Skip to main content
. 2021 Apr 23;11:582470. doi: 10.3389/fphar.2020.582470

TABLE 3.

Performances (SVM and LR) of two active learning methods with single machine learning (ML) algorithms.

Two AL methods’ performances for SVM TP FP TN FN Recall Precision F-score Precision (recall = 0.99)
Uncertainty sampling, a single ML algorithm, and no validation data update 1st round 190 2 198 10 0.95 0.99 0.97 0.97
2nd round 134 0 200 66 0.67 1.00 0.80 0.94
Uncertainty sampling and random negative sampling, a single ML algorithm, and no validation data update 1st round 176 0 400 24 0.88 1.00 0.94 0.96
2nd round 138 0 400 62 0.69 1.00 0.82 0.94
Two AL methods’ performances for LG TP FP TN FN Recall Precision F-score Precision (Recall = 0.99)
Uncertainty sampling, a single ML algorithm, and no validation data update 1st round 187 7 193 13 0.94 0.97 0.95 0.96
2nd round 161 1 199 39 0.81 0.99 0.89 0.94
Uncertainty sampling and random negative sampling, a single ML algorithm, and no validation data update 1st round 176 5 395 24 0.88 0.97 0.92 0.95
2nd round 159 1 399 41 0.80 0.99 0.88 0.94