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Abstract

Background: Characterization of prediagnostic Parkinson’s Disease (PD) and early prediction of subsequent
development are critical for preventive interventions, risk stratification and understanding of disease pathology. This
study aims to characterize the role of the prediagnostic period in PD and, using selected features from this period
as novel interception points, construct a prediction model to accelerate the diagnosis in a real-world setting.

Methods: We constructed two sets of machine learning models: a retrospective approach highlighting exposures
up to 5 years prior to PD diagnosis, and an alternative model that prospectively predicted future PD diagnosis from
all individuals at their first diagnosis of a gait or tremor disorder, these being features that appeared to represent
the initiation of a differential diagnostic window.

Results: We found many novel features captured by the retrospective models; however, the high accuracy was
primarily driven from surrogate diagnoses for PD, such as gait and tremor disorders, suggesting the presence of a
distinctive differential diagnostic period when the clinician already suspected PD. The model utilizing a gait/tremor
diagnosis as the interception point, achieved a validation AUC of 0.874 with potential time compression to a future PD
diagnosis of more than 300 days. Comparisons of predictive diagnoses between the prospective and prediagnostic
cohorts suggest the presence of distinctive trajectories of PD progression based on comorbidity profiles.

Conclusions: Overall, our machine learning approach allows for both guiding clinical decisions such as the initiation of
neuroprotective interventions and importantly, the possibility of earlier diagnosis for clinical trials for disease modifying
therapies.
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Background
Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder worldwide with increasing
incidence as the general population ages [1]. Existing
treatments reduce disease symptoms having dramatic

effects on quality of life but have not been sufficiently ef-
fective at slowing progression [2]. To effectively slow
disease progression, new classes of drugs are being de-
veloped targeting genomic loci [3–7]. The primary goal
of this study is to facilitate the early identification of PD
onset through characterization and prediction of pre-
diagnostic PD using widely available real-world data
contained in either electronic health records or insur-
ance claims databases.
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There is evidence that clinical symptoms, including
non-motor features, begin to occur several years before
a PD diagnosis coinciding with the prediagnostic cellular
loss [8, 9]. Early detection of these symptoms may enable
earlier identification of people at high risk ultimately
leading to faster diagnoses. Certain prediagnostic fea-
tures, based on clinical observations, have been widely
studied and include impaired olfaction, constipation,
urinary disorders, disturbed sleep patterns, anxiety and
depression, autonomic dysfunction, and many others
[10–17]. Further insight into the first clinical presenta-
tions of these prediagnostic features, as well as others
not traditionally thought to be components of prediag-
nostic PD, and their temporal relationships would help
to delineate the pathophysiology of early PD progression.
This would enable the identification of people at in-
creased risk of developing overt PD, who could be eli-
gible for inclusion in clinical trials of early
neuroprotective strategies and ultimately preventative
interventions.
Using a set of variables from the period just prior to a

PD diagnosis, Schrag et al. [18] developed a logistic
regression-based algorithm to effectively predict whether
a person would be diagnosed with PD within 5 years.
This study demonstrated the utility of real-world obser-
vational records in predicting PD diagnosis and was an
important validation of statistical approaches for this
phenotype. However, one limitation was their focus on
the entire clinical observation window up to the day be-
fore an individual’s PD diagnosis. In this case, because
the data captured included the complete medical history
that was ultimately used for PD diagnosis at their subse-
quent visit with a neurologist, we suspected that the sig-
nal driving selectivity of this algorithm, and others built
on similar methods, derived primarily from features
close in time to the diagnosis itself. Therefore, we hy-
pothesized that this algorithm was primarily influenced
by patients where clinicians already suspected PD. Given
that the delay to diagnosis is well-established in PD and
has been shown to take a median of around 1 year [19],
this would limit the impact of this diagnostic algorithm.
Furthermore, the clinical presentations used to train

this algorithm are not representative of the presentations
that a physician would encounter in practice. Patients
were selected based on their future PD status. The re-
sultant model was developed using presentations within
5 years of a PD diagnosis, a design consideration that
biased predictions away from what would be observed in
real time [20]. A clinician does not have the luxury of
knowing with confidence that a particular patient is pre-
destined to have a PD diagnosis in a specific amount of
time. Given the extended prodromal period in PD, such
experimental designs would artificially exaggerate the
differences between diseased and non-diseased groups

by selecting diseased patients at later points in their tra-
jectory. Therefore, findings that describe how a particu-
lar risk factor is overrepresented in the “N years before
PD diagnosis” cannot reliably be utilized by clinicians,
and the actual effect size that would be observed of these
factors cannot directly be estimated. Consequently, we
sought to develop a prediction model with well-defined
entry criteria to enable clinical utility based on specific
clinical events. This transition from a case-control to a
cohort-based model also represents an advance in the
quality of evidence that the resultant predictions would
represent [21].
In this study, we utilized two large health record data-

bases to develop a model to identify which individuals
progress to PD that takes into account the unique fea-
tures surrounding the trajectory of PD. In contrast to
existing approaches, our model ensures that predictions
occur using features that are both i) significantly in ad-
vance of PD diagnoses and ii) deployable at well-defined
identifiable events by clinicians in real-time. Ultimately,
accurate, prospective identification of high-risk individ-
uals would allow for earlier diagnosis, intervention, and
more effective large-scale evaluation of potential
therapeutics.

Methods
Data
The main components of this study were performed util-
izing two data sources:

1) The Partners Healthcare Research Patient Data
Registry, composed of electronic medical records
(EMR) from approximately 6 million individuals in
Massachusetts. Data used in this study covers
patient records from the early 1990s through the
end of 2018. Encounters from this dataset span all
visits from within the Partners Healthcare system
during this period.

2) A de-identified administrative claims database from
a large private insurance company representing
more than 75 million unique members during a
period extending from January 1, 2008 through De-
cember 31, 2018. Members with zip codes in Mas-
sachusetts were excluded from our analyses so as
not to overlap with the first dataset. Codes in this
dataset were generated in an administrative manner
based on the associated billing claim records associ-
ated with an encounter, and include all visits cov-
ered by the member’s health insurance.

In both datasets we extracted gender, year of birth,
coverage or enrollment duration, zip code, ethnicity,
diagnoses (in the form of International Classification of
Diseases, 9th and 10th Revision codes (ICD9/10)) and
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procedures (in the form of Current Procedural Termin-
ology codes (CPT)). These demographic and encounter-
related codes represent the primary predictor variables
for this analysis. Medication and prescriptions were not
evaluated due to incomplete coverage for this population
in the claims data.
We utilized a similar set of case criteria to other stud-

ies identifying PD cohorts in large medical records data-
bases [10, 22] and further augmented them to
specifically model inclusion criteria for PD clinical trials.
Individuals were first required to have at least two ICD
diagnosis codes for PD. The first of these codes was set
as their baseline point and a second code was required
within the period at least 90 days and 2 years following
their baseline point. Importantly, our requirement of 2
diagnoses removes likelihood of technical errors with
the temporal separation ensuring a consistent PD diag-
nosis upon a follow-up appointment but does not cover
the imprecise diagnostic journey of a person with sus-
pected PD. As such, it is critical to understand that our
model accelerates the prediction of PD but not the pre-
diction of who may subsequently progress to other diag-
noses such as multiple systems atrophy or progressive
supranuclear palsy, which would require secondary or
more specific prediction models. A minimum age of 50
at baseline was set to exclude subjects that have auto-
somal dominant or disease strongly driven by genetics as
these subjects would not be representative of typical
idiopathic PD. This also ensured that the study popula-
tion was not biased by subjects where “Parkinsonism”
was present through a longstanding or perinatal disease
separate from PD.. Subjects were required to have at
least 2 years of claims data prior to their baseline diagno-
sis and 2 years following in order to capture the pro-
dromal period of the disease and to track progression.
The 2 years of data prior to their baseline limits the pos-
sibility of inclusion of patients with PD that were diag-
nosed previously [23]. Subjects with diagnoses whose
treatment or progression prior to baseline could lead to
secondary PD and therefore an erroneous PD diagnosis
were removed such as Schizophrenia, Encephalitis,
Stroke, etc. (Supplementary Table 1). Non-PD controls
were matched to cases based on age, gender, and
coverage.
We later resampled the databases for anyone having

either a gait and/or tremor disorder diagnosis based on
ICD codes (Supplementary Table 2). Cases were defined
as those patients eventually diagnosed with PD and con-
trols set to those who did not. For both cohorts, we uti-
lized the first diagnosis of gait and/or tremor disorder as
their baseline dates. All other inclusion/exclusion criteria
were repurposed using this new baseline. No matching
was conducted for these tasks, as the entry criteria were
well defined. Subjects with a PD diagnosis at baseline

were excluded as the prediction task was already accom-
plished by the clinician. Additional detail describing sub-
ject/control selection criteria are provided in the
supplementary methods.

Prediagnostic PD trajectory modeling/PD progression
prediction
We conducted two parallel forms of modeling to exam-
ine the trajectory of prediagnostic PD: 1) a logistic re-
gression model using an occurrence matrix of individual
features; and, 2) deep learning over a patient’s observed
temporal sequence of claims. A logistic regression and
deep learning model were created for each evaluated
time-point corresponding to different prediction window
sizes: 0, 15, 30, 45, 75, 90, 180, 270, 360, 450, 640, and
720 days prior to PD diagnosis/baseline. For each time-
point, a two-year long observation window preceding
the specific time-point was used. As an example, for the
75-day time-point, records between 75 and 805 days
prior to the baseline were utilized in the model, while re-
cords within 75 days of baseline were excluded. The fea-
tures included were patient demographic data, diagnoses
(when possible ICD codes were mapped to Phenome
Wide Association Studies (PheWAS) [24] codes to re-
duce dimensionality), procedures (both CPT & ICD),
and time between data points. We later repeated these
tasks to model progression to PD using the two-year
window prior to first gait and/or tremor disorder
diagnosis.

Static regression model
A penalized regression model was fit to predict the diag-
nosis of PD using a static vector constructed of the
values of demographic data and counts of diagnoses,
procedures and time between data points. Each patient
was characterized by a frequency vector, where each
element corresponded to the number of times a particu-
lar diagnosis or procedure code was observed. Demo-
graphic terms were appended to each patient vector. For
each model, codes were only counted if they were
present during the specified observation window. This
vector was then classified by the logistic regression
model based on whether it preceded a PD diagnosis.
This analysis was conducted in R using the glmnet pack-
age. An independent test set was first held out. Predict-
ive accuracy in the training set was measured via area
under the receiver operator characteristics using 5-fold
cross validation. Odds ratios and 95% confidence inter-
vals were then calculated on the entire dataset. Univari-
ate association testing was performed using age and
gender-controlled logistic regression to identify features
that demonstrated an association with PD onset. This
association testing was first performed with all features
and then again with the features present in at least 0.5%
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of the population. This process was repeated independ-
ently in both the insurance claims dataset as well as the
Partners research database.

Deep learning temporal sequence model
We trained a deep recurrent neural network (RNN)
using gated recurrent units (GRU) to predict the onset
of PD using each patient’s sequence of interactions with
the healthcare system (claim or entry into medical rec-
ord). Each patient was characterized by a sequence of
vectors, where each vector represented a statistical pro-
file of the diagnosis or procedure code received during
an encounter. Demographic information at the time of
encounter was appended to each vector. For each model,
only codes present during the specified observation win-
dow were included. This sequence was then classified by
the deep learning model based on whether it preceded a
PD diagnosis. Sequences for the RNN were constructed
using temporal embeddings trained from a separate co-
hort of one million individuals older than 50 [25]. Tem-
poral sequences were constructed by interleaving tokens
signifying the time between events with tokens repre-
senting the events themselves. A co-occurrence matrix
was created over all tokens, where events that happened
within 7 days of each other were said to co-occur. This
window was chosen because events that are temporally
close are likely to reflect simultaneous aspects of patient
physiology. This matrix was then factored to produce a
unique embedding vector for each token. Given an ob-
servation window, temporal sequences of events with
the window were created for case and control individ-
uals, using the previously created embeddings. Se-
quences were clipped or padded to a length of 1200
tokens to ensure equal lengths between individuals, with
clipping occurring on the earliest events in a window
when necessary. Sequences were classified by a deep
GRU recurrent neural network in Keras using Tensor-
flow backend. No specific feature collection was con-
ducted, all events that corresponded to a well defined
PheWAS or CPT code were included in the model.
Models were retrained from scratch using randomly se-
lected train, and validation splits over an independently
held out test set to produce confidence intervals. Neural
network models were trained only in claims data due to
the large amount of data required to construct embed-
ding vectors.

Comparison between predictive models trained using
different data modalities
We compared the predictive model trained using EMR
data to the model trained using administrative claims
data in two ways: 1) comparing the performance of the
model outputs and 2) comparing the features driving the
model performance between the two different models.

This comparison of relative feature importance was per-
formed by first calculating the Pearson correlation of
each data modality separately. This was compared to the
correlation of feature importance between the two dif-
ferent data modalities.

Comparative diagnosis prevalence
Trends in comparative diagnosis prevalence were identi-
fied by first identifying a set population of PD cases and
age/gender matched control individuals with coverage
prior to and after each particular window. For every
given time point, defined as the 365 days relative to the
point itself, and a given diagnosis, the prevalence of that
diagnosis within that window was computed. Prevalence
was computed for PD case and control populations sep-
arately. For example, a tremor frequency of 0.08 among
cases at day 730 implies that 8.0% of PD cases had a
tremor diagnosis between 730 and 365 days prior to
their PD diagnosis.

Results
Cohort demographics
Table 1 describes the demographics of the EMR and
Claims based cohorts, stratified by the PD case status.
The EMR dataset contained records from 22,102 individ-
uals, while the Claims dataset contained records from
28,216 individuals. Age of first diagnosis was slightly
higher in the Claims cohort but was over 70 in both
datasets. Our cohorts align with accepted estimates of
PD incidence in the population [26]. Population statistics
between cases and matched controls largely align be-
tween the EMR and Claims data though the latter popu-
lation is slightly younger (owing to the transfer of
individuals above 65 to Medicare) and has more ex-
tended terms of coverage due to the nature of the data
sources. EMR records only capture an individual’s inter-
actions with that particular hospital system, while claims
records capture all of an individual’s paid interactions
while they were insured.

Parkinson’s disease trajectory is characterized by a
prodromal period
We began by constructing two prediction algorithms,
one linear and one non-linear, for future PD diagnosis
utilizing 2 years of observations prior to the PD diagno-
sis in cases and matched controls. In contrast to prior
models, we sequentially compared different time periods
before the PD diagnosis date. We found a significant
spike in prediction accuracy as the size of this window
was reduced, which reached a maximum immediately
prior to the PD diagnosis (Fig. 1a, b). We found that the
accuracy of the deep neural network and a logistic re-
gression model trained on identical claims data con-
verged as the diagnosis date approached, implying that
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the most relevant signal for that time period was addi-
tive, with linear relationships between clinical events
(diagnoses and procedures) driving predictions of PD
status. In contrast, prediction accuracy at earlier time
points appeared to be driven by non-linear, complex re-
lationships between factors that only neural networks
could resolve. The increase in performance closer to PD
diagnosis date by both prediction models indicated the
existence of a pre-diagnostic window during which
motor symptoms were present but the diagnosis had not

yet been made. Clinicians have described a time period
immediately prior to diagnosis ranging between 3
months to 1 year [19] where PD is suspected and the pa-
tient is referred to neurologists or subjected to more
rigorous clinical evaluation before a formal PD diagnosis
is rendered. Consequently, the strong performance of
classifiers that include this period may be illusory: the
models draw signal from the actions of clinicians who
already suspect PD. We find that the dominant features
of this window include diagnoses of abnormality of gait,

Table 1 Population statistics between cases and matched controls in EMR and Claims Data. Ethnicity data was only available for a
subset of patients

EMR Claims

PD Cases Matched PD Controls PD Cases Matched PD Controls

Total 3251 18,851 5131 23,085

Male (%) 1903 (58.5) 11,131 (59.0) 3151 (61.4) 14,177 (61.4)

Age at First Observation (STD) 63.15 (10.78) 63.94 (10.909) 69.01 (10.33) 68.71 (10.34)

Age at Baseline (STD) 72.48 (9.33) 72.64 (10.39) 73.70 (10.23) 73.69 (10.23)

Fraction White (*data available in 20% of claims records) (Count) 87.6 (2847) 87.8 (16533) 81.8* (980) 80.6* (4237)

Percentage African American (*among available) (Count) 2.4 (78) 3.44 (647) 1.92 (23) 4.25* (223)

Percentage Hispanic (*among available) (Count) 2.4 (78) 1.47 (276) 3.42 (41) 2.85* (150)

Percentage Asian (*among available) (Count) 1.66 (54) 1.01 (207) 2.84 (34) 2.85* (150)

Percentage Other Race (*among available) (Count) 5.93 (193) 6.21 (1170) 10.01* (120) 9.41* (495)

Enrollment Months (STD) 209.08 (78.66) 186.77 (75.62) 106.51 (17.84) 104.86 (18.62)

Enrollment Months Prior to Baseline (STD) 111.88 (72.57) 104.29 (68.90) 61.49 (17.59) 64.95 (18.47)

Enrollment Months After Baseline (STD) 97.68 (58.94) 82.99 (51.43) 45.14 (16.06) 40.04 (13.44)

Fig. 1 Area under the ROC Curve predicting PD onset at various points prior to PD diagnosis. a Logistic Regression vs. Neural Network in Claims
b EMR vs. Claims Logistic Regression
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as well as diagnoses corresponding to tremor disorders
(abnormal involuntary movements, essential tremor)
(Table 2), which likely represent proxy diagnoses for PD
prior to a neurologist or specialist confirming the diag-
nosis. Other features represent traditional, well-known,
prodromal features of PD such as depression and consti-
pation while others are less traditional such as malaise
and fatigue, pain, and type 2 diabetes. To take advantage
of these observations, we sought to construct models
using diagnoses represented in Table 2 as new engage-
ment points for deploying prediction models to then en-
able accelerated diagnosis of PD. We specifically selected
gait and tremor disorders for the first set of engagement
or index points for future analysis due to their compara-
tively extreme odds ratios. However, the remaining
diagnoses, either alone or in combination, represent
alternative points that could have been chosen.

Gait and tremor disorders highlight PD differential
diagnostic window
In order to better characterize the predictive implications
and utility of this pre-diagnostic window, we examined the
rates of different diagnoses relative to the PD diagnosis date
corresponding to select phenotypes (Fig. 2): gait disorders,
tremor disorders, constipation (a known prodromal symp-
tom of PD), as well as a clinical event with little if any

known physiological connection to PD: breast cancer
screening (Supplementary Table 2). It was hypothesized
that, after controlling for gender, the frequency of this clin-
ical event among PD and non-PD patients would be
roughly equivalent. Gait and tremor diagnoses were chosen
based on their strength of association and the presence of
sufficient patients to create PD classifiers indexed to their
first diagnosis point. In the case of constipation, we found
elevated rates of diagnosis prior to the PD diagnosis date,
that steadily rise prior to and post PD diagnosis. A small
spike at PD diagnosis is likely due to increased documenta-
tion at this critical inflection point in care. In contrast, con-
stipation among PD controls increases more gradually over
the whole window but is agnostic to the baseline date itself.
This behavior is consistent with constipation’s role as a
symptom of PD. Breast cancer testing, a test performed as a
part of the standard of care, showed little variance between
PD cases and controls throughout the entire window, con-
sistent with the lack of evidence for a physiological associ-
ation to PD. We find that gait and tremor disorders among
PD cases slowly diverge from controls until a large spike
approximately 1 year prior to the PD diagnosis and fall off
in the years post diagnosis, likely due to their replacement
with a PD code. This suggests that gait and tremor diagno-
ses are being used as proxy diagnoses in the runup to the
PD diagnosis, consistent with the presence of a pre-
diagnostic window.

Table 2 Top 20 diagnoses for predicting PD immediately prior to PD diagnosis

Description OR FDR Adjusted P Value PD Prevalance non-PD Prevalance

Abnormality of gait 8.31 2.80E-188 15.91% 2.05%

Abnormal involuntary movements 55.96 1.49E-168 19.67% 0.35%

Malaise and fatigue 3.53 2.33E-112 20.78% 6.27%

Essential tremor 38.04 1.96E-79 8.30% 0.23%

Depression 4.07 2.96E-76 10.96% 2.94%

Back pain 2.53 2.98E-62 16.11% 7.34%

Essential hypertension 1.57 3.41E-57 42.66% 31.15%

Dizziness and giddiness (Light-headedness and vertigo) 3.08 2.08E-54 12.11% 4.25%

Anxiety disorder 3.51 1.72E-51 8.51% 2.67%

Major depressive disorder 4.16 1.73E-47 4.74% 1.17%

Pain in joint 1.98 6.84E-46 21.10% 12.25%

Constipation 3.52 5.03E-42 7.73% 2.39%

Spondylosis without myelopathy 2.68 5.19E-40 11.21% 4.13%

Lack of coordination 10.97 1.63E-39 4.29% 0.37%

Pain in limb 2.26 6.99E-35 13.70% 6.76%

Extrapyramidal disease and abnormal movement disorders 51.01 8.70E-35 4.42% 0.09%

Abdominal pain 2.19 1.43E-33 12.52% 6.34%

Type 2 diabetes 1.78 4.41E-32 13.33% 8.94%

Urinary incontinence 3.46 9.38E-32 5.03% 1.69%
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Predicting Parkinson’s disease progression from first gait/
tremor diagnosis
Based on the importance of gait and tremor diagnoses in
the prediagnostic models and the above finding that they
are widely used as proxies for a PD diagnosis, we con-
structed three new cohorts where baseline classification
dates were defined as i) the diagnosis of first gait or
tremor disorder, ii) the first diagnosis of gait disorder
only, and iii) the first diagnosis of tremor disorder only.
In all three cases, all subjects were gait/tremor naive
prior to their baseline. Two years of features for each
subject prior to the baseline were collected. The shift
from a predictor based on a case-control study to a co-
hort study is useful in several ways. Not only are cohort
studies considered a higher level of evidence [21], but
the presence of a well-defined entry date allows for de-
ployment of a predictor in clinical workflow. We used
identical model architectures/parameters (both neural
network and penalized logistic regression) for gait and
tremor indexed models as for prediagnostic models (Fig.
1). The primary difference was the selection of the base-
line point: a point in the future for the prediagnostic
models, compared to a point at present for the gait/
tremor models. We find that as the models are directed
to focus on more specific cohorts, accuracy declines, in
both claims and EMR, as well as between both logistic

regression and deep neural network-based models
(Table 4). The feature importance of both models
trained on both data sources showed strong correlation
(Pearson correlation of 0.71) between individual feature
odds ratios. Furthermore, the logistic regression model
trained over EMR generalized to the external Claims
population with an AUC of 0.701 (95% CI: 0.698–0.704).
The strongest predictor for future PD diagnosis for all
three (gait or tremor, gait only, tremor only) cohorts was
bipolar disorder (Table 4A, Supplementary Tables 3–4),
an association that has been highlighted by other epide-
miologic studies [27]. It is important to note that many
Bipolar treatments (antipsychotic medications, valproic
acid) are known to cause secondary Parkinsonism, which
may be a reason underlying the high observed odds ra-
tio. However, overall, the impact of bipolar on the accur-
acy of the model is low given the small affected
population, with 2.6% of those eventually being diag-
nosed with PD. Other identified features align with what
has previously been documented as potential risk factors
for PD including major depressive disorder [28] and
voice disturbance [29]. Progression into PD from gait
disorders only was uniquely defined by a history of fea-
tures such as urinary tract infection and chronic laryngi-
tis, while progression from tremor disorders only was
uniquely defined by parasomnia. While both gait and

Fig. 2 Frequency of phenotypes relative to PD diagnosis date (cases)/matched baseline date (controls). Each point represents the frequency of
the phenotype among the population in the year defined at the point: a tremor frequency of 0.08 at day 730 implies that 8.0% of PD cases had a
tremor diagnosis between 730 and 365 days prior to their PD diagnosis. The data in subfigures represent the population diagnosed with a (a)
gait disorder, b tremor disorders, c constipation, or d breast cancer testing. Details of the ICD/CPT codes associated with each subfigure are
presented in Supplementary Table 2
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tremor are known to be early symptoms of PD, the dis-
tinction that the presence of these additional diagnoses
may contribute towards risk in these cohorts and may
indicate differences between two subsets of disease.
We examined the strongest performing model (Table 3A),

the neural network predicting PD progression from either
first gait or tremor in more depth (Tables 3B and 4). For this
model, we examined the average days-in-advance that the
model predicted PD for individuals who truly went on to ex-
perience a PD diagnosis on record at various false positive
rate (FPR) thresholds. While the mean days saved declined
slightly as the FPR threshold was increased, the average was
still in excess of 300 days with an FPR rate of 0.01. This indi-
cates that model performance is not dominated by individ-
uals who immediately go on to develop PD after a gait or
tremor diagnosis, and that among this selective cohort, early
diagnosis is feasible.
Upon review of the results, we highlighted sets of diag-

noses that were significantly different between the first

prediagnostic model and the gait and tremor cohort
model (Table 4B). In particular, the odds ratio direction-
ality of anemia and hypotension reversed when evaluated
in the presence of first gait/tremor, meaning that these
diagnoses were no longer predictive of future PD. Simi-
larly, while constipation is a known symptom of prediag-
nostic PD [26], it is less useful at predicting who will
progress to PD from gait/tremor than in the original co-
horts. These results suggest that distinct trajectories into
PD may be present, including trajectories characterized
by gait or tremor disorders. Further analysis motivated
by these findings, outside the scope of this article, may
be warranted to evaluate differential subtypes prior to a
PD diagnosis. These findings also suggest that the con-
trols defined in gait/tremor indexed cohorts represent a
distinct population from traditionally defined PD con-
trols, and that the true real-world PD progression pre-
diction task is sensitive to the particular comparisons
that a clinician is making.

Table 3 A) Claims, EMR Prediction accuracy at first gait or tremor, first tremor, and first gait. B) Analysis of advance prediction time
at various FPR thresholds for first gait or tremor Deep Neural Network Model

A)

Claims EMR

Demographics Validation AUROC
(95% Confidence)

Demographics Validation
AUROC (95%
Confidence)

Cohort Size Percent
Progressing to PD

Average
days to PD
(STD)

Deep
Neural
Network

Logistic
Regression

Cohort
Size

Percent
Progressing
to PD

Average
days to PD
(STD)

Logistic
Regression

First Gait or
Tremor

8475 2.43 469 (493) 0.874
(0.869–
0.879)

0.803
(0.791–
0.816)

1349 3.08 548 (517) 0.804 (0.792–
0.816)

First Gait Only 3925 1.37 575 (521) 0.769
(0.759–
0.780)

0.791
(0.772–
0.809)

694 2.23 606 (530) 0.714 (0.679–
0.750)

First Tremor
Only

4550 6.69 377 (447) 0.698
(0.679–
0.718)

0.697
(0.674–
0.719)

681 5.24 479 (490) 0.757 (0.730–
0.784)

B)

False Positive
Rate
Threshold

Observed
False Negative
Rate

Mean Days
Accelerated
Diagnosis (STD)

0.90 0.00 377 (399)

0.80 0.01 375 (397)

0.70 0.03 369 (395)

0.60 0.04 368 (396)

0.50 0.07 360 (390)

0.40 0.12 348 (384)

0.30 0.18 339 (376)

0.20 0.26 334 (372)

0.10 0.33 322 (371)

0.01 0.44 303 (369)
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Discussion
Early identification of PD for the purpose of disease
modification remains a major unmet need. One of the
potential reasons for this is the advanced disease state of
the studied [30] populations. The present study bridges
this gap by providing a novel approach to identify the
population with gait or tremor diagnosis at risk of

“converting” to PD, before marked symptoms [31]. We
identify that gait and tremor associated diagnoses both i)
manifest as a potential form of information leakage in
existing models and ii) represent a practical opportunity
for accelerating PD diagnoses. Our findings provide sup-
port to the tremor-predominant and postural instability
and gait disorder (PIGD) clinical phenotypes of PD

Table 4 A) Strongest positive features in first gait/tremor cohort B) Difference in PD progression odds ratio between deep learning
prodromal cohorts (Fig. 1) and gait/tremor cohorts (Table 2)

A)

Description Gait/Tremor
OR

Gait/Tremor
Adjusted P Value

Percent of non-PD patients with
history of feature

Percent of PD patients with
history of feature

Bipolar disorder 3.392 1.04E-88 1.54 3.42

Major depressive disorder 1.628 1.44E-27 5.95 6.64

Voice disturbance 2.04 8.74E-21 2.10 4.15

Memory loss 1.725 5.39E-18 3.46 6.39

Other non-epithelial cancer of skin 1.334 4.14E-17 10.2 16.25

Senile cataract 1.233 1.75E-16 24.2 31.63

Other persistent mental disorders due to
conditions classified elsewhere

1.944 1.33E-14 1.53 3.32

Actinic keratosis 1.219 1.06E-12 18.2 26.7

Urinary incontinence 1.414 1.16E-12 6.53 9.00

Depression 1.293 6.30E-12 13.8 14.78

Symptoms concerning nutrition, metabolism,
and development

1.434 2.70E-10 4.78 7.25

Frequency of urination and polyuria 1.269 1.47E-09 10.9 15.4

Malaise and fatigue 1.133 5.64E-07 34.6 37.9

Seborrheic dermatitis 1.475 8.92E-07 2.92 4.58

Inflammation of eyelids 1.325 1.06E-06 5.86 7.90

B)

Description Prediagnostic
OR

Prediagnostic
Adjusted P value

Gait/Tremor OR Gait/Tremor P Value

Mental Health Diagnoses

Major depressive disorder 3.10 2.28E-103 1.63 1.43E-27

Mood disorders 3.62 4.54E-18 1.77 1.50E-05

Bipolar 5.68 1.82E-73 3.39 1.03E-88

Depression 2.57 3.73E-109 1.29 6.29E-12

Anemia-related Diagnoses

Other anemias 1.13 0.412 0.74 2.67E-18

Iron deficiency anemia secondary to blood
loss (chronic)

1.61 3.48E-05 0.77 0.028

Other Diagnoses

Constipation 2.24 4.42E-72 1.17 0.001

Frequency of urination and polyuria 1.66 4.96E-39 1.26 1.47E-09

Urinary incontinence 2.11 2.56E-46 1.41 1.16E-12

Hypersomnia 2.61 3.65E-12 1.43 0.010

Hypotension NOS 1.97 3.53E-19 0.8 0.054

Dizziness and giddiness 2.29 2.35E-133 1.08 0.025
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defined by the field [32]. The use of a well-defined entry
point serves as a real-world event from which the model
can accelerate diagnosis and are a key requirement for
actual deployment of machine-learning based predictive
models. Of the features selected in Table 2, gait and
tremor represented the most obvious potential index
points. This idea could be extended to the other features
uncovered through this analysis, such as malaise and fatigue
or depression. This approach where prospectively identifi-
able engagement or index points are selected, based on one
or a combination of diagnoses, represents a paradigm shift
for how predictive algorithms are designed and deployed.
In contrast, we find that models that utilize all features
prior to the diagnosis date in cases rely on features very
close to the diagnosis date itself (as few as 15 days in ad-
vance of the true diagnosis), and so are less likely to provide
clinical utility. This main original contributions of this work
are: (1) the unbiased characterization of prediagnostic PD,
by utilizing a well curated cohort of PD patients and
matched controls; (2) the mapping of the temporal relation-
ships of prediagnostic features to evaluate which diagnoses
define the later stage of this period (i.e. the “pre-conversion”
or suspected PD that we defined as a pre-diagnostic win-
dow); and (3) the deployment of novel machine learning
approaches to develop a clinically deployable model for pre-
dicting which patients will progress into PD. Implementa-
tion of this strategy would facilitate earlier diagnosis and,
ultimately, preventative interventions.
The presence of a pre-diagnostic period has compli-

cated and obfuscated attempts to develop predictive
models for PD using standard machine learning [17, 33,
34] approaches. Models, such as those proposed by
Schrag, et al. [18], that included the pre-diagnostic win-
dow all had AUROC values between 0.8 and 0.85, des-
pite the large differences in input data and imputation
methods. Hand curated factors and simple linear models
performed roughly as well as highly complex neural net-
works with access to a comprehensive record of interac-
tions with the health care system. This observation
implies that within this period, signal is overwhelmingly
dominated by prodromal signals, and that the signal here
is illusory: physicians likely already suspect PD in most
of the true positive cases. In order to establish clinical
utility for decision support surrounding PD, it is critical
for predictive models to report at critical times in care,
rather after a doctor already suspects a diagnosis. While,
within populations already diagnosed with PD, gait and
tremor are often seen as indicators of progression, we
found that many patients with these diagnoses experi-
enced extended periods prior to their first PD diagnosis.
Even though retrospectively, one can say these individ-
uals were clearly progressing through Braak stages, this
was not evidence enough to the providers at the time to
make a PD diagnosis. This modelling approach can

therefore accelerate PD diagnoses by nominating high
risk patients for confirmatory encounters with specialists
at earlier points in time. Finally, our results demonstrate
that not only are models that utilize features in the pre-
diagnostic window are unlikely to accelerate PD diagno-
sis, but that predictive performance significantly declines
when the prediagnostic window is removed. Models that
are designed to target well-defined populations are
required to have any potential for practical real-world
deployment [35].
One way to address this bias is through restricting the

scope of a predictive model to a more homogenous co-
hort defined by a specific inflection point in their health.
By identifying that the pre-diagnostic period is, for
many, characterized by an initial gait and tremor dis-
order, we avoid the biases that stem from attempting to
determine if a particular model is appropriate for a par-
ticular patient. It is feasible for a physician to determine
if a patient has their first gait or tremor disorder whereas
it is unrealistic that a physician can predict if a patient is
within 5 years from a diagnosis of PD. This ‘specificity-
first’ approach can also yield insights into the heterogen-
eity of the disease state: as mentioned before, PD can be
thought of as a syndrome with numerous subtypes. An
example of a subtype can be seen by the way gait/tremor
defined PD trajectory behave in a different manner than
PD as a whole. The algorithm proposed by Schrag et al.
[18] nominates an additive relationship between various
factors, among them dizziness, hypotension, gait, and
tremor. In contrast, at the time of a first gait or first
tremor diagnosis, we found hypotension was no longer
predictive of PD onset and dizziness had only a very
weak effect. This suggests that among gait/tremor defined
PD, an algorithm agnostic to latent PD subtypes may
overestimate risk of progression among some patients.
Our study has several limitations driven by the use of

real-world data collected primarily from billing and pa-
tient care. To mitigate this, we first used a data-driven
approach to define a sufficient quiescence period prior
to de novo PD diagnoses. Despite this, there is no guar-
antee that an individual may not have received a PD
diagnosis either prior to appearing in the data (first visit
or enrollment into insurance coverage) or outside of the
data (in another insurance plan or health system, or
through prescriptions, which were not included in this
study). Unfortunately, our study was unable to include
prescription data to exclude drug-induced Parkinson’s
cases. The limited availability of medication data re-
sulted in our inability to definitively remove individuals
with histories of drugs that could drive secondary Par-
kinsonism. Finally, the pre and post-baseline record re-
strictions that we implemented to ensure the integrity of
our cohorts would serve to bias our analysis towards
populations with extended lengths of coverage.
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Conclusions
Our study has three central conclusions. First, we
perform a retrospective analysis to characterize the
prediagnostic period in PD by highlighting important
prodromal features. These enable us to quantify the
influence of this period on predictive models and
show how a study design based on future events can
result in artificially strong predictive performance.
Second, in characterizing this period, we show that
gait and tremor disorders represent anomalous pat-
terns of diagnosis or differential diagnosis, suggesting
the existence of a population of PD patients whose
diagnoses can be accelerated. Third, we develop and
validate a prospectively usable predictor for PD
among this population and present evidence of
unique comorbidities and risk factors enabling stratifi-
cation of individuals affected by PD. These findings
enable more nuanced predictive algorithms that better
resemble the patient populations that physicians are
likely to encounter in practice and potentially those
likely to respond to different interventions.
Overall, this approach focusing on specific clinical de-

cisions as experienced by physicians is well suited for
not only guiding clinical decision-making regarding re-
ferrals and accelerated diagnoses, but also allows for
more closely aligning machine learning predictors with
the infrastructure around clinical trials. Reliable risk
stratification could identify eligible patients earlier while
also providing a proxy endpoint that can be tracked in a
continuous manner. By providing the basis for identify-
ing distinct subpopulations and disease progression tra-
jectories, physiological hypotheses regarding the nature
of the disease can be elucidated and more precise
recommendations made to clinicians.
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