
[ Asthma Original Research ]
Novel Machine Learning Can Predict Acute
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BACKGROUND: Asthma exacerbations result in significant health and economic burden, but
are difficult to predict.

RESEARCH QUESTION: Can machine learning (ML) models with large-scale outpatient data
predict asthma exacerbations?

STUDY DESIGN AND METHODS: We analyzed data extracted from electronic health records
(EHRs) of asthma patients treated at the Cleveland Clinic from 2010 through 2018. De-
mographic information, comorbidities, laboratory values, and asthma medications were
included as covariates. Three different models were built with logistic regression, random
forests, and a gradient boosting decision tree to predict: (1) nonsevere asthma exacerbation
requiring oral glucocorticoid burst, (2) ED visits, and (3) hospitalizations.

RESULTS: Of 60,302 patients, 19,772 (32.8%) had at least one nonsevere exacerbation
requiring oral glucocorticoid burst, 1,748 (2.9%) requiring and ED visit and 902 (1.5%)
requiring hospitalization. Nonsevere exacerbation, ED visit, and hospitalization were pre-
dicted best by light gradient boosting machine, an algorithm used in ML to fit predictive
analytic models, and had an area under the receiver operating characteristic curve of 0.71
(95% CI, 0.70-0.72), 0.88 (95% CI, 0.86-0.89), and 0.85 (95% CI, 0.82-0.88), respectively. Risk
factors for all three outcomes included age, long-acting b agonist, high-dose inhaled gluco-
corticoid, or chronic oral glucocorticoid therapy. In subgroup analysis of 9,448 patients with
spirometry data, low FEV1 and FEV1 to FVC ratio were identified as top risk factors for
asthma exacerbation, ED visits, and hospitalization. However, adding pulmonary function
tests did not improve models’ prediction performance.

INTERPRETATION: Models built with an ML algorithm from real-world outpatient EHR data
accurately predicted asthma exacerbation and can be incorporated into clinical decision tools
to enhance outpatient care and to prevent adverse outcomes.
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Asthma, a common disease, is associated with significant
health and economic burden. In the United States,
nearly half of the 25 million people with asthma report
one or more asthma attacks every year.1,2 In fact, asthma
resulted in about 307.8 physician office visits, 55.9 ED
visits, and 5.9 hospital admissions per 10,000 civilian
population in 2016,1 with an estimated direct and
indirect cost of $80 billion in the United States alone in
2013.3 Despite guideline-directed therapy, more than
60% of individuals with asthma continued to report that
their asthma was uncontrolled. According to the Global
Initiative for Asthma guidelines,4 patients with asthma
should undergo routine risk assessment and their plan of
care should be adjusted based on their asthma control
and risk of acute exacerbation to prevent adverse
outcomes.

Recently, the US health-care system has shifted toward
pay for performance, with the goal of improving patient
outcome and reducing the costs of asthma care.
Outcome measures such as asthma-related ED visits and
hospitalizations are monitored closely.5 Therefore,
identifying populations at high risk for decompensation
is imperative for early individualized interventions to
reinforce asthma action plans and to determine the need
for escalation of therapy. Ultimately, the goal is to
reduce disease burden on both individuals and the
health-care system.

Unfortunately, acute asthma exacerbations can be
difficult to predict. In the past, several studies
developed asthma exacerbation prediction models with
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traditional statistical methods and known risk factors,
including FEV1, smoking status, BMI, Asthma Control
Questionnaire score, severity of asthma score, and
history of severe acute exacerbation; however, the
performances of these models were suboptimal.6-8

Machine learning (ML) is a field of artificial
intelligence (AI) that uses mathematical methods to
analyze the data. The prediction models built with ML
attempt to learn the relationships or patterns between
the input variables and specific outcome.9 ML
applications in the medical field have become more
popular, having been used to interpret ECG findings,10

to classify heart failure,11 and to predict diabetes
outcomes.12 Many studies also have used AI for
asthma diagnosis,13 severity classification,6 risk
stratification, and phenotype subcategorization.7,14 AI
also was used to predict risk of asthma-related
hospitalization at the time of ED encounter.15,16

Compared with traditional statistics, ML offers
advantages of higher accuracy and the capacity to
handle large-scale data. To our knowledge, ambulatory
data have not been studied with ML to predict the risk
of asthma exacerbation.

To address the knowledge gap, we aimed to develop ML
models with large-scale and real-world local data to
predict asthma exacerbations. We also evaluated the
performance and interpretability of the prediction
models derived from complicated mathematical ML
algorithms as compared with classic statistical methods
using logistic regression.
Methods
Study Design and Setting

Cleveland Clinic is a health-care system with more than 200 outpatient
sites and 15 hospitals in the United States. De-identified data of
patients with asthma seen within our system from 2010 through 2018
were extracted from electronic health records (EHRs) using eResearch
(Cleveland Clinic Enterprise Data Center) (e-Appendix 1). The study
was approved by the Cleveland Clinic Institutional Review Board.

Study Samples

We identified all patients ever diagnosed with asthma at the Cleveland
Clinic Health System using International Classification of Diseases,
Clinical Modification, codes (Ninth Revision, 493.xx; or Tenth
Revision, J45.xx) between 2010 and 2018. We limited our analysis to
patients 18 to 80 years of age who received asthma rescue or
controller medication for more than 6 months. We also excluded
pregnant women, active smokers, former smokers with a remote
smoking history of more than 10 pack-years, and patients with any
other chronic pulmonary diseases (e-Fig 1). We then replicated our
results in an independent database of 12,093 individuals seen for the
first time for asthma at the Cleveland Clinic Health System between
January 1, 2019, and November 15, 2020. Patients included in the
replicative 2019-2020 cohort were not included previously in the
2010-2018 cohort.

Predictors

Input variables for ML models included information on demographics,
clinical characteristics, laboratory test measurements, asthma
medication use, and comorbidities. Covariates were selected
according to theory, logic, and prior evidence (e-Table 1). Severe
asthma was identified by the need for high-dose inhaled
corticosteroids (HDiCS) with or without inhaled long-acting
b-agonists (LABAs), chronic systemic glucocorticoid therapy with
prescription of 3 months or longer, biological therapy, or the
presence in the EHR of an International Classification of Diseases,
Tenth Revision, Clinical Modification code of J45.5 (severe persistent
asthma). Subgroup analysis in patients with pulmonary function
testing (PFT) was performed separately to evaluate the independent
impact of spirometry.

Outcomes Measures

Nonsevere asthma exacerbation was defined as an exacerbation
requiring an oral glucocorticoid burst prescription that was limited
to fewer than 28 days, whereas severe exacerbation was defined as
an asthma exacerbation event requiring an ED visit or
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hospitalization. Three prediction models were built separately to
assess different outcomes of interests: oral glucocorticoid bursts, ED
visits, and hospitalization. In prediction models, we used binary
outcomes defined as whether a patient had events during the study
period.

Statistical Analysis
The dataset was split randomly into two groups to develop the models:
80% of the data served as a training set and 20% served as a validation
set. Predictive models were built with: (1) logistic regression, (2)
random forests, and (3) the light gradient boosting machine
(LightGBM) algorithm.17 Logistic regression analysis and random
forests were carried out or constructed with the Scikit-Learn package
in Python,18 whereas LightGBM is a widely used gradient-boosting
framework that uses a tree-based algorithm to perform multiclass
classification or regression.17 LightGBM was designed to be accurate,
efficient, and fast, which are advantages in handling large-scale data.
All models were optimized to avoid overfitting with parameters
tuning and restricting the decision tree’s freedom. As compared with
logistic regression and random forests, LightGBM used NaN to
represent missing values by default and were dealt separately than
zero, because missing values were interpreted as containing
information. For example, the algorithm considered no IgE data
chestjournal.org
(NaN) and IgE level of 0 as two different categories during tree
building.

The models were interpreted with the shapley additive explanations
(SHAP) approach, which is based on classic Shapley values from
game theory.19 This approach explained the models at the level of
individual patients based on additive of numeric computed credit—
SHAP value—of each feature. The SHAP value reflects the
contribution of each input feature (eg, age, BMI, race, and asthma
severity) in predicting the output results (eg, risk of asthma-related
ED visit) in each patient. It also integrated all computed local credits
of each feature that affected risk prediction for patients across the
entire database. SHAP values were generated by the Python Shap
version 0.35.0 package, and the results of model interpretation are
demonstrated graphically.

The performance of prediction models was evaluated by computing the
area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, positive predictive value, and negative
predictive value. The accuracy of probabilistic prediction was
measured using the Brier score (e-Table 2), which reflects the mean
squared error of the forecast. A lower Brier score value implies more
accurate prediction. All analyses were performed with Scikit-Learn
version 0.21.3 and Python version 3.6.6.
Results

Patient Characteristics

Between 2010 and 2018, inclusion criteria were met for
113,668 patients with asthma. Of these, we excluded
19,378 patients with chronic lung diseases, 27,459
patients with age outside of 18 to 80 years, and 6,529
pregnant women. A total of 60,302 patients were
included in the analysis. The baseline patient
characteristics are shown in Table 1. In this cohort, the
median age was 47.5 years (interquartile range, 60.7-29.4
years), 62.1% were women, 76.3% were White, and the
mean follow-up duration was 3 years (interquartile
range, 4.0-1.0 years). The most common comorbidities
were sinusitis, hypertension, and depression. Overall,
19,772 patients (32.8%) experienced at least one
nonsevere exacerbation and required oral glucocorticoid
burst therapy, 1,748 (2.9%) required an ED visit but not
hospitalization, and 902 (1.5%) were hospitalized. On
average, the asthma exacerbation rates were: 0.23
exacerbation per patient-year for oral glucocorticoid
bursts, 0.03 per patient-year for ED visits, and 0.007 per
patient-year for hospitalizations. The performance of
prediction models is summarized in Table 2.
Predicting Nonsevere Exacerbation

The important features that affect prediction models are
shown in Figure 1. The LightGBM prediction model for
nonsevere exacerbations showed an AUC of 0.71
(95% CI, 0.70-0.72), a sensitivity of 0.64 (95% CI, 0.62-
0.65), and a specificity of 0.67 (95% CI, 0.66-0.68). Given
the low prevalence of nonsevere exacerbations, the
negative predictive value (0.78 [95% CI, 0.77-0.78]), was
higher than the positive predictive value (0.51 [95% CI,
0.49-0.52]). The result is similar to that of logistic
regression and better than that of random forests. The
most important risk factors for nonsevere exacerbation
prediction were a history of sinusitis, treatment with
combination inhaled corticosteroids (iCS) and LABA or
with HDiCS, and leukotriene inhibitors (Fig 1, e-Fig 2).
Patients at higher risk for nonsevere exacerbation
showed higher BMI, higher peripheral absolute
eosinophil count, and lower albumin level than patients
who did not report exacerbations.

Predicting ED Visits

Figure 2A lists all variables important in the prediction
of asthma-related ED visits. The LightGBM model
showed good predictive value with an AUC of 0.88
(95% CI, 0.86-0.89), a sensitivity of 0.84 (95% CI, 0.81-
0.88), and a specificity of 0.76 (95% CI, 0.75-0.77).
Similar to the nonsevere exacerbation prediction model,
the negative predictive value was high (0.99 [95% CI,
0.99-0.99]), whereas the positive predictive value was
low (0.12 [95% CI, 0.11-0.13]). In ED visit prediction,
the LightGBM model outperformed logistic regression
and random forests algorithms.

The most important risk factors in ED visit prediction
were: younger age, Black race, a history of nonsevere
exacerbations requiring oral glucocorticoid bursts
during the study period, and a history of severe asthma
treated with combination iCS and LABA therapy or
1749
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TABLE 1 ] Clinical Characteristics of the Study Patients, According to Presence or Absence of Exacerbation

Characteristic
All Patients
(N ¼ 60,302)

No Exacerbation
(n ¼ 37,880)

Nonsevere Exacerbation
(n ¼ 19,772)a

Severe Exacerbation
(n ¼ 2,650)b P Value

Age, y 47.5 (60.7-29.4) 46.3 (60.4-28.5) 49.9 (61.7-33.2) 41.8 (55.4-25.6) < .001

Female sex 37,443 (62.1) 23,335 (61.6) 12,468 (63.1) 1,640 (61.9) < .001

Race

White 45,998 (76.3) 29,003 (76.6) 15,580 (78.8) 1,415 (53.4) < .001

Black 9,259 (15.4) 5,528 (14.6) 2,743 (13.9) 988 (37.3)

Asian 800 (1.3) 528 (1.4) 247 (1.2) 25 (0.9)

Other 4,245 (7.0) 2,821 (7.4) 1,202 (6.1) 222 (8.4)

BMI, kg/m2 28.7 (34.3-24.4) 28.2 (33.8-24.0) 29.4 (35.0-25.1) 30.2 (36.9-25.4) < .001

Treatment

SABA 44,615 (74.0) 25,206 (66.5) 16,792 (84.9) 2,617 (98.8) < .001

LDiCS 34,384 (57.0) 17,910 (47.3) 14,340 (72.5) 2,134 (80.5) < .001

iCS þ LABA or HDiCS 33,871 (56.2) 17,550 (46.3) 14,201 (71.8) 2,120 (80.0) < .001

Chronic steroid 1,041 (1.7) 260 (0.7) 613 (3.1) 189 (7.1) < .001

Theophylline 199 (0.3) 62 (0.2) 99 (0.5) 38 (1.4) < .001

Leukotriene inhibitor 14,096 (23.4) 6,752 (17.8) 6,289 (31.8) 1,055 (39.8) < .001

Anti-IgE biological therapy 257 (0.4) 65 (0.2) 161 (0.8) 31 (1.2) < .001

Nasal steroids 35,028 (58.1) 18,363 (48.5) 14,521 (73.4) 2,144 (80.9) < .001

Nasal antihistamines 3,867 (6.4) 1,666 (4.4) 2,012 (10.2) 189 (7.1) < .001

Comorbidities

Hypertension 18,488 (30.7) 10,631 (28.1) 6,932 (35.1) 925 (34.9) < .001

Diabetes 6,599 (10.9) 4,002 (10.6) 2,216 (11.2) 381 (14.4) < .001

Liver disease 2,962 (4.9) 1,591 (4.2) 1,225 (6.2) 146 (5.5) < .001

Renal failure 2,024 (3.4) 1,101 (2.9) 812 (4.1) 111 (4.2) < .001

Sleep apnea 8,983 (14.9) 4,928 (13.0) 3,548 (17.9) 507 (19.1) < .001

Depression 12,251 (20.3) 6,778 (17.9) 4,760 (24.1) 713 (26.9) < .001

GERD 16,296 (27.0) 8,844 (23.3) 6,648 (33.6) 804 (30.3) < .001

Sinusitis 20,827 (34.5) 10,080 (26.6) 9,663 (48.9) 1,084 (40.9) < .001

Anemia 7,940 (13.2) 4,237 (11.2) 3,231 (16.3) 472 (17.8) < .001

Data are presented as No. (%) or median (interquartile range), unless otherwise indicated. GERD ¼ gastroesophageal reflux disease; HDiCS ¼ high-dose
inhaled corticosteroid; iCS¼ inhaled corticosteroid; LABA ¼ long-acting b-agonist; LDiCS ¼ low-dose inhaled corticosteroid; SABA ¼ short-acting
b-agonist.
aRequiring oral prednisone bursts, but no ED visits or hospitalizations.
bRequiring ED visits or hospitalizations.
HDiCS (e-Fig 3). Similar to the nonsevere exacerbation
prediction model, higher IgE values, higher peripheral
blood absolute eosinophil counts, and lower albumin
levels were associated with higher risk for ED visits.

To explain the model prediction value better, we used an
example to predict the need for an ED visit in one
patient, as demonstrated in Figure 2B. We demonstrated
that the patient’s risk for ED visits was increased
compared with base value because of the cumulative
effects of various features, including history of severe
asthma, age of 25.3 years, Black race, an IgE level of
1750 Original Research
2,491 IU/mL, and a history of nonsevere exacerbations
requiring oral glucocorticoid bursts.
Predicting Hospitalization

The most important variables for hospitalization
prediction are shown in Figure 3A. The LightGBM
model showed an AUC of 0.85 (95% CI, 0.82-0.88), a
sensitivity of 0.86 (95% CI, 0.81-0.91), and a specificity
of 0.73 (95% CI, 0.72-0.73). Similarly, the low prevalence
of hospitalizations resulted in a high negative prediction
rate (1 [95% CI, 1-1]) and a low positive prediction rate
[ 1 5 9 # 5 CHE ST MA Y 2 0 2 1 ]
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(0.05 95% CI, [0.04-0.05]). Similar to ED visit models,
LightGBM outperformed logistic regression and random
forest algorithms in predicting hospitalization.

Similar to our ED visit model, the most important risk
factors for hospitalization were a history of nonsevere
exacerbations requiring oral glucocorticoid bursts and
treatment with combination iCS and LABA or with
HDiCS. Lower hemoglobin level and higher BMI also
were related to a higher risk of hospitalization. The age-
related risk of hospitalization followed a U-shape
distribution, in which the risk was highest among young
patients (younger than 20 years) and elderly patients
(older than 70 years). Other important features are
shown in e-Figure 4. For example, a 35-year-old White
woman with a high BMI and a history of severe asthma
requiring chronic steroid use, iCS plus LABA or HDiCS,
a prior history of nonsevere exacerbations requiring oral
glucocorticoid bursts, and leukotriene receptor
antagonists was found to predict a high risk for
hospitalization (Fig 3B). The plot demonstrated the
variables and their impact on individual risk prediction.

Subgroup Analysis in Patients Who Underwent
Pulmonary Function Tests

In the subgroup analysis of 9,448 patients with
spirometry data, low FEV1 and FEV1 to FVC ratio were
identified as top risk factors for both ED visit and
hospitalization prediction (e-Figs 5, 6). However, adding
spirometry data did not significantly improve our model
prediction performance (e-Table 3).

Models Performances in a Replicative Cohort

We evaluated the performance of prediction
models built with data from individuals seen
between 2010 and 2018 (n ¼ 60,302) (e-Fig 7) in
a new cohort of 12,093 patients seen for the first
time for asthma between January 1, 2019, and
November 15, 2020, as an independent test dataset
and found that the models’ performances were
similar in both cohorts (e-Table 4).
Discussion
In this study, we used ML algorithms and readily
available outpatient data from 60,302 asthma patients to
build models to predict asthma exacerbation and health-
care use. Compared with classic logistic regression,
LightGBM demonstrated superior performance in
predicting asthma-related emergency visits and
hospitalization with improved AUC. The shared risk
factors for nonsevere asthma exacerbation, ED visits,
1751
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Figure 1 – A-C, Prediction model of nonsevere asthma exacerbation. Interpretation of model built with gradient boosting machine algorithm. A, Top 20
risk factors, with iCS þ inhaled LABA or HDiCS being the most important one: present (pink) increased the risk of exacerbation, whereas absent (blue)
decreased it. B, C, Plots of relative risk (log SHAP value) and age (B) and BMI (C) showed that advanced age and higher BMI associated with higher
risk of nonsevere asthma exacerbation. †Race: 0 ¼ other, 1 ¼ White, 2 ¼ Black, and 3 ¼ Asian. ‡Smoking status: 0 ¼ other, 1 ¼ never smoker, 2 ¼
active smoker, and 3 ¼ former smoker. Tx variables were: 1 ¼ present or 0 ¼ absent. Lab variables were the value of the tests. GERD ¼ gastro-
esophageal reflux disease; HDiCS ¼ high-dose inhaled corticosteroid; Hgb ¼ hemoglobin; iCS ¼ inhaled corticosteroid; Lab ¼ laboratory; LABA ¼
long-acting inhaled b-agonist; SHAP ¼ shapley additive explanation; Tx ¼ treatment.
and hospitalizations were frequent exacerbation
requiring oral glucocorticoid bursts, severe asthma, and
age. To our knowledge, we are the first to use outpatient
data to build predictive models that enable primary care
1752 Original Research
providers to identify high-risk asthma patients. ML
algorithms can be incorporated into EHRs to build
predictive models using real-world data that account for
local population characteristics. These models
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Figure 2 – A, B, Prediction model of ED visits. Interpretation of model built with gradient-boosting machine algorithm. A, Top 3 risk factors are the need
for oral glucocorticoid bursts, younger age, and Black race: present (pink) increased the risk of ED visit, whereas absent (blue) decreased it. B, Predicted
high-risk patient that explained, with additive factors of variables, the width of bar indicated relative impact of one variable. †Race: 0 ¼ other, 1 ¼White,
2 ¼ Black, and 3 ¼ Asian. ‡Smoking status: 0 ¼ other, 1 ¼ never smoker, 2 ¼ active smoker, and 3 ¼ former smoker. Tx variables were 1 ¼ present or
0¼ absent. Lab variables were the value of the tests. FeNO¼ fractional exhaled nitric oxide; GERD¼ gastroesophageal reflux disease; HDiCS¼ high-dose
inhaled corticosteroid; Hgb ¼ hemoglobin; iCS ¼ inhaled corticosteroid; Lab ¼ laboratory; LABA ¼ long-acting inhaled b-agonist; SHAP ¼ shapley
additive explanation; Tx ¼ treatment.
subsequently can be used in clinical decision tools at the
point of care to guide clinicians to improve patients’
care. In asthma, these clinical decision tools can help to
identify at-risk patients who might benefit from
escalation of therapy or referral to specialized asthma
centers. Theoretically, they also can be used to alert
patients about downtrends in their health conditions
and encourage them to seek medical attention. This
became possible because of the widespread use of EHRs
and their easy and instantaneous accessibility to
patients.

In a systematic review for prediction models of asthma
exacerbation, 24 prediction models were developed that
chestjournal.org
took into account the patient’s demographics, history,
PFT results, and asthma risk factors using traditional
statistics. These studies were validated externally with two
major cohorts in Europe.20 The performance of the
prediction models yielded AUCs ranging from 0.50 to
0.77. In contrast, our study used outpatient data from
EHRs on more than 60,000 patients and included clinical
data such as laboratory measurements and spirometry.
More importantly, our models included asthma-specific
information such as asthma severity, medication use, and
asthma-related laboratory values. Our model’s inclusion
of robust clinical parameters available in the EHR could
account for the significant improvement in our prediction
model compared with others.
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Figure 3 – A, B, Prediction model of hospitalization. Interpretation of model built with gradient boosting machine algorithm. A, SHAP summary plot for
hospitalization prediction model ranking from the covariable with highest impact. The plot was colored according to the value of covariables, with pink
indicating a higher value and blue indicating a lower value. B, Example of a predicted high-risk patient with interpretable additive effects of various
variables. †Race: 0 ¼ other, 1 ¼ White, 2 ¼ Black, and 3 ¼ Asian. ‡Smoking status: 0 ¼ other, 1 ¼ never smoker, 2 ¼ active smoker, and 3 ¼ former
smoker. Tx variables were 1¼ present or 0¼ absent. Lab variables were the value of the tests. CS¼ corticosteroid; FeNO¼ fractional exhaled nitric oxide;
GERD ¼ gastroesophageal reflux disease; HDiCS ¼ high-dose inhaled corticosteroid; Hgb ¼ hemoglobin; iCS ¼ inhaled corticosteroid; LABA ¼ long-
acting inhaled b-agonist; LTRA ¼ leukotriene receptor antagonist.
Except for fractional exhaled nitric oxide (FENO), prior
asthma predictions models did not include biomarkers
such as IgE or eosinophil count in risk prediction,
despite the strong association of asthma exacerbations
with these variables.21,22 Our study included these
variables and enhanced the ability of personalized
prediction especially in those with a type 2 inflammation
phenotype.23 Additionally, our results showed that
higher albumin was related to lower risk of asthma
exacerbation. The relationship between albumin and
exacerbation had not been established in asthma, but
1754 Original Research
severe hypoalbuminemia, commonly seen in chronic
illnesses, was reported previously as an independent risk
factors for acute respiratory failure in COPD.24 It was
unclear in our study whether low albumin was
associated directly with severe asthma or was the
consequence of other chronic comorbidities.

In an outpatient setting, preventing acute exacerbations
and avoiding adverse outcomes have always been the
primary goals of physicians taking care of asthma
patients. Classical prediction models usually were built
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using published literature from the ED or extrapolated
from clinical trials, which may not be generalizable to
local populations.20 In contrast, our approach has the
advantage of using locally generated data that takes into
consideration demographic distributions and local
practice habits that could be extrapolated to a
physician‘s individual community. We also graphically
demonstrated the interpretability of complicated ML
algorithms by plotting the individual risks prediction.
These features highlight the population of asthma
patients for whom targeted interventions may alter
patient-related outcomes significantly.

Compared with traditional statistics, the use of AI
provides an alternative approach to enhance the
accuracy of prediction models. It is worth noting that
ML emphasizes optimization of performance and does
not require presumptions, whereas traditional statistical
methods usually focus on verifying specific hypothesis
(eg, whether high FENO increase the risk of asthma
exacerbation).25 To compare ML with traditional
statistical methods in an asthma population, Goto et al15

built hospitalization prediction models at EDs and
included 3,896 ED visits with variables that included
demographics, vitals, chief symptoms, and
comorbidities. The author used several ML algorithms
(least absolute shrinkage and selection operator
[LASSO] regression, random forests, gradient-boosted
decision trees, and deep neural networks) to compare
with a traditional logistic regression model and
concluded that ML algorithms had higher accuracy.
Among ML algorithms, Patel et al16 showed gradient-
boosting algorithms to have the highest accuracy
compared with decision trees, logistic regression, and
random forests in predicting hospitalization for
pediatric asthma patients in the ED. Our study
demonstrated superior results of the LightGBM
algorithm in ED visit and hospitalization prediction;
however, this was not the case for nonsevere
exacerbation prediction. This could be related, at least in
part, to prevalence of predicted outcome, which was
similar to a previous study.26

Another strength of ML is the capability of handling
massive amounts of data, because “velocity” is one of the
key components of big data research. With the
increasing speed of data accumulation, ML has a
significant advantage over traditional statistics with the
capability of improving accuracy with new input data.
Models like ours can serve as clinician decision support
tools in real time27 and have been studied for real-life
chestjournal.org
asthma outpatient monitoring. Finkelstein and Jeong28

used telemonitoring results, including patient’s
symptoms and daily asthma diary findings, to build
prediction modeling that identified asthma
exacerbations in real time with a sensitivity 0.80 to 1 and
specificity of 0.77 to 1. In contrast to the study by
Finkelstein and Jeong, our study used rich EHR data that
was readily available at the point of care to generate
general risk profiles. Our data also were independent of
patient effort and did not require telemonitoring, which
avoided concerns regarding privacy violations.

Additionally, our study has several strengths. First,
sample size is key to building an accurate ML model. To
our knowledge, this is the largest-scale asthma
exacerbation prediction model built with ML
algorithms, which have the ability to improve accuracy
continually by expanding the data over time.29 Second,
our data were collected directly from day-to-day patient
care EHRs instead of randomized control trials. Out data
reflect the variety of real-world patient care and include
all asthma patients with variable severity. Third, we
unrevealed the so-called black box myth with
interpretable tools. The black box effect refers to the
phenomena in which one inputs the data, and the
algorithm spits out the results. There are serious
concerns because of lack of transparency regarding how
these algorithms predicted their decision.30 To solve the
problem, we used SHAP to demonstrate graphically the
interaction between the risk and variables19 and
significantly improved the transparency of ML models.

Our study has several limitations. Our models, which
used EHR data from a single health-care system, may be
useful for local patients, but may not be generalizable to
other health-care institutions. It also is possible that the
number of asthma exacerbations, ED visits, and
hospitalizations may be underestimated, and therefore
subject our results to bias because patients may seek
urgent care in other health-care organizations in
northeast Ohio. As in many other EHR-based studies,
the identification of medical conditions—asthma, in our
case—is based on International Classification of Diseases
codes, and therefore can be limited by the clinicians’
coding habits. In this study, we used stringent criteria
and a multistep method to define asthma properly and
to avoid bias introduced by including patients with
smoking-related airway obstruction or other concurrent
chronic lung diseases. However, disease severity, which
commonly is based on well-defined consensus
statements, cannot be defined easily in EHR-based
1755

http://chestjournal.org


research. In this case, we used the intensity of medical
therapy as a marker of asthma severity. We defined
severe asthma by the need for HDiCS therapy with a
second controller medication instead of standardized
definitions31 because of limited information on asthma
control. EHR-based research is based on real-world
data, but commonly is limited by missing clinical
information. For example, only 15.7% of patients
included in our analysis had spirometry measurements
available, and the Asthma Control Test, which is used
commonly to define asthma control, also was missing
in a large proportion of patients. We believe that the
use of the Asthma Control Test as a tool to monitor
asthma control and compliance with asthma
guidelines is extremely important to the care of
patients with asthma and always should be
encouraged. We did not include anti-IL5 biologic
asthma therapy as a covariate in our analysis because
a very limited number of patients received such
therapy in our asthma center before 2018. The impact
of anti-IL5 therapy on predictive models of asthma
exacerbations continues to evolve as more patients are
administered this therapy. We also acknowledge that
the lack of information on asthma control and
guideline compliance negatively impacted the
performance of our models and that the analysis of
the original and replicative cohorts are limited by
their cross-sectional nature. To account for the
duration of follow-up, we assessed outcomes as a
function of the duration of follow-up and presented
those outcomes per patient-year. Our models also
were impacted negatively by the quality of clinical
information. For example, information regarding
medication use in our study was based on medication
prescribed through the EHR, rather than dispensed by
a pharmacy. As the EHR evolves, it is expected that
1756 Original Research
information on dispensed medications will be available
readily in the future to help improve predictive
models and to circumvent this important limitation.

ML models are focused on accuracy and cannot define
causality. For example, hemoglobin was identified as
one of the important factors affecting our models, but
it was unknown whether the laboratory value was the
cause or the consequence of asthma. In addition, we
have PFT and FeNO data for only a small group of
patients. However, although our data are limited,
including PFT results did not significantly improve the
outcome prediction in our subgroup analysis, despite
our finding that low FEV1 and FEV1 to FVC ratio
were associated with a higher risk of exacerbations.
This could be related to the fact that only 16% of
patients in our database had PFT results available.
However, our study showed that in patients with low
FEV1 or FEV1 to FVC ratio, these features
significantly affect their individual risk prediction. In
real-world EHRs, missing data are inevitable and may
vary depending on the patients’ disease severity,
health-care providers’ preferences, and variation
between local guidance and third-party payers. In
traditional statistics, most missing values are handled
by imputation or exclusion. The tree-based ML
algorithms like LightGBM or extreme gradient
boosting (XGBOOST) possess the advantage of
identifying missing values as a unique entity and thus
increase the overall performance of the prediction
model.

In conclusion, we built accurate models from real-world
EHR data that can be used to predict asthma
exacerbation. Future studies using targeted interventions
that apply these risk prediction models to improve
patient care are needed.
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