Table 2.
Prediction Performance of ML Models
Prediction Model | AUC | P Value | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|
Nonsevere exacerbation | ||||||
Logistic regression | 0.71 (0.70-0.72) | Reference | 0.60 (0.59-0.62) | 0.71 (0.70-0.72) | 0.52 (0.51-0.54) | 0.77 (0.76-0.78) |
Random forest | 0.68 (0.67-0.69) | < .01 | 0.60 (0.58-0.61) | 0.67 (0.66-0.68) | 0.49 (0.48-0.50) | 0.76 (0.75-0.77) |
LightGBM | 0.71 (0.70-0.72) | .44 | 0.64 (0.62-0.65) | 0.67 (0.66-0.68) | 0.51 (0.49-0.52) | 0.78 (0.77-0.78) |
ED visit | ||||||
Logistic regression | 0.78 (0.76-0.80) | Reference | 0.67 (0.62-0.71) | 0.77 (0.76-0.77) | 0.10 (0.09-0.11) | 0.98 (0.98-0.99) |
Random forest | 0.84 (0.82-0.86) | .17 | 0.75 (0.71-0.79) | 0.78 (0.77-0.79) | 0.12 (0.11-0.13) | 0.99 (0.98-0.99) |
LightGBM | 0.88 (0.86-0.89) | < .01 | 0.84 (0.81-0.88) | 0.76 (0.75-0.77) | 0.12 (0.11-0.13) | 0.99 (0.99-0.99) |
Hospitalization | ||||||
Logistic regression | 0.81 (0.77-0.84) | Reference | 0.76 (0.70-0.82) | 0.74 (0.73-0.74) | 0.04 (0.04-0.05) | 1 (0.99-1) |
Random forest | 0.79 (0.76-0.83) | .47 | 0.59 (0.52-0.66) | 0.86 (0.85-0.87) | 0.06 (0.05-0.07) | 0.99 (0.99-0.99) |
LightGBM | 0.85 (0.82-0.88) | < .01 | 0.86 (0.81-0.91) | 0.73 (0.72-0.73) | 0.05 (0.04-0.05) | 1 (1-1) |
Data are presented as No. (%) or median (interquartile range). AUC = area under the receiver operating characteristic curve; LightGBM = light gradient boosting machine; ML = machine learning; NPV = negative predictive value; PPV = positive predictive value.