Skip to main content
. 2021 Jan 10;159(5):1747–1757. doi: 10.1016/j.chest.2020.12.051

Table 2.

Prediction Performance of ML Models

Prediction Model AUC P Value Sensitivity Specificity PPV NPV
Nonsevere exacerbation
 Logistic regression 0.71 (0.70-0.72) Reference 0.60 (0.59-0.62) 0.71 (0.70-0.72) 0.52 (0.51-0.54) 0.77 (0.76-0.78)
 Random forest 0.68 (0.67-0.69) < .01 0.60 (0.58-0.61) 0.67 (0.66-0.68) 0.49 (0.48-0.50) 0.76 (0.75-0.77)
 LightGBM 0.71 (0.70-0.72) .44 0.64 (0.62-0.65) 0.67 (0.66-0.68) 0.51 (0.49-0.52) 0.78 (0.77-0.78)
ED visit
 Logistic regression 0.78 (0.76-0.80) Reference 0.67 (0.62-0.71) 0.77 (0.76-0.77) 0.10 (0.09-0.11) 0.98 (0.98-0.99)
 Random forest 0.84 (0.82-0.86) .17 0.75 (0.71-0.79) 0.78 (0.77-0.79) 0.12 (0.11-0.13) 0.99 (0.98-0.99)
 LightGBM 0.88 (0.86-0.89) < .01 0.84 (0.81-0.88) 0.76 (0.75-0.77) 0.12 (0.11-0.13) 0.99 (0.99-0.99)
Hospitalization
 Logistic regression 0.81 (0.77-0.84) Reference 0.76 (0.70-0.82) 0.74 (0.73-0.74) 0.04 (0.04-0.05) 1 (0.99-1)
 Random forest 0.79 (0.76-0.83) .47 0.59 (0.52-0.66) 0.86 (0.85-0.87) 0.06 (0.05-0.07) 0.99 (0.99-0.99)
 LightGBM 0.85 (0.82-0.88) < .01 0.86 (0.81-0.91) 0.73 (0.72-0.73) 0.05 (0.04-0.05) 1 (1-1)

Data are presented as No. (%) or median (interquartile range). AUC = area under the receiver operating characteristic curve; LightGBM = light gradient boosting machine; ML = machine learning; NPV = negative predictive value; PPV = positive predictive value.