
Video: 20 colonoscopies
10 ms/frame
(real-time)
Image dataset: accuracy 96.4%
AUROC 0.991
Misawa et al.
(2018)19
Retrospective
Ex vivo
Convolutional neural network 135 Video clips No description Sensitivity 90%
Specificity 63.3%
Accuracy 76.5%
Zhang et al.
(2017) 23
Retrospective
Ex vivo
Convolutional neural network 150 Random+30 NBI images No description Sensitivity 98%
PPV 99%
AUROC 1.00
Yu et al.
(2017) 24
Retrospective
Ex vivo
Convolutional neural network ASU-Mayo 20 videos 1.23 s/frame Sensitivity 7%
PPV 88%
Angermann et al. (2017) 25 Retrospective
Ex vivo
Hand-crafted No description 20–185 ms
0.3-1.8 s delay
Sensitivity 100%/polyp
PPV50%
Tajbakhsh et al. (2015) 26 Retrospective
Ex vivo
Hand-crafted No description 2.6 s/frame Sensitivity 48% on proprietary database
Sensitivity 88% in CVC-colon DB
Karkanis et al. (2003) 18 Retrospective
Ex vivo
Hand-crafted 180 Still images 1.5 m/video Sensitivity 94%
Specificity 99%

ADR, adenoma detection rate; AUROC, area under the receiver operating characteristics; NBI, narrow band imaging; PPV, positive predictive value; ASU, Arizona State University; CVC, computer vision center; DB, data base.