
Clinical Infectious Diseases

EDITORIAL COMMENTARY • cid 2021:72 (15 May) • 1823

E D I T O R I A L  C O M M E N T A R Y

 

Received 19 June 2020; editorial decision 25 June 2020; 
accepted 9 July 2020; published online July 15, 2020.

Correspondence: G.  D. Morse, University at Buffalo, 
Buffalo, Center for Integrated Global Biomedical Sciences, 
701 Ellicott Street, Buffalo, NY 14203 (emorse@buffalo.edu).

Clinical Infectious Diseases®  2021;72(10):1823–5
© The Author(s) 2020. Published by Oxford University Press 
for the Infectious Diseases Society of America. All rights 
reserved. For permissions, e-mail: journals.permissions@
oup.com.
DOI: 10.1093/cid/ciaa982

Strategies for Implementation Research to Investigate the 
Negative Pharmacokinetic Interaction Between Efavirenz 
and Dolutegravir
Gene D. Morse

University at Buffalo, Buffalo, New York, USA

(See the Brief Report Article by Haas and Acosta on pages 1820–2.)

Keywords.  dolutegravir; efavirenz; drug interaction; implementation research. 

The report from Haas and Acosta 
in this issue of Clinical Infectious 
Diseases presents a pharmacokinetic 
and pharmacogenomic analysis util-
izing plasma concentration and geno-
type data obtained during their study 
of healthy, white volunteers receiving 
efavirenz followed by dolutegravir. This 
study also examined the relationship of 
the CYP2B6 genotype polymorphism 
to the pharmacokinetic interaction be-
tween efavirenz and dolutegravir. The 
authors indicate that the safest strategy 
for using dolutegravir in a second-line 
regimen would be to switch directly 
from efavirenz-containing regimens 
only in individuals with an undetect-
able viral load. The implementation 
of this recommendation is likely to 
be variable among low- and middle-
income countries (LMICs) and would 
likely be facilitated by additional clin-
ical research.

EFAVIRENZ 
PHARMACOGENOMICS/
PHARMACOKINETICS AND 
LOWER DOLUTEGRAVIR 
EXPOSURE

This complex interaction occurs when 
prior efavirenz dosing in certain indi-
viduals is discontinued but sustained 
efavirenz plasma concentrations re-
sult because these individuals have a 
“slow metabolizer phenotype.” Frequent 
CYP2B6 polymorphisms, especially 
CYP2B6 516G→T (rs3745274, *6 al-
lele) and 983T→C (rs28399499, *9 
allele), identify slow metabolizers asso-
ciated with increased plasma efavirenz 
exposure, with slow metabolizer geno-
types are present in Asians (30%), 
Africans (25%), and Europeans (5%). 
Thus, a key point is to consider that 
this interaction may occur in 25%–30% 
of individuals receiving dolutegravir 
in a second-line regimen in LMICs. 
As a result of the prolonged decline in 
efavirenz plasma concentrations, hep-
atic enzyme induction persists, leading 
to lower dolutegravir plasma concentra-
tions. Based on these data, introducing 
dolutegravir at the recommended dose 
may result in “underdosing” in selected 
individuals. As this regimen switch may 
occur in some who may be failing their 
initial regimen, a question to consider is 
“How can this negative pharmacokinetic 
interaction be identified and potential 

drug resistance minimized when a 
switch to dolutegravir is planned in in-
dividuals in LMICs?”

LMICS AND CAPACITY 
TO CONDUCT TO CLINICAL 
RESEARCH TO MINIMIZE 
NEGATIVE OUTCOMES FROM 
THE EFAVIRENZ-DOLUTEGRAVIR 
INTERACTION

There has been substantial effort put 
into establishing LMIC laboratory cap-
acity to support human immunodefi-
ciency virus (HIV) pharmacokinetics 
and pharmacogenomics research. These 
efforts have been highlighted in reviews 
and individual examples of clinical 
pharmacology [1–12] and pharmaco-
genomics [8, 13–19] research programs 
that have been previously reported. The 
result of these capacity-building efforts, 
along with current funding to further 
expand research laboratory infrastruc-
ture, has led to LMIC opportunities that 
are now able to conduct implementa-
tion/translational research and inves-
tigate clinical challenges such as how 
to approach the efavirenz-dolutegravir 
negative pharmacokinetic interaction in 
clinical care settings. The additional la-
boratory capacity has been accompanied 
by mentored training of scientists and 
technical staff, further increasing the 
ability to conduct important clinical 
research.
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A REPRESENTATIVE 
IMPLEMENTATION RESEARCH 
APPROACH IN AFRICA

The next step in adapting these efavirenz 
and dolutegravir pharmacogenomic/
pharmacokinetic data to LMICs would 
be to (1) identify clinical sites where 
dolutegravir is being rolled out for 
first- and second-line HIV-1 therapy, 
(2) identify clinical research teams that 
have the capacity to conduct research 
protocols, (3) identify laboratories 
with pharmacogenomic assay cap-
ability (eg, polymerase chain reaction, 
next-generation sequencing) and drug 
assay capability to measure efavirenz 
and dolutegravir concentrations, and 
(4) establish a pharmacovigilance net-
work to provide a measure of quality 
assurance for similar studies across 
LMICs [20, 21]. All of these items are 
readily available in LMICs; however, 
some additional communication among 
programs would be needed to organize 
this type of implementation/transla-
tional research. Table 1 includes a rep-
resentative approach with groups that 
would be able to organize, fund, and 
evaluate dolutegravir use in second-
line regimens and identify key pro-
grammatic components that are still 

needed and can be developed through 
clinical research and education training 
programs. There are multiple regions, 
organizations, and clinical research sites 
that could also conduct this type of im-
plementation research. 

Some of these programs provide 
funding support for pilot research and 
could be organized in a manner that le-
verages the “in kind” resources offered by 
many of these initiatives.

CONCLUSIONS

The report of a negative pharmaco-
kinetic interaction between efavirenz 
and dolutegravir could have important 
clinical implications for second-line 
treatment of HIV infection in LMICs. 
However, additional studies are needed 
to examine the impact of this interaction 
on the success of dolutegravir-containing 
second-line regimens. Recent capacity 
building and program implementation 
efforts provide the infrastructure to con-
tinue this area of clinical research that 
is needed to determine the incidence of 
the slow metabolizer phenotype and the 
percentage of individuals who experience 
reduced dolutegravir plasma concentra-
tions, as well as the impact of these find-
ings on drug resistance and second-line 

treatment failure. Establishing a cross-
agency, multicenter study would be well-
positioned to examine these questions 
and provide additional guidance for 
regimen selection, dolutegravir dosing, 
and clinical monitoring.
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