Skip to main content
. 2021 Apr 23;11:582470. doi: 10.3389/fphar.2020.582470

TABLE 4.

Performance (SVM and LR) of an active learning method with two separate machine learning (ML) algorithms.

Performance TP FP TN FN Recall Precision F-score Precision (Recall = 0.99)
Uncertainty sampling and random negative sampling, two separate ML algorithms, and no validation data update (SVM) ML1 1st round 178 0 400 22 0.89 1.00 0.94 0.96
2nd round 132 0 400 68 0.66 1.00 0.80 0.94
ML2 1st round 190 6 394 10 0.95 0.97 0.96 0.94
2nd round 150 0 400 50 0.75 1.00 0.86 0.94
Uncertainty sampling and random negative sampling, two separate ML algorithms, and no validation data update (LG) ML1 1st round 180 3 397 20 0.90 0.98 0.94 0.96
2nd round 142 2 398 58 0.71 0.99 0.83 0.93
ML2 1st round 182 0 400 18 0.91 1.00 0.95 0.95
2nd round 152 2 398 48 0.76 0.99 0.86 0.94