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Abstract

Background: Achieving food security remains a key challenge for public policy throughout the world. As such,
understanding the determinants of food insecurity and the causal relationships between them is an important
scientific question. We aim to construct a Bayesian belief network model of food security in rural South Africa to act
as a tool for decision support in the design of interventions.

Methods: Here, we use data from the Agincourt Health and Socio-demographic Surveillance System (HDSS) study
area, which is close to the Mozambique border in a low-income region of South Africa, together with Bayesian
belief network (BBN) methodology to address this question.

Results: We find that a combination of expert elicitation and learning from data produces the most credible set of
causal relationships, as well as the greatest predictive performance with 10-fold cross validation resulting in a Briers
score 0.0846, information reward of 0.5590, and Bayesian information reward of 0.0057. We report the resulting
model as a directed acyclic graph (DAG) that can be used to model the expected effects of complex interventions
to improve food security. Applications to sensitivity analyses and interventional simulations show ways the model
can be applied as tool for decision support for human experts in deciding on interventions.

Conclusions: The resulting models can form the basis of the iterative generation of a robust causal model of
household food security in the Agincourt HDSS study area and in other similar populations.
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Background
The Food and Agriculture Organization of the United Na-
tions defines food security as “access of all people at all
times to sufficient, nutritionally adequate, and safe food,
without undue risk of losing such access” [1]. Many coun-
tries have food-insecure populations but globally the num-
ber of undernourished people is falling. However, the
World Food Summit and the Millennial Development
Goal 1.C to halve the proportion of people who suffer

from hunger between 1990 and 2015 was not achieved
and food insecurity remains an issue for many [2].
Prior to 1999, in South Africa 42% of the population

lived below the food poverty line as measured using a
quantitative method that relates monthly household food
expenses with food insecurity [3]. The number of food
insecure people in South Africa decreased between 1999
and 2008 [4] but over a third of children still had low
dietary diversity [4] (i.e. few different foods or food
groups eaten over a period of time) and the food inse-
curity rate in rural areas of South Africa is twice that of
urban areas [3]. Understanding the determinants of food
insecurity therefore remains an important question, even
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for middle-income countries such as South Africa, par-
ticularly in rural areas.
Here we use a methodology that allows us to consider

causal interactions between the multiple, interacting var-
iables involved in food security, applied to data from a
low resource, rural South African community. In par-
ticular, we construct belief networks between variables
using Bayesian reasoning and consider how these com-
pare with the community’s own beliefs about determi-
nants of food security. Such belief networks can be
interpreted, with policy implications drawn out, by non-
specialists, and as such we believe that the methodology
could usefully be applied more frequently in food secur-
ity research.

Study setting
The Agincourt Health and Socio-demographic Surveil-
lance System (HDSS) study area is located in a relatively
densely populated low-resource rural setting in rural
northeast South Africa close to the Mozambique border.
Originally the study area covered 57,600 people in 8900
household and 20 villages [5] but by 2011 it had increased
to 90,000 people in 16,000 households and 27 villages [6].
An annual survey of all households has been undertaken
since 1992, with full methodological details available else-
where [5, 6]. The study area is characterized by rudimen-
tary sanitation, poor quality education, and poor quality
land that makes agricultural farming difficult, alongside
limited healthcare and high unemployment.
Previous studies published on household food security

in the Agincourt HDSS study area include, the impacts of
adult mortality [7, 8] the impact of the food retail sector
[7], the quality of food security indicators [8], and how
household food security in the area varied over the 2008
financial crisis [9]. These studies have tended to use stand-
ard statistical methods in which e.g. a linear model is used
to establish the epidemiological relationship between a
proposed determinant and food security.

Community concerns
Community concern about food security was raised at
an MRC/Wits-Agincourt Unit Community Advisory
Group (CAG) meeting in 2015. The CAG is composed
of individuals who live in the Agincourt HDSS study
area and act as liaisons from the community to the re-
search unit. The perception of individuals within the
CAG was of food insecurity being a persistent and wide-
spread issue in the area, with high financial constraints,
intermittent water access, poor land quality, and the un-
fashionable status of subsistence farming amongst young
people making it difficult to attain enough food each
month to live a healthy and active lifestyle. The CAG
expressed frustration about not knowing where an inter-
vention might make a difference to food security.

Modelling interventions in complex systems using
Bayesian belief networks
While standard methodology has the benefit that the
presence or absence of certain relationships can be
hypothesised and statistically tested, this approach is
limited in what it is able to tell us about what is clearly a
complex system. In particular, we might expect on the
basis of expert opinion that there are relationships be-
tween the many interrelated characteristics of a house-
hold that contribute towards whether the household is
or is not food secure. This would mean that a policy
based on modification of one determinant might have
unexpected consequences due to the effects on other
factors. Bayesian belief networks give a graphical repre-
sentation of the probabilistic dependencies and indepen-
dencies in a system, presenting a many-to-many view
where each variable is taken as random variable which
has the potential to have a direct (probabilistic) relation-
ship with any other variable. Although we are interested
in food security as an outcome, we can make use of ob-
servations of any variables in the model to make infer-
ences relevant to any of the other variables. This is in
contrast to the many-to-one view of many other models
where we always have one dependent variable being in-
ferred from a group of observed independent variables.
The Bayesian belief network approach makes it possible
to capture the many and complex relationships expected
between variables.
A Bayesian belief network will potentially provide a

model of food security with greater ability to capture
causal effects and provide a basis for intervention than
we might otherwise have. It allows us to reason prob-
abilistically about the system, in particular to ask ques-
tions of how each variable impacts on each other
variable. Bayesian belief networks encode directional re-
lationships between multiple variables with associated
conditional probability distributions. They can then be
used to find how the likelihood of one variable having a
particular state or value changes given the states or
values of other variables in the network through the dir-
ect or indirect relationships they have with the variable
of interest. This allows us to make interventional, coun-
terfactual, and other more complicated queries of our
model [10].
Due to these qualities, Bayesian belief networks have

been successfully used in many research areas, including
for example semantic search [11], information retrieval
[12], analysis of gene expressions [13], medical diagnosis
[14], and filtering, smoothing, and prediction [15].
Barons et al. [16] applied the method to food security in
the UK. Here we build a Bayesian belief network model
with the specific aim of providing a causal representation
of the interrelations between various characteristics of
households in the Agincourt HDSS study area within
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the context of food security. Although we aim for the
resulting model to provide causal insights into the sys-
tem, we note that validating the accuracy of any causal
relationships the model implies is difficult, and it is best
viewed as a tool for decision support by human experts.
In subsequent sections, we give details of the construc-

tion of our specific Bayesian network from choosing the
variables, through learning the structure and parameters,
to seeking quantitative validation of the model. Finally,
we give some elementary applications of the networks in
interventional inferences.

Methods
Formal description of Bayesian belief networks
As discussed in the Introduction above, Bayesian net-
works are often used to give a representation of a set of
causal beliefs about the system, often initially obtained
from experts. We define our model as a finite set of ran-
dom variables V , which are also the vertices of a net-
work, together with a set of edges E⊂V �V . A link
from variable A to variable B (mathematically, ðA;BÞ∈E )
implies that A causes B, as well as that B is directly
probabilistically dependent on A.
Each of the possible states of each variable in the net-

work are encoded through conditional probability tables
(CPTs) for each variable. An entry in the CPT of a vari-
able contains the probability that the variable is in a par-
ticular state given its parents are each in particular states
of their own. For example, if the food security variable
had one direct parent, such as socio-economic status,
then the CPT for food security would contain probabil-
ities that the household is food insecure or food secure
given socio-economic status is high, that it is food inse-
cure or food secure given socio-economic status is low,
and so on. Which variables are linked to which other
variables forms the discrete structure of our model, and
the entries of the conditional probability tables are the
continuous parameters of our model.
While a full algorithmic description of Bayesian be-

lief networks is beyond the scope of this paper, many
excellent resources exist on details of the topic [17–
19]. For inferences performed on our data with com-
pleted network models, we obtained good perform-
ance from the use of the Lauritzen-Spiegelhalter (LS)
algorithm [20], as implemented by the gRain package
in the software R [21]. This algorithm is a specialised
variation of belief propagation, taking advantage of
the network structure to eliminate variables and sim-
plify the calculation of probability distributions when
making inferences on the likelihood of variables hav-
ing a particular value given the values other variables
in the network [20].

Overview of model building process
Here we provide a summary overview of the process
undertaken to build the Bayesian belief network model.
Further detail for each step is given in subsequent sub-
sections. The entire process is illustrated in Fig. 1.
Given the initial motivation for this study came from

the MRC/Wits-Agincourt Unit Community Advisory
Group (CAG), as discussed in the Introduction, we
would expect that using expert knowledge from mem-
bers of the community would help with learning the
structure of the network. This introduces a strong elem-
ent of community involvement in the work and, on the
assumption that such expert knowledge contains useful
information about the system, it can improve the possi-
bility of discovering causal structure, which is difficult to
achieve when learning from data alone [22].
For expert elicitation to work, there must be no latent

variables not covered in the variables presented to ex-
perts. We kept this in mind when selecting variables.
When performing the expert elicitation, we followed a
protocol stated in [22], designed specifically for eliciting
a causal structure from expert knowledge.
Whilst expert elicitation can maximise the chances of

learning a causal structure, it relies entirely on the know-
ledge of the experts, which could be narrowed by their life
experiences. Our experts were community members ra-
ther than experts who had studied the problem as used by
Barons et al. [16]. We therefore compared expert elicit-
ation for learning network structure with learning the
structure algorithmically from the data.
We were also able to construct a causal network com-

bining both the expert results and data-based learning
by using the expert network as a prior for algorithms to
build on using the data.
The model building process (Fig. 1) therefore involved

the following steps:

1 Select variables and their order in the network
models (i.e. which variables are considered possibly
causally dependent on which other variables) via a
literature search [22].

2 Given the variables selected, specify our dataset.
3 Construct the structure of our first network model

via expert elicitation.
4 Construct the second network model structure by

learning from data.
5 Using the expert elicited network structure as a

prior, use data to learn a refined structure as the
third network model.

6 For each network use parameter estimation to
calculate the conditional probability tables (CPTs).

7 Validate the models using causal validation, as well
as a predictive validation and, for the expert elicited
model, expert validation of the structure.
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Variable selection and ordering
The first step in building our Bayesian belief networks,
as detailed by the protocol being followed, involves a lit-
erature search to discover the variables [22].
The first step involved searching the literature for

household characteristics that form possible causes of
change in household food security, which is our utility
variable. The second step then involved searching the lit-
erature for household characteristics that form possible
causes of change in the characteristics found in step one.
The third step looked for characteristics that form pos-
sible causes of those from step two, and so on. This was
repeated for as many steps as were possible, subject to
two constraints. First, we could only select variables that
are measured in the Agincourt HDSS dataset. Secondly,
we needed to limit the burden on the community ex-
perts when eliciting the structure of the network. We
therefore limited the variables to those of greatest im-
portance and relevance to food security. Further details
of the literature search, the resulting variables in each
level and how each variable was calculated, can be found
in the Electronic Supplementary Material.
Breaking up the variables into levels gave us a causal

ordering of the variables. This ordering is important
when eliciting the network structure from experts and it
helps minimize the possibility of leaving out latent vari-
ables that could confound any causal findings.

Variable state calculation and specifying the dataset
Most of the variables were calculated using a suitable
combination of variables in the Agincourt HDSS dataset,
calculated at or aggregated to the household level. While
most variables can be straightforwardly taken from the
data, two require additional discussion.
The first such variable is Food Security, which was cal-

culated from a single variable in the Agincourt HDSS
dataset specifying whether the household had enough
food to eat over the past year. While definitions of food
security in the literature are often more nuanced than
this measure, most other variables related to food secur-
ity in the Agincourt HDSS dataset feature large amounts
of missing data, but this variable does not. It is also
strongly correlated with many more subtle measures of
food security, despite its simplicity. When considering
the results of applying the completed Bayesian network,
however, we must simply remember that food security
in this case is defined as having had enough food to eat
over the past year.
The second such variable is the local vegetation level.

Following Nawrotzki et al., we calculated this from the
Normalised Difference Vegetation Index (NDVI) [9, 23].
NDVI data was obtained from the MODIS/Terra sensor
satellite images, which contains NDVI values for 250 m
areas averaged over day periods [24]. As per Nawrotzki
et al., local vegetation level is calculated for a particular

Fig. 1 Process for building models. First variables are selected and ordered via literature search. Then three separate network structures are learned
from expert elicitation only, data only, and data with the expert network as a prior. Parameter estimation and appropriate model validations are
performed for all three networks
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household as the NDVI over the 2000 km region around
the household (not including land within villages so as
to avoid including privately owned land) averaged over
the households within that region. Though Nawrotzki
et al. averaged these values over the preceding 3 years of
the year of analysis, we only averaged them over the year
of analysis to avoid removing detail of differences be-
tween each year.
Variables that were calculated from the Agincourt

HDSS food security module were done so for the years
2007, 2010, and 2013, i.e. the years in which the module
was performed during the census. For the other vari-
ables, their value from the nearest previous year when
the data to calculate them was collected was used for
each household at each of the three food security mod-
ule years. Our sample was formed by households that
provided complete enough data to calculate values for
each of the variables for at least one of the food security
module years. For each household, the latest entry from
either 2007, 2010, or 2013 was taken, as it was found
that allowing households to have multiple entries for dif-
ferent years reduced the performances of the models
seen in the model validations and comparisons. The
sample size for our dataset was 11,739 households.
Although it would be possible to construct a dynamic

Bayesian network with nodes for the different variables
at each of the different time points [19], the data was
only sufficiently informative to support construction of a
static network.
Values/states of each variable were taken from the

values/states recorded in the Agincourt HDSS questions.
Several of the variables were discretised, as detailed in
the Electronic Supplementary Material, in order to re-
duce the number of possible states and simplify the cal-
culations involved in finding the parameters of the
model and performing inferences. This was done in such
a way to coarse-grain the distribution of the variable, ei-
ther by combining neighbouring states that occurred
rarely, or by binning the data for that variable to an ap-
propriate number of histogram bins.

Structure learning via expert elicitation
We performed an expert elicitation to find a possible
causal structure for the Agincourt HDSS food security
belief network, relying on the knowledge of members of
the Community Advisory Group (CAG). To perform this
elicitation we relied on the protocol described in [22].
After selecting a set of variables and a causal ordering
for them, as described above, we carried out the elicit-
ation. A pilot study for the elicitation was carried out on
a convenience sample of University students and
employees (including from a non-mathematical
background) to confirm that the process would be
understandable for experts.

The elicitation was performed by the Head of the Pub-
lic Engagement Office of the MRC/Wits-Agincourt Unit
following our design and instructions in the MRC/Wits
Agincourt Unit offices on 28th October 2016. The ex-
perts were guided through a list of the variables, in the
order defined by the causal ordering starting with the
highest level variables (which our ordering specifies have
no possible causes within the other variables, but are
possible causes for all the other variables) and finishing
with the lowest level variable food security (which is spe-
cified to cause none of the other variables, and can be
caused by all other variables). For each variable, we
attempted to establish based on the local knowledge of
our experts which of the previous variables in the list
would have an effect on the beliefs of the experts on
what state the variable in question would take for a gen-
eric household. We carefully designed our questions to
attempt to capture the conditional independences be-
tween the variables by asking the experts to first con-
sider the hypothetical situation where they already know
the states for a household of all the variables previous in
the list except one, and then whether learning the state
of that one extra variable would provide any extra im-
pact on their belief of the variable of interest.
In order to prepare the experts for the elicitation, they

were first told the purpose of the work and what out-
comes are hoped for, as well as a brief lay explanation of
Bayesian networks. They were guided through a set of
example questions on a different smaller system taken
from the Agincourt HDSS study area in order to help
them understand how to answer the questions, and to
get them used to answering them before having to an-
swer the ones we cared about. The elicitation was per-
formed with the experts as a group to reduce the
burden. The experts were also reassured that none of
their answers would be incorrect in order to avoid any
biases such as adjusting their answers to try and get to
the ‘right one’.

Structure learning via data
In order to learn an alternative possible causal network
for our system we used a constraint-based algorithm
known as Max-Min Parents and Children (MMPC) [25,
26]. For each node A, the MMPC algorithm attempts to
discover the set of parents and children of A. The
MMPC algorithm can be performed for each node to
find all the local structures and construct a skeleton of
the network (i.e. with no directions).
This was performed for our Agincourt HDSS house-

hold food security dataset using the asymptotic normal
Jonckheere-Terpstra test for conditional independence
to take into account the ordinal nature of the variables
[27]. Links that would go against the causal ordering we
defined in our literature search were disallowed from the
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start. The order of the variables used in the expert elicit-
ation was used to gain directions in the skeleton network
achieved by the algorithm. The algorithm was trained on
all 11,739 households in the dataset, each household act-
ing as an individual observation.

Parameter estimation
Formally speaking, the network parameters for the
model are:

θi
jk ¼ Pr Ai ¼ j jpa Aið Þ ¼ kð Þ;

where Ai is an individual variable, j is a possible state of
that variable, pa(Ai) are the parent variables of Ai in the
network, and k are the states of the parent variables. Al-
though it is possible to elicit these from experts as well,
we instead estimated them from data. This both avoided
the many cognitive biases that the experts could be
prone to, and avoided placing an additional and im-
mense burden on the experts on top of what we have
already asked of them. The parameters were estimated
by their maximum a posteriori (MAP) values found by
maximising the product of the multinomial likelihood of
the network (arising from the discrete nature of all the
variables) with a Dirichlet prior that was equivalent to
add-one smoothing [17]. The choice of prior eases com-
putations as Dirichlet is the conjugate prior of the multi-
nomial likelihood. The add-one smoothing adjusts for
cases where no occurrences of a particular combination
of variable and parent states appear in the data. Like
with using the data to learn the network structure, the
parameters were fitted using all 11,739 households, with
each acting as an individual observation.

Expert validation
Conditional and unconditional independences in a
Bayesian network can be found using the mathematical
concept of d-separation [19, 22]. We performed one val-
idation of our expert elicited structure by testing rela-
tionships found via d-separation with the expectations of
our experts.
Since over 8000 different independence relationships

are implied by the network’s structure, the number to be
worked with was severely reduced in a structured fash-
ion. In order to make it simpler for the experts, only re-
lationships of the kind A ⊥ B ∣C where A and B only
contained one variable each and B came before A in the
causal ordering defined in the literature search were
questioned. From these, examples where the fact that A
is at all independent of B appears counter-intuitive were
selected as these seemed the most pertinent to check. Fi-
nally, for each possible pair of A and B in the remaining
relationships, the relationship A ⊥ B ∣C where C con-
tained the smallest set of nodes was selected, again to

make it easier for the experts. This resulted in 34 rela-
tionships to check against the beliefs of the experts.
This elicitation was performed with a new set of ex-

perts, still taken from the CAG. It was again performed
by Head of the Public Engagement Office of the MRC/
Wits-Agincourt Unit following our design and instruc-
tions, located in the MRC/Wits-Agincourt Unit offices
in March 2017.

Predictive validation
The ability of a model to predict does not imply that it is a
good causal model. Nevertheless, predictive power is a de-
sirable feature of a causal model, and so we test for it.
To achieve this, we performed a 10-fold cross valid-

ation for each network, where the network structures
were kept constant but parameter values were allowed
to vary dependent on the data subset they were being fit-
ted to. Since there are different classifiers to allow us to
best distinguish between the networks. The first, Briers
scoring, gives a heavier penalisation the lower the pre-
dicted probability of the correct food security state of
the household, with severe penalisation given for par-
ticularly extreme incorrect results [28]. The second, in-
formation reward, prefers models that estimate
probabilities of the correct state that are better than ran-
dom and penalize ones that are worse [29]. The last,
Bayesian information reward, prefers models that esti-
mate probabilities of the correct states that are better
than some chosen prior probabilities (here chosen to be
equal to the empirical frequency of food insecure house-
holds in the training data), and then penalises ones that
are worse – thereby indicating whether a given network
structure allows for better prediction of food insecurity
than what we can tell by simply looking at the data [30].

Causal validation
There is no widely accepted way to measure the faithful-
ness of a model to the causal relationships of the system
it represents using observational data. Rather, the ac-
cepted method for validation of causal structure is to
measure the effects of interventions on the outcomes of
interest. Since running our own interventions would
have been impractical and unethical, we looked for data
on food security interventions performed on similar
populations to ours, and looked to see which models (if
any) successfully capture these results. To do this we
performed a thorough search of the literature, looking
for interventions aimed at food security in populations
similar to that of the Agincourt HDSS study area i.e.
rural populations in low to middle income countries
throughout Sub-Saharan Africa, Asia, and Latin Amer-
ica. We then performed interventional inferences exam-
ining the effect of such interventions on the probability
of a household being food insecure. This was done using
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the standard approach necessary for interventional infer-
ences where the state of the interventional variable is set
in the network and all incoming links to that variable
are removed before calculating the conditional probabil-
ity of food insecurity given the interventional variable
being in the chosen state. This reflects the fact that in
this case the variable has been artificially set by an out-
side force, and is no longer dependent on the factors
that usually influence it [19].

Applications
Finally, we considered some applications of such a
Bayesian network model for food security. One interest-
ing application is in using them to find which of the var-
iables have the greatest probabilistic impact on food
security, which can be done through a sensitivity ana-
lysis. This was performed following Barons et al. by cal-
culating values for mutual information reduction and
expected change of belief [16].
The most useful application of a causal Bayesian net-

work is in simulating possible interventions on it to see
whether they should be attempted in actuality. As such,
we performed some possible novel interventional strat-
egies based on findings from a search of the literature
for food security interventions in rural populations of
low to middle income countries.

Results
Network structure
The variable-selection step of the expert elicitation re-
sulted in the inclusion of the following variables along-
side food security, further details of which can be seen
in the Electronic Supplementary Material: child grant
status (CGS); education level (EdL); employment level
(EmL); household head gender (HHG); level of local
vegetation (LLV); number of dependants (ND); number
of working age adults (NWAA); receipt of communal
aid (RCA); refugee status (RS); selling of crops and live-
stock (SCL); socio-economic status (SES); use of crops
and livestock (UCL); use of wild foods (UWF); and water
access (WA). The resulting network structures for each
of our three possible methods of structure learning can
be seen in Fig. 2. The figure only show the network
structures and not the accompanying conditional prob-
ability tables that parameterise the models due to the
very high number of parameter values in the model (the
combination of all possible states and all possible parent
states of each variable). As we are interested in the pos-
sible causal implications of the models, given by the
structures themselves, this is still of value.
The resulting network from the expert elicitation

(Fig. 2(i)) shows some interesting discrepancies from
findings in the literature. For instance, expert opinion is
that household head gender has no impact on any of the

other variables. Refugee status is also held to have min-
imal direct impact. Also, water access is elicited as hav-
ing no impact on the growing of crops due to
individuals relying on rainwater rather than the water
supply to water their crops and gardens.
The data-learned network (Fig. 2(ii)) shows some sub-

stantial differences compared to the expert elicited net-
work, which is unsurprising given the very different sets
of information each network was built upon. Most dif-
ferent is the much greater level of sparseness in the
data-learned network. Household head gender is also
linked into the data-learned network, unlike the expert
elicited one, but selling of crops and livestock is now dis-
connected. Child grant status has no directed path to
food security either, meaning that neither of these nodes
would be effective means of intervention according to
this network.
The final resulting network from a combination of ex-

pert and data learning (Fig. 2(iii)) appears sparser than
the other two but still has all nodes linked into the net-
work. There are also more leaf nodes in the network
with no children such as selling of crops and livestock,
level of local vegetation, and child grant status again. If
this approach is correct, these nodes would be ineffective
for any interventions against food insecurity.
Despite the efforts to ensure relationships going

against causality were avoided, some seemingly counter-
intuitive ones still appeared such as the number of work-
ing age adults and refugee status having a causal impact
on household head gender. These relationships are not,
however, counter-intuitive when interpreted correctly –
e.g. the gender of an individual is not determined by
refugee status, but refugee status can influence which
gender heads the household.

Model validation results
The results of the initial expert-based validation of the
expert structure implies that the initial elicited structure
proves quite robust against checks of relationships dis-
covered via d-separation. Only 11 out of 34 of the rela-
tionships were deemed to be false (though 2 were
unanswered). Typically this was due to the new set of
experts thinking that household head gender does im-
pact on certain variables, Mozambican refugees are now
indistinguishable from South African nationals, and that
both age and education impact on attitudes which in
turn impact on things such as the willingness to farm,
forage for food, and claim welfare.
When it came to the predictive validation, unsurpris-

ingly learning the structure from data gave greater pre-
dictive performance than relying on the expert
elicitation in terms of overall cross validation scores
(Table 1). The data gave a greater population view of
what is happening than the experts, although did not
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Fig. 2 (See legend on next page.)
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give an improvement on performance compared to sim-
ply relying on the empirical data frequencies. Using
data-learning with the expert network as a prior results
in an increase in performance over the data-learned
method and in fact is the only method to improve upon
relying on the empirical frequencies.
Examining the confusion matrices, calculated by learn-

ing the models from a randomly chosen subset forming
90% of the data and then predicting the food security
state of the remaining 10%, shows less of a distinction
between the different models (Table 2). However, using
data-learning with the expert network as a prior still
seems to give some improvement here. The state of the
confusion matrices is also reliant on the random split-
ting of the data used. Due to the use of cross validation,
the combination of scores still give a more reliable com-
parative measure of performance between the models.

Model simulations and comparison with intervention
studies
The literature review for real food security interventions
performed in rural populations in low to middle income
countries found that several agricultural interventions
have been performed in the form of community agricul-
tural projects, homestead food production, and the de-
velopment of gardens in countries and regions such as
Bangladesh, South-East Asia, Latin America, Rwanda,
South Africa itself, and other low to middle income
countries [31–37]. Various financial interventions have
also been performed, such as providing public sector
employment and cash transfers in Latin America and
Ethiopia [35, 38], as well as micro-loans and micro-
credit in sub-Saharan Africa [39, 40]. In addition to
these, we also found interventions on water quality
throughout Asia and Africa [34].

It should be noted that whilst some of the interven-
tions discovered by the literature review were parts of
controlled studies, others were reports of government
strategies that therefore may not have successfully con-
trolled for confounding variables which may undermine
any causal implications we can take from them. They
may also be subject to publication bias, causal structure
may vary across space and time meaning that we cannot
compare across years and countries, and some consider
a different definition of food security from ours. Never-
theless, it is interesting to look at what our networks
would predict for interventions analogous to those in
the empirical studies.
The interventions found in the literature therefore

gave us possible simulations to run on our networks. In
particular, we simulated setting the values for the ‘use of
crops and livestock’, ‘child grant status’, ‘selling of crops
and livestock’, ‘socio-economic status’, ‘employment
level’, and ‘water access’ variables individually and
looked at the impact on the probability of the household
being food secure. The simulation results can be seen in
Figs. 3 and 4, with further results in the Electronic Sup-
plementary Material, and we see from these that food se-
curity changes depend on both the variable(s) changed
and the causal network structure.

(See figure on previous page.)
Fig. 2 Agincourt HDSS food security belief networks with structure learned from (i) expert elicitation only (ii) data only (iii) data with the expert
network as a prior. CGS – child grant status. EdL – education level. EmL – employment level. FS – food security. HHG – household head gender.
LLV – level o3f3 local vegetation. ND – number of dependents. NWAA – number of working age adults. RCA – receipt of communal aid. RS –
refugee status. SCL – selling of crops and livestock. SES – socio-economic status. UCL – use of crops and livestock. UWF – use of wild foods. WA
– water access

Table 1 Model comparison of predictive performance for the
different network structures learned from a 10-fold cross
validation. Briers score, information reward, and Bayesian
information reward indicate that learning from data massively
outperforms learning from experts, but using expert knowledge
as a prior provides an additional small increase in performance

Learning method SB SIR SBIR

Expert elicitation 0.1321 0.3908 −1.9004

Data-learned 0.0851 0.5577 −0.0270

Data-learned with expert prior 0.0846 0.5590 0.0057

Table 2 Predictive confusion matrices for each network structure,
displaying numbers of true positives, false positives, true
negatives, and false negatives. These values were calculated by
learning the structure and parameter values from a random
subset forming 90% of the overall data, then making predictions
for whether a household is food secure or not for the remaining
10% of the data. These show less distinction between the
different network structures in terms of performance but using
expert knowledge as a prior still seems to give a small boost

True state

Predicted state Food secure Food insecure

(a) Expert elicitation

Food secure 570 34

Food insecure 492 79

(b) Data-learned

Food secure 554 42

Food insecure 508 71

(c) Data-learned with expert prior

Food secure 617 44

Food insecure 445 69
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In particular, we see that for employment and educa-
tion levels (Fig. 3(i, iii)) the expert elicited and data-
learned networks produce counter-intuitive results – i.e.
that increases to these variables decrease the probability
of food security – that conflict with empirical studies,
while the network combining data learning with expert
elicited priors produces results that do not. For socio-
economic status (Fig. 3(ii)), we see consistently strong
effects, which implies that socio-economic status is as
important to food security as we expect it to be, perhaps
more so than any other household characteristic. Given
how it relates so heavily to many household characteris-
tics it is not surprising that it could capture much of
what makes a household food secure or not. For this
variable, the monotone response of the network combin-
ing data learning with expert elicited priors is more con-
sistent with intuition and empirical observations.
We stress that the considerations of confounding, publi-

cation bias, context etc. above mean that these results can-
not provide more than very indirect evidence in favour of
one causal network or another. They do, however, show
that much more could be done to validate different causal
representations of the system, although this is beyond the
scope of this current work. Nevertheless, it is suggestive
that the combination of data learning and expert elicit-
ation is more consonant with other sources of information
than either data or elicitation alone.

Applications
Our results indicate possible avenues for interventional
studies if the networks are taken with a causal interpret-
ation. Otherwise, they show us the variables with the
greatest probabilistic relationships with food security
(Table 3), which may aid in streamlining efforts to iden-
tify potential food insecure households, which may be
helpful given how rarely food security information is col-
lected compared to other information. The expert elic-
ited network results also give an indication of what
variables have the greatest impact on the beliefs of a
member of the community when considering what other
households may be food insecure.
When considering possible interventions for similar

populations (rural populations in low to middle income
countries), various observational studies imply that edu-
cation, communal aid, local vegetation, and being a refu-
gee should each individually have a substantial effect on
food security [9, 41, 42]. However, our inferences imply
that these variables actually have only negative, if any,

impact on food security (examples for education level
and refugee status are shown in Fig. 3(iii) and (iv), with
further results available in the Electronic Supplementary
Material) dependent on the network used. This only
matches the literature for refugee status, where it implies
we should expect a negative impact (although our effect
is quite small).
Dovie et al. found that use of wild foods is prevalent in

the Bushbuckridge district, within which the Agincourt
HDSS study area is situated [43]. Performing an inter-
vention on this variable shows that increased use of wild
foods leads to lower probability of food security
(Fig. 3(v)) completely irrespective of the network. It is
possible here that the direction of the relationship is in-
correct, as perhaps more food insecure households use
foraging as a coping strategy so that use of wild foods
only occurs after food insecurity has been attained.
Mabuza et al. found that non-farming income provides

for greater food security than farming income [44]. If we
look at a combined inference of selling of crops and live-
stock and employment level at the same time (Fig. 4(i))
we find that selling crops and livestocks makes largely
no difference. Controlling for it though does allow for
an impact from employment level, though this is only
positive for the data-learned network with the expert
prior where the effect is also quite small.
M’Kaibi et al. examined the impact of both agriculture

and the environment on food security [45]. We can do
the same by performing a combined inference on level
of local vegetation, use of wild foods, and use of crops
and livestock (Fig. 4(ii)). Both vegetation level and use of
crops and livestock have little to no impact but holding
them fixed again allows an impact from use of crops and
livestock (though not so much for the expert elicited
network). As we have seen before, this impact is still
negative for both data-learned networks which perhaps
lends greater support to our earlier hypothesis of the re-
lational direction between food security and use of wild
foods being opposite to that in the models.
Finally, Pereira et al. examined the impact of income

on food security [7]. We can look at different income
sources by performing a combined inference on selling
of crops and livestock, child grant status, and employ-
ment level (Fig. 4(iii)). As expected from the sensitivity
analysis, child grant status and selling of crops and live-
stock have little impact. Therefore, we conclude that ac-
tual income is more important to food security than
welfare or commercial farming, though it is only a

(See figure on previous page.)
Fig. 3 Single intervention predictions. Simulations of setting the state of (i) ‘employment level’ (EmL) (ii) ‘socio-economic status’ (SES) (iii) ‘education
level’ (EdL) (iv) ‘refugee status’ (RS) (v) ‘use of wild foods’ (UWF) in order to alter32 the probability of a household being food secure (Pr(FS = 0)) on the
different possible Agincourt HDSS food security belief networks. a: expert elicited structure; b: data-learned structure. c: data-learned structure with the
expert network as a prior
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positive impact for the data-learned network with expert
prior again. This implies that it is perhaps the paths go-
ing through these other nodes in the network that leads
to the switching of the relationship between employment
and food security to being negative.

Discussion
In this paper we have considered the building of
three different potential causal Bayesian belief net-
work models of household food security in rural
South Africa. Other research in this area has often
been performed using generalised linear models, stat-
istical tests, and summary statistics [7–9, 46, 47]. This
has produced many worthwhile results, but there are
limitations with what can be inferred from, and what
actions can be justified by, these models. The Bayes-
ian network models we presented here better reflect
the complexity inherent within the system. This is
achieved by the inbuilt modelling of indirect

probabilistic relationships. In this way we end up with
more of a ‘many-to-many’ model rather than the
‘many-to-one’ model that linear regression gives us.
Accompanied by a causal explanation, this enables us
to more effectively model different possible actions,
events, and interventions on the system.
On top of this better reflection of complexity, network

models also come with a higher level of interpretability.
They better reflect what we see in the world around us,
where many things cannot be simply considered as hav-
ing direct and linear relationships with each other. The
resulting models are therefore much more satisfying in
both their utility and their ability to represent the
system.
Though we were unable to test the causal faithful-

ness of our models to the system, this is a problem
that is shared by all the methods that came before.
Our models are still much more suitable for causally
modelling the system, as they have the directional
structure that is necessary in order to do so [48]. The

(See figure on previous page.)
Fig. 4 Multiple / complex intervention predictions. Interventional inference on the impact of (i) both ‘employment level’ (EmL) and ‘selling of
crops and livestock’ (SCL) simultaneously (ii) ‘level of local vegetation’ (LLV), ‘use of wild foods’ (UWF), and ‘use of crops and livestock’ (UCL) (iii)
‘child grant status’ (CGS), ‘employment level’ (EmL), and ‘selling of crops and livestock’ (SCL) on the probability of a household being food secure
(Pr(FS = 0)) on the different possible Agincourt HDSS food security belief networks. a: expert elicited structure; b: data-learned structure. c: data-
learned structure with the expert network

Table 3 Sensitivity analysis results

a: Expert elicitation b: Data-learned c: Data + expert prior

Variable I I/H S2 I I/H S2 I I/H S2

CGS 0.0099 0.0115 0.0030 0.0000 0.0000 0.0000 0.0002 0.0004 0.0000

EdL 0.0078 0.0091 0.0023 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000

EmL 0.0177 0.0205 0.0052 0.0001 0.0002 0.0000 0.0082 0.0165 0.0013

HHG 0.0000 0.0000 0.0000 0.0002 0.0004 0.0000 0.0000 0.0001 0.0000

LLV 0.0264 0.0307 0.0079 0.0000 0.0000 0.0000 0.0028 0.0056 0.0005

ND 0.0021 0.0025 0.0006 0.0001 0.0001 0.0000 0.0008 0.0016 0.0001

NWAA 0.0007 0.0008 0.0002 0.0007 0.0014 0.0001 0.0005 0.0011 0.0001

RCA 0.0083 0.0097 0.0025 0.0000 0.0001 0.0000 0.0066 0.0133 0.0010

RS 0.0000 0.0000 0.0000 0.0007 0.0016 0.0001 0.0003 0.0005 0.0000

SCL 0.0108 0.0126 0.0034 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SES 0.0067 0.0078 0.0020 0.0112 0.0244 0.0014 0.0114 0.0228 0.0017

UCL 0.0039 0.0046 0.0011 0.0011 0.0025 0.0001 0.0008 0.0017 0.0001

UWF 0.0334 0.0388 0.0101 0.0043 0.0093 0.0007 0.0066 0.0133 0.0012

WA 0.0049 0.0056 0.0014 0.0000 0.0000 0.0000 0.0001 0.0003 0.0000

Mutual information reduction I (also divided by food security information H) and expected change of belief S2 for food security given each of the other variables
for the three different networks
CGS child grant status, EdL education level, EmL employment level, FS food security, HHG household head gender, LLV level of local vegetation, ND number of
dependents, NWAA number of working age adults, RCA receipt of communal aid, RS refugee status, SCL selling of crops and livestock, SES socio-economic status,
UCL use of crops and livestock, UWF use of wild foods, WA water access
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lack of such structure undermines the ability to make
any causal inferences from the models of previous
studies. Time could have been incorporated into the
model by designing a dynamic Bayesian network, but
doing so would have severely limited the amount of
data that could be used to estimate each parameter as
well as requiring the uncertain assumption that causal
effects last over 3 years due to the gap between col-
lection of the food security census module. It would
have also presented a much greater additional burden
to our experts in the elicitation, which we were ex-
pressly unable to do due to our limited resources.
If the causal interpretation of any one of the three pos-

sible household food security models presented here can
be confirmed, then that model will be a valuable tool in
designing and simulating basic interventions against
food insecurity in the Agincourt HDSS study area. In
particular, the model can be evolved via an iterative
process of using it to inform intervention trials and then
using the results of these trials to further develop the
model. Though food insecurity is decreasing in sub-
Saharan Africa [4, 49] it is still a great concern of the
Agincourt HDSS community, as discovered by our meet-
ings with the MRC/Wits-Agincourt Unit Community
Advisory Group. Demonstrating actions and improve-
ments in this area would obviously be of great import-
ance to them, and may therefore further reinforce their
support of the research unit (though support is already
great due to the benefits the census already provides the
area). Beyond the Agincourt HDSS study area, the
models could also form the basis for the design of simi-
lar models in similar populations across the world.
As with all research, this study comes with limita-

tions. The MRC/Wits-Agincourt Unit goes to great
efforts to ensure the reliability of the Agincourt HDSS
data [6].
Despite this, there are some errors, misreporting,

and missing data that we are unable to account for.
However, the dataset is of a size and quality that
these do not produce any substantial issues and do
not seriously undermine the results presented or the
completeness of the data in terms of its ability to
cover all variables needed to fully causally model the
system without the need of any latent variables. This
means that again the choice of variables is a great
limitation as it is possible that latent variables may
have been missed, though this was again mitigated by
choosing the variables in an informed way.
In addition, the results from the expert elicitation pro-

duced some very counter intuitive findings. The findings
may be heavily related to the nature of the experts we
used, as our experts were experts in life in the locality.
Other studies, such as that of Barons et al., used experts
that had a greater overview of a wide range of evidence

on the topic in question and great understanding of that
evidence [16]. The benefits of such an approach must be
traded off against community involvement in research,
but it raises the interesting possible future research area
as to the effect of using different expert groups. Though
the results we obtained from our expert elicitations are
quite possibly biased by the locality of their knowledge,
the community-driven nature of that particular analysis
can still be viewed as a great advantage. It is important
in Public Health, considering the complexity of the sys-
tems analysed, the public nature of research funding,
and the possibility of biases in our research due to lack
of knowledge or perspective, to involve the individuals
who our research is based on into that research.
Overall, these limitations do not undermine the useful-

ness of developing these models, though do emphasise
the need to perform more research with much greater
resources before the models can be fully put into prac-
tise to model interventions.

Conclusions
We believe that the Bayesian belief network models
of household food security we presented here can
form the basis of the iterative generation of a robust
causal model of household food security in the Agin-
court HDSS study area and elsewhere. As there is no
established test of causal faithfulness beyond experi-
mentation, the models can be used to inform possible
interventional studies that could then be used to fur-
ther develop the model and so on. In addition, it is
possible that methods of testing causal faithfulness
from observational data could be explored, but this
comes with obvious limitations. An alternative to ex-
perimentation would be to use further expert elicita-
tions. Another way to improve the causal applicability
of the methods would be to develop them into dy-
namic Bayesian networks that include temporal rela-
tionships, which would also require further resources
in terms of data and expert elicitations. Beyond the
further development of these models, they can also
form the basis of developing similar models of house-
hold food security for other populations.
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