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Abstract
Over the past couple of decades, the explosion of densely interconnected data has stim-
ulated the research, development and adoption of graph database technologies. From
early graphmodels tomore recent native graph databases, the landscape of implementa-
tions has evolved to cover enterprise-ready requirements. Because of the interconnected
nature of its data, the biomedical domain has been one of the early adopters of graph
databases, enabling more natural representation models and better data integration
workflows, exploration and analysis facilities. In this work, we survey the literature to
explore the evolution, performance and how the most recent graph database solutions
are applied in the biomedical domain, compiling a great variety of use cases. With this
evidence, we conclude that the available graph database management systems are fit
to support data-intensive, integrative applications, targeted at both basic research and
exploratory tasks closer to the clinic.

Introduction

Nowadays, the generation, consumption and, more impor-
tantly, analysis of highly interconnected data have become
ubiquitous. In this situation, where the relationships among
data grow both in quantity and in significance, graph
models become an appealing solution, as graphs are math-
ematical entities in which objects are connected. Formally,
a graphG(V, E) is composed of an ordered pair of two dis-
joint sets: vertices V (also referred to as nodes) and edges
(or links) E (1). The graph abstraction directly translates
concepts and instances into nodes and their relationships
into edges, making it intuitive for data modeling. However,
strong graph data is not straightforward in conventional

Database Management Systems (DBMSs), and the phys-
ical implementation of a given data model and how the
relations are treated ultimately depend on the database
type.

For example, the basis of Relational Database Manage-
ment Systems (RDBMSs) are tables (relations) (2–4), where
each row represents a single data element of an entity and
a single column usually defines a particular data attribute.
The standard mechanism to create relationships between
entities is by defining unique IDs (primary keys) that can
be copied into referencing tables (foreign keys). To exploit
these references and include different tables in a database
query, the Structured Query Language (SQL) (5) provides
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the JOIN clause. The relational paradigm is very appro-
priate for well-defined data structures that are unlikely to
change and translate naturally to tables, and the relations
among its entities are not numerous and not as relevant
as the entities’ attributes. Hence, given its maturity and
technological development, RDBMSs are widely used for
data storage, with countless examples experienced in every-
day life, like user data, inventory tracking, blog posts and
many more. However, when most relationships are many-
to-many, prevalent in densely connected data, querying
the database requires multiple expensive JOIN operations,
impacting the performance (6).

Although graphs can be modeled with tables represent-
ing vertices and edges, complex queries or graph algorithms
(like path traversals) are challenging to optimize with-
out implementing complementary structures, such as adja-
cency lists (7). These modeling and performance limitations
have increased the interest in Graph Database Manage-
ment Systems (GDBMSs). GDBMSs, in contrast to regular
DBMSs, allow working directly with a graph model, avoid-
ing sophisticated engineering to represent relationships effi-
ciently, and provide straightforward ways to store, access
and operate graph data, especially for traversing paths
and matching subgraphs. Furthermore, the schema-less
or schema-optional approach that most GDBMSs follow
grants a high degree of flexibility, allowing applications
to adapt and evolve quickly and introduce abstraction,
specialization of entities and relations among them more
easily.

Graph models are present in multiple formal representa-
tions and become very powerful when the problem model
exhibits varied relations among the entities or concepts.
Consequently, the trend in graph databases has permeated
into many disparate domains, and we can find applications
in Energy Management Systems (EMS) (8), Power Grid
Modeling (9) and even less technologically driven fields
like Digital Humanities (10). The biomedical domain is a
complex area that is inevitably studied in many different
sub-domains that are inherently related and connected. For
instance, the study of human metabolism requires iden-
tifying hundreds of concepts (e.g. metabolites, proteins,
complexes and metabolic reaction names) and the relations
among them (e.g. consumption, production and catalysis),
and graph models provide a valuable framework in this
situation. Moreover, the amount of data produced in the
‘omics’ era results in large graphs that become difficult to
manage without a database optimized for the task.

We can illustrate the differences between the relational
and graph-based paradigms depicted in Figures 1 and 2,
a stripped-down biological model describing subject diag-
noses and their related phenotype–genotype and path-
way implications. For most GDBMSs, the physical design

resulting from the logical model described in Figure 1
would be almost equivalent. However, in the case of
RDBMSs, the implementation from the logical to the final
physical design requires dealing with the many-to-many
cardinality that most of the model’s relations will have.
A typical normalized relational design, at least to the
Third Normal Form (3NF) (11), prevents data redun-
dancy by introducing intermediate tables for each rela-
tionship between two entities, as shown in Figure 2. For
searching heavily connected entities, like genes, this layout
would require referencing (joining and sub-querying) sev-
eral tables multiple times, potentially with various filters,
ultimately eroding the query’s performance. Also, com-
plicated queries may end up being rather cumbersome.
Thus, designing a relational model for highly intercon-
nected data poses an engineering challenge, especially when
the model requires fine-grained semantics, which involves a
trade-off between implementing specialized relations (more
tables) or limiting the expressiveness at the expense of
semantics.

GDBMSs treat relationships as first-class objects,
improving the data model’s semantics and easing the
adoption of knowledge models and ontologies, which
are computer science constructs that provide well-defined
vocabularies that allow the precise and machine-readable
description of knowledge about a particular domain (12).
The biomedical domain has driven and benefited from
advances in Knowledge Representation (KR) and storage,
being one of the early adopters of ontological research. As a
result, there exists a significant number of formal biomedi-
cal ontologies (13) that capture and model knowledge from
disparate sub-fields, giving rise to initiatives like the Open
Biological and Biomedical Ontology (OBO) Foundry (14)
and the National Center for Biomedical Ontology (15) to
promote harmonization and interoperability. These con-
trolled vocabularies and ontologies support the research
in several ways, mainly in data annotation (16–19) and
biomedical text mining (20, 21).

In this paper, we survey the adoption of GDBMSs in the
biomedical domain to present a summary review from an
‘application perspective’ with categorization and descrip-
tion of biomedical applications employing GDBMSs as
storage systems. The applications presented are selected
from a broad literature search complying with the follow-
ing characteristics: (i) are biomedical applications using
GDBMSs, (ii) are well documented with papers and web-
sites (iii) have been peer-reviewed. Our coverage of bio-
logical graph-powered systems is by no means exhaustive,
focusing on recent developments that are high quality, pub-
licly available and expected to be of interest to experts
and developers in the community. It is worth noting that,
given the overlapping nature of biomedical knowledge,
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Figure 1. Graph model of diagnoses and its related phenotype–genotype and pathway implications.

some systems can be classified into more than one cat-
egory. First, we provide a technological background by
exploring the different database models and designs and
examining the performance through benchmark studies
from the literature. Afterward, we highlight the use of
GDBMSs within different applications in a wide variety
of biomedical contexts, describing the implications and
impact of graph technology in these settings. Finally, we
discuss the current state, limitations and possible future
lines.

Background

Graph database models and design

Graph database models may be defined as those in which
the data structures are modeled as a directed, possibly
labeled, graph, or its generalizations. The data manipu-
lation is done using graph-oriented operations and type
constructors, and appropriate integrity constraints can
be defined over the graph structure (22). Over the past

decade, graph database implementations have grown from
prototypical, application-driven approaches to fully devel-
oped products, providing external interfaces, database lan-
guages, query optimizers, storage and transaction engines,
and management features. This evolution has been actively
reviewed (23–28), showing how deficiencies such as the
lack of integrity constraints, partition and scalability limi-
tations, or the need for standard graph database languages
have been addressed throughout the version history. Besta
et al. describe the contemporary technological landscape of
graph database solutions through a taxonomy of six key
design aspects: type of backend technology, data model-
ing approach, internal data organization, data distribution,
query execution and type of transactions (29).

As far as backend technology is concerned, we can
see that, at present, most graph database systems are
built upon existing storage designs from both relational
and NoSQL (30) paradigms, such as key-value, docu-
ment, wide-column, tuple and object-oriented stores. Key-
value stores allocate items as (key, value) pairs, usually in
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Figure 2. The equivalent normalized relational physical design, with entity tables (white) to store attributes, and join tables (yellow) to implement
the relationships.

standalone hash tables. Document stores extend key value
so that the values are ‘documents’, encoded in standard
semi-structured formats such as XML, JSON or BSON
(Binary JSON). Wide-column stores represent data through
a tabular format of rows with a fixed number of column
families (an arbitrary number of columns that are logically
related to each other and usually accessed together). Triple
stores [also known as Resource Description Framework
(RDF) databases] work with the notion of triples (subject–
object–predicate), and tuple stores generalize these systems
to collect tuples of arbitrary size. Object-oriented stores
store data as true objects, identified by object IDs (OIDs)
and following a class hierarchy. Using existing engines
delivers the advantage of mature and well-tested technol-
ogy but at the expense of obtaining non-optimized graph
data representations and queries. In contrast, native graph
databases like TigerGraph (31) and Neo4j are specifically
built to maintain and process graphs. Table 1 provides
a list of different GDBMSs, which many of the reviewed
applications use, with their internal database engines.

Regarding data modeling, Labeled Property Graphs
(LPG) and RDF are the most common graph models found
in graph database systems (32–34). LPG augments the
simple graph model to allow defining labels for nodes

and edges, as well as an arbitrary number of proper-
ties (also called attributes) for both. RDF, a World Wide
Web Consortium (W3C) standard, was conceived as a
collection of specifications for representing information
to allow easy data exchange between different data for-
mats, and graphs arise from the collection of triples
in the form of subject, predicate and object (s, p, o).
The RDF format is widely used in biomedical setups,
due mainly to the fact that RDF is a serialization and
data instantiation format for OWL-based bio-ontologies,
and new systems using native graph databases rely on
transformations between models to fully exploit their
features.

Likewise, systems need to define data structures to rep-
resent graphs in the storage layer. The most common
representation formats are the adjacency matrix (AM), the
adjacency list (AL) and the edge list (EL). Figure 3 shows
a graphical representation of these formats. The AM is a
square matrix where its cells indicate whether vertex pairs
are adjacent (connected) or not. In the AL format, each
vertex has an associated adjacency list containing the IDs
of all adjacent vertices. The difference with EL is that AL
explicitly stores edges with its source and destination ver-
tex. The AL format is efficient on traversal operations, and
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Table 1. Summary of available implementations by core database engine

Product Link Database engine

WhiteDB http://whitedb.org Tuple store
GraphDB https://www.ontotext.com/products/graphdb Tuple store
OrientDB https://www.orientdb.org Document store
ArangoDB https://www.arangodb.com Document store
Azure Cosmos DB https://azure.microsoft.com/es-es/services/cosmos-db Document store
FaunaDB https://fauna.com Document store
RedisGraph https://oss.redislabs.com/redisgraph Key-value store
Dgraph https://dgraph.io Key-value store
HyperGraphDB http://www.hypergraphdb.org Key-value store
MS Graph Engine https://www.graphengine.io Key-value store
Titan https://titan.thinkaurelius.com Wide-column store
JanusGraph https://janusgraph.org Wide-column store
DSE Graph https://www.datastax.com/products/datastax-graph Wide-column store
InfiniteGraph https://www.objectivity.com/products/infinitegraph Object-oriented store
ThingSpan https://www.objectivity.com/products/thingspan Object-oriented store
VelocityDB https://velocitydb.com Object-oriented store
Oracle Spatial and Graph https://www.oracle.com/technetwork/database-options/

spatialandgraph/overview/spatialandgraph-1707409.html
RDBMS

Sparksee/DEX http://www.sparsity-technologies.com Native graph database
TigerGraph https://www.tigergraph Native graph database
GraphBase https://graphbase Native graph database
Memgraph https://memgraph.co Native graph database
Neo4j https://neo4j.com Native graph database

many graph databases use it. Other features, such as index
support, are also relevant for the overall performance.

Data distribution may be achieved through data repli-
cation or sharding. With replication, each instance main-
tains a copy of the dataset, while sharding fragments the
data across instances. Distribution becomes essential when
dealing with large amounts of data, and query execu-
tion is directly linked to it. Multi-server query execution
can be enabled in several ways. The concurrent execu-
tion allows the execution of different queries at the same
time, providing higher throughput. With parallelization,
a single query can be executed across servers to obtain
lower latencies. Because managing large amounts of data
can compromise the system’s performance or availability,
these features can become essential for projects in this
situation.

Finally, GDBMSs can be evaluated by the support of
transactions. Specifically, Atomicity, Consistency, Isola-
tion, Durability (ACID); Online Transaction Processing
(OLTP); and Online Analytics Processing (OLAP) support.
OLTP systems focus on smaller transactional queries, while
OLAP systems execute more expensive analytic queries that
span whole graphs.

The literature reveals that the field is evolving rapidly
and many referenced databases have either already
been discontinued or greatly improved at the time of
writing.

Performance and benchmarking

Because of their innate capabilities in dealing with highly
interconnected data, graph databases have been attract-

ing attention in the past years. As different technological
implementations of graph database engine have emerged,
so has the need for accurate, quantitative performance com-

parisons between them by using standardized queries and
workloads. Furthermore, the differences in relational and

graph-based paradigms also raised questions about how
they would behave in different contexts. Table 2 summa-
rizes the surveyed benchmark studies.

Within standard benchmarks, the Linked Data Bench-
mark Council (LDBC) (35) is one of the most consis-
tent works in this topic, and its workloads have been
employed and adapted in many benchmarking studies.
The library currently includes three kinds of workloads:
interactive, business intelligence and graph analytics. Inter-
active workloads focus on general graph database opera-
tions, executing read-only (short and complex) and transac-
tional update queries. Business Intelligence workloads are
designed to stress different performance aspects, employ-
ing read-only aggregation operations over significant vol-
umes of data that span large parts of the graph. The last
workload, ‘graphalytics’ (36), proposes six graph algo-
rithms to enable the objective comparison of graph anal-
ysis platforms: Breadth-First Search (37), PageRank (38),

http://whitedb.org
https://www.ontotext.com/products/graphdb
https://www.orientdb.org
https://www.arangodb.com
https://azure.microsoft.com/es-es/services/cosmos-db
https://fauna.com
https://oss.redislabs.com/redisgraph
https://dgraph.io
http://www.hypergraphdb.org
https://www.graphengine.io
https://titan.thinkaurelius.com
https://janusgraph.org
https://www.datastax.com/products/datastax-graph
https://www.objectivity.com/products/infinitegraph
https://www.objectivity.com/products/thingspan
https://velocitydb.com
https://www.oracle.com/technetwork/database-options/spatialandgraph/overview/spatialandgraph-1707409.html
https://www.oracle.com/technetwork/database-options/spatialandgraph/overview/spatialandgraph-1707409.html
http://www.sparsity-technologies.com
https://www.tigergraph
https://graphbase
https://memgraph.co
https://neo4j.com


Page 6 of 22 Database, Vol. 2021, Article ID baab026

Figure 3. Graphic description of the most common graph representation formats. (a) Original directed graph; (b) adjacency matrix; (c) adjacency list;
and (d) edge list.

weakly connected components (39), community detection
using label propagation (40), deriving the local cluster-
ing coefficient (41), and computing single-source shortest
paths.

GDBMSs have been assessed in studies from differ-
ent contexts, like data provenance (42), biomedical set-
tings (43–46) and social networks (47–52). Most of the
social network benchmarks use or adapt the LDBC’s
Social Network Benchmark (SNB) (53). In parallel with
technological surveys, these studies show how GDBMS
technology has matured and grown into a competitive
and heterogeneous environment, with its weaknesses and
strengths.

The number of edges involved in a query has a big
impact on performance (44, 46). Likewise, subgraph-
matching queries are more challenging to handle in large
datasets, in contrast to traversal queries employed in
some of the works. Lastly, GDBMSs are, in general,
less optimized for aggregate operations (25, 51, 52, 54).
In contrast, all the studies acknowledge that schema-
less provides a high degree of flexibility to accommodate
new nodes or relations, avoiding the need to restruc-
ture the schema. GDBMSs are more efficient travers-
ing large graph instances, with lower computational cost
than RDBMSs (42, 43, 45, 47, 52, 55, 56), because

the search space is reduced to directly connected nodes,
avoiding scanning the entire graph to find the nodes
that meet the search criteria. Furthermore, graph algo-
rithms (e.g. pathfinding, community detection, central-
ity or similarity) are more natural to implement and
even available out of the box, like the case of Neo4j’s
Graph Data Science Library (https://neo4j.com/graph-
data-science-library/) or TigerGraph’s (31) GSQL Graph
Algorithm Library (https://docs-beta.tigergraph.com/tiger
graph-platform-overview/graph-algorithm-library).

To compare different paradigms, benchmarking imple-
mentations require an extra effort to address peculiarities.
In the case of RDBMSs vs. GDBMSs (52), Cheng et al. pro-
pose a unified benchmark that extends the TPC-H (http://
www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_
v2.18.0.pdf) standard RDBMS benchmark and LDBC
using transformation mechanisms between relational and
graph data, making it possible to evaluate different sys-
tems on the same datasets, query workloads and met-
rics. The query workloads consist of three main cate-
gories. Firstly, atomic relational queries (Projection, Aggre-
gation, Join and Order by) aim to evaluate the per-
formance of primitive relational operations implemented
in GDBMSs. Secondly, TPC-H query workloads eval-
uate the performance of GDMBSs on operations that

https://neo4j.com/graph-data-science-library/
https://neo4j.com/graph-data-science-library/
https://docs-beta.tigergraph.com/tigergraph-platform-overview/graph-algorithm-library
https://docs-beta.tigergraph.com/tigergraph-platform-overview/graph-algorithm-library
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
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Table 2. Relevant benchmarking studies

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(42) Own implementation Neo4j MySQL Technology comparison about recording and query-
ing data provenance information. Executes objective
benchmarks to measure query response time and
disk space usage. Also, it provides subjective com-
parisons based on system documentation and usage
experience. Concludes that Neo4j outperforms
on structural queries, but it is premature to use a
graph database in production environments for data
provenance

(57) HPC Scalable Graph
Analysis Benchmark

Neo4j
Jena
Hypergraph
DBDEX

Evaluates the performance of selected systems with the
HPC benchmark. This benchmark employs R-MAT
(58) for graph generation and measures the execu-
tion time over different kernels: data loading, scan
edges, 2-hops subgraph building and Traversed
Edges Per Second. All four platforms perform well
on small graphs. Only DEX and Neot4j were able
to load the largest graphs. DEX showed the best
performance

(47) Own implementa-
tion of a small social
network–like problem

Neo4j MySQL Small comparative analysis with social network
queries. In this study, Neo4j outperforms MySQL
in all queries

(59) GDB, an extensible tool
to compare Blueprints-
compliant graph
databases

Neo4j
DEX
Titan
OrientDB

A Tinkerpop-based distributed benchmarking frame-
work to compare Blueprints-compliant graph
databases. The benchmark measures traversal, load
and intensive workloads. The results show that all
databases perform similarly on read-only operations,
while Titan and DEX stood out on read–write work-
loads, and Neo4j did on traversal workloads. Code
available at https://github.com/Jsalim/GraphDB-
Benchmark

(43) Bioinformatics graph
processing problems

Neo4j PostgreSQL A query benchmark that evaluates Neo4j against
PostgreSQL in typical bioinformatics graph pro-
cessing problems. The study employed the human
interaction network from STRING v9.05 (60) and
measured the response time for finding immediate
neighbors and their interactions, finding the best
scoring path between two proteins and finding the
shortest path between them. Neo4j outperformed
PostgreSQL, showing speedups of 36× (immediate
neighbors), 981× (best scoring path) and 2441×
(shortest path)

(44) Graph-based exten-
sion to Conditional
random field Protein–
Protein Interface
identification

Neo4j Microsoft SQL
Server

A case study on how Neo4j can be applied to the
bioinformatics problem of protein–protein interface
identification

(45) Biomedical graph
traversal operations

Neo4j MySQL Compares the performance by employing biologi-
cal network information from 21 different datasets
and ontology resources. The benchmark measured
the query response time of retrieving all data that
traverse the relationships among genes, drugs and
diseases that increased the expression of the BRCA1
gene. The results report that Neo4j outperformed
MySQL in all cases and highlights the importance of
system tuning to obtain better performance

(continued)

https://github.com/Jsalim/GraphDB-Benchmark
https://github.com/Jsalim/GraphDB-Benchmark
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Table 2. (Continued)

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(49) LDBC SNB Neo4j Analyzed the fundamental points of graph databases
and employed the LDBC-SNB to evaluate the per-
formance of Neo4j. Without much detail, the work
concludes that Neo4j shows acceptable behavior
when dealing with different sizes of graph databases.

(55) Own implementation of
comparative measures
over a medical care
setup

Neo4j Oracle Compares the performance of Oracle 11g and Neo4j
over a hospital health-care system use case with a
set of predefined queries with different join/subquery
requirements. Neo4j outperformed Oracle in 4/5 of
the queries.

(50) Extension of the LDBC
SNB IW to simulate
real-time transactional
workloads

TitanDB
Neo4j
Virtuoso

PostgreSQL An improved graph database benchmarking archi-
tecture for real-time transaction processing built
upon LDBC-SNB and Apache Kafka (https://
kafka.apache.org/). Provides LDBC-SNB reference
implementations for Gremlin (61), SQL and Cypher.
The experiment employed two synthetic datasets
with scale factors of 3 and 10, to execute read-only
graph queries (point lookups, one-hop traversals,
two-hop traversals and single-pair shortest path)
and simulate a real-time Interactive Workload.
Their results showed that Neo4j achieved higher
throughput than TitanDB and that PostgreSQL
provided the best overall performance followed by
Virtuoso (https://virtuoso.openlinksw.com/) (SQL
mode). Concludes that RDBMSs with a native SQL
interface provides the best performance under real-
time streaming scenarios. Gremlin Server incurs
significant overhead

(56) Follow-up of Khan
2017 with database
tuning

Neo4j Oracle Follow-up work of Khan 2017 where they improve
the performance of Oracle 11g database about 35%
by creating separate tablespaces for each schema and
table, and five more query workloads. Still, despite
the physical tablespace tuning technique of Oracle
11g, Neo4j outperforms it in all proposed scenarios

(52) Domain-agnostic work-
loads. Two-way
adaptations to com-
pare graph databases
with other implemen-
tations. TPC-H and
LDBC

Neo4j
ArangoDB

MySQL
Microsoft SQL
Server

Oracle
PosgreSQL
RocksDB
HBase
Cassandra

Comparative evaluation between RDBMSs and
GDBMSs under a unified benchmark that extends
the TPC-H standard RDBMS benchmark and
LDBC. The query workload consists of three main
categories: atomic relational queries (projection,
aggregation, join and order by), TPC-H query work-
loads, and five graph algorithms from LDBC. The
metrics measured the average query processing time,
memory usage (peak) ratio and CPU usage (peak)
ratio of five query runs. This benchmark concluded
that RDBMSs outperform GDMBSs by a substantial
margin under the workloads that mainly consist of
group-by, sort and aggregation operations. On the
other hand, GDMBSs are superior in the execution
of those workloads that mainly consist of multi-table
join, pattern matching and path identification

(continued)

https://kafka.apache.org/
https://kafka.apache.org/
https://virtuoso.openlinksw.com/
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Table 2. (Continued)

Reference
Benchmark/
methodology GDBMS RDBMS/NoSQL Description

(51) Complete LDBC-SNB
implementation for
Neo4j and TigerGraph

Neo4j
TigerGraph

A complete implementation of the LDBC-SNB bench-
mark in Neo4j and TigerGraph native GDBMSs.
The experimental setup consisted of four scale fac-
tors that ranged from 1 GB to 1 TB deployed on
three computing architectures. The results can be
fairly summarized in three key points: TigerGraph
stores graph data considerably more compactly
than Neo4j, Neo4j is faster at ingesting raw data
than TigerGraph, and lastly, Neo4j is faster than
TigerGraph only in 13 of the 368 configurations.
Concludes that TigerGraph is superior to Neo4j on
the LDBC-SNB benchmark

(46) Own benchmark
implementation with
biomedical data. Data
loading, path traversal
and aggregation tests

Neo4j Evaluates the aptness of the database system in terms
of analysis and visualization of a GRN by measuring
three test cases (bulk data insertion, path queries and
aggregation queries) with a small and large dataset.
The results showed that Neo4j performed well in
most of the tests; after warming up the cache, the
performance improved drastically, reducing query
time by about 64% for both dataset sizes. In the
same vein (44), the queries that involved more edge
operators performed worst

(62) TigerGraph’s bench-
mark

RedisGraph
TigerGraph
Neo4j
Neptune
JanusGraph
ArangoDB

The study executes TigerGraph’s benchmark to eval-
uate RedisGraph against leading graph databases.
Using graph data from Twitter and Graph500 gen-
erator, the benchmark measures the query response
time for k-hop neighborhood count, k=1,2,3 and
6. RedisGraph outperforms all competitors, and
the study highlights additional opportunities for
enhancement: aggregations, enhanced GraphBLAS
(http://graphblas.org), Cypher clauses/functionality
to support more diverse queries

legacy RDBMSs perform well. And lastly, graph query
workloads composed of five graph algorithms in the
LDBC Benchmark aimed to evaluate the performance of
RDBMSs under the situations GDBMSs are supposed to be
efficient.

Nevertheless, on the dichotomy between RDBMSs and
GDBMSs, we find how late benchmarks show equiva-
lent or even better performance of the former in dif-
ferent settings, questioning whether it is appropriate to
favor GDBMSs over RDBMSs without a proper evalua-
tion of the context. We can find one example in real-life
high-throughput scenarios, like those with critical con-
current access (59) or streaming transactional workloads
(50), where GDBMSs are less prevalent. In these set-
tings, RDBMSs can deliver competitive performance for
OLTP-like online social networking applications, especially
in single-node setups. Moreover, the implementation and

optimization of graph analytics in RDBMSs are growing
areas of research (63–66).

The physical data persistence strategy impacts the over-
all performance in both paradigms. For example (50),
Pacaci et al. show how similar SQL queries over the
same database schema drive different performance in Post-
greSQL and Virtuoso (SQL). The difference is attributable
to the fact that Virtuoso employs columnar storage, which
is known to suffer under transactional workloads with fre-
quent updates, while PostgreSQL implements row-oriented
storage. In the case of GDBMSs, adjacency lists are
common in native graph storage, as they enable index-
free adjacency access and provide apparent advantages
for read operations. However, other storage approaches
offer better performance regarding write operations, as
is the case of key-value storage engines implementing the
LSM-tree (67) index. Moreover, tuning procedures are

http://graphblas.org
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Table 3. A short list of useful graph-oriented open-source tools and utilities

Tool Reference Code Description

STON (74) https://sourceforge.net/projects/ston Java-based framework for transforming SBGM
models to graphs

Pheno4J (75) https://github.com/phenopolis/pheno4j Java library to load patient genetic variants and
phenotype data into Neo4j

Recon2Neo4j (76) https://github.com/ibalaur/Recon2Neo4j Java library that allows loading SBGM mod-
els into Neo4j and parsing for translating the
Neo4j JSON networks into SBML and SIF
formats

ANIMA (77) https://github.com/adeffur/ANIMA R framework for producing multiscale
association networks, loaded in Neo4j

SciGraph https://github.com/SciGraph/SciGraph Neo4j backed ontology store
Dipper https://github.com/monarch-initiative/

dipper
Python package to generate RDF triples from
common scientific resources. Includes map-
pings and parsers for many sources from
different domains

NSMNTX https://github.com/neo4j-labs/neosemantics Neo4j plugin that enables the use of RDF in
Neo4j

Tarql https://github.com/tarql/tarql Java and Apache ARQ based command-line tool
for converting CSV files to RDF using SPARQL
1.1 syntax

RDF2Neo (78) https://github.com/Rothamsted/rdf2neo Java-based project providing configurable com-
ponents to convert RDF data into Cypher
commands that can populate a Neo4j graph
database

of utter importance to achieve the best possible perfor-
mance regardless of the system, like optimizing indexing
or tablespaces, as some studies report.

Graph database applications in the
biomedical domain

Biomedical research produces large amounts of densely
interconnected data belonging to many different domains,
and storing such data has always presented a technolog-
ical challenge. Storing graphs using traditional relational
databases presents several drawbacks. Relational databases
rely on fixed schemas and usually require redesigns when
introducing new data structures, affecting flexibility, effi-
ciency and scalability. More generic data models would
require many intermediate tables to represent many-to-
many relationships, degrading the overall performance
because of the need for multiple join operations to traverse
interconnected networks. As graph databases matured,
they started to gain more attention in the bioinformatics
community, given the ubiquity of graphs in this domain.
Consequently, many tools emerged to interoperate between
formats and paradigms. Table 3 brings together some of the
most relevant ones.

The evolution of Knowledge Representation technolo-
gies and, more specifically, ontology languages like

OWL, enables more complex and interconnected mod-
els. Although many of these tools do not necessarily use
an explicit graph model, it is commonly implicit in the
semantics, opening the door to exploit graph features.
One remarkable example of this approach is the Open
Biomedical Ontologies (14), which many of the works
we are about to describe employ as foundational mod-
els. Table 4 summarizes publicly available graph-powered
systems.

Applications in systems biology

Intrinsically, systems biology models encode networks of
entities and biological processes, such as reactions. As
advances in molecular biology produce more extensive
and complex networks, the computational demand for
analyzing those increases drastically. Consequently, the
use of in-house software and desktop solutions started
to become a bottleneck. GDBMSs allow decoupling a
significant part of the computational needs to dedicated
server machines, providing improved tuning of resources
for optimal query and algorithm execution performance.
One good example is cyNeo4j (68), a Cytoscape (69, 70)
app to link this popular network analysis desktop pro-
gram to a server environment using Neo4j. It enables the
user to upload network data and run algorithms both

https://sourceforge.net/projects/ston
https://github.com/phenopolis/pheno4j
https://github.com/ibalaur/Recon2Neo4j
https://github.com/adeffur/ANIMA
https://github.com/SciGraph/SciGraph
https://github.com/monarch-initiative/dipper
https://github.com/monarch-initiative/dipper
https://github.com/neo4j-labs/neosemantics
https://github.com/tarql/tarql
https://github.com/Rothamsted/rdf2neo
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Table 4. Publicly available graph-powered Biomedical data systems

Platform Reference Domain/scope Implementation Interfaces Database

Arena-Idb (79) Genetics Hybrid MySQL-
Neo4j

cyNeo4j (68) Cytoscape App Cytoscape GUI
HRGRN (80) Genetics

Metabolomics
Web platform Web

miTALOS (81) Pathway analysis Web platform Web
Biochem4j (82) Biochemistry Exposed database Neo4j browser

REST
Neo4j

Recon2Neo4j (83) Metabolomics
Proteomics

Exposed database Neo4j browser

GeNNet (84) Transcriptome
analysis

Local web platform Web
Database interface

Monarch Initiative (85) Phenotype–Genotype
analysis

Web
Data endpoint
Ontology endpoint

Reactome (86, 87) Molecular biology
Pathway analysis

Web platform Web
Cypher interface REST

Spfy (88) Bacterial WGS Web platform Web Hybrid Blazegraph-
MongoDB

GREG (89) Genetics Web platform Web
Cypher interface

Neo4j

locally and on the Neo4j server, creating an interactive
workflow that uses the computational strength of the
Neo4j server without interrupting the typical workflow in
Cytoscape.

Standard formats of the domain, like Systems Biology
Markup Language (SBML) (71) or CellML (72), enable
modeling biological systems in terms of functional, behav-
ioral or structural aspects, including meta-data and seman-
tic annotations to relate model entities to external resources
describing the underlying biology. These meta-data are
of great importance to facilitate model reuse and repro-
ducibility, but this introduces heterogeneity, which com-
plicates the design in fixed-schema database systems (73).
Henkel, Wolkenhauer and Waltemath employed Neo4j to
store SBML and CellML models, including ontology terms
and relations from the semantic annotations that these for-
mats support, effectively combining computational mod-
els, semantic annotations and simulation experiments. The
approach integrated widely adopted bio-ontologies, adding
all classes and relations as nodes and edges but leaving
out cross-references between concepts of different ontolo-
gies. This integration allows querying the information
hidden in the semantic annotations of in-model represen-
tations and simulation descriptions. Furthermore, it allows
defining flexible connections between the data domains,
incorporating links between annotations, whole models
and model entities.

The Systems Biology Graphical Notation (SBGN) (90)
is another standard for visual representation of biological

networks. It is composed of three orthogonal languages
for representing different views of biological systems: Pro-
cess Descriptions (PDs), Entity Relationships (ERs) and
Activity Flows (AFs). SBGN-to-Neo4j (STON) (74) is a
Java framework to transform SBGN markup language files
into a Neo4j graph representation, focused only on the
PD and AF sub-languages. The authors report that the
persistent graph representation yields several benefits, e.g.
efficient management and querying of networks, identifi-
cation of subgraphs in networks, merging of SBGN dia-
grams/existing pathways into more extensive systems, or
the comparison of different layers of granularity in SBGN
languages.

Applications in biological and medicinal
chemistry

The fields of Biology and Biochemistry have been a pioneer
in the development of new data standards and knowledge
representation paradigms, such as ontologies, to foster
reuse, integration and translation of research data. These
standards enable publicly available data resources such as
UniProt (91), KEGG (92) and NCBI Taxonomy (93) to
soft-link entities between each other, allowing the user to
follow such links by manual browsing or through special-
ized workflows. The introduction of graph databases made
it easier to integrate these resources explicitly. Built on
Neo4j, Biochem4j (82) provides an integrated, queryable
database that warehouses chemical, reaction, enzyme and
taxonomic data from ChEBI (94), MNXref (95), Rhea
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(96), KEGG, UniProt and the NCBI Taxonomy resources.
Biochem4j translates ontology entities and raw biological
data into an integrated graph representation, which, lever-
aged through Cypher query language, allows performing
queries and detecting patterns across the whole range of
available information.

Logically, graph representations apply to lower-level
chemistry and related fields, like drug discovery research.
One example is the fragment-based drug discovery (FBDD)
(97), in which the validation stage of a project involves
testing sensible close analogs of a fragment hit. This pro-
cess needs adequate search tools to mine the many millions
of similar compounds that are currently available in the
fragment space from corporate collections or commercial
suppliers. The Fragment Network (98) employs Neo4j to
allow the user to search the chemical space around a com-
pound of interest. The graph model treats each compound
as a set of rings, linkers and substituents, with a resulting
network containing a total of 23 million nodes and 107
million edges.

Applications in the omics domain

In the last five years, the usage of graph databases to sup-
port the integration of genomic, proteomic, metabolomic
and phenotypic data has substantially increased. Most of
the authors conclude that GDBMSs are valuable tools to
deal with heterogeneity and lax structured data models
because these provide a high degree of flexibility and lay
the foundations for building integrated solutions.

Biological pathways
Repositories of metabolic maps, reconstructions, path-
ways and interactions provide fundamental tools for the
biomedical investigation. Examples of these repositories are
the Reactome Knowledgebase (99), Recon2 (100) and the
latest development, Recon3D (101).

Reactome is a comprehensive repository of molec-
ular reactions that include signal transduction, trans-
port, DNA replication, protein synthesis and intermediary
metabolism. Reactome contains a detailed representation
of cellular processes, as an ordered network of molecu-
lar reactions, interconnecting terms to form a graph of
biological knowledge. This structure serves both as an
archive of biological processes and as a tool for discover-
ing unexpected functional relationships in data. Reactome’s
data model initially follows a frame-based design stored
in a relational MySQL database. Overcoming the rela-
tional model’s intrinsic limitations requires an increased
level of abstraction in its physical design to accommo-
date new concepts, ultimately affecting query complex-
ity and execution time. As graph database systems have

matured, the limitations of storing pathway data in rela-
tional databases have become more evident, motivating
the project to develop tools to migrate the content into
a Neo4j database (86, 87). The Reactome case is espe-
cially relevant because it exhibits a detailed description of
the process to adopt a native graph database and how it
improved the performance and capabilities of the whole
system. On the one hand, the average query time dropped
from 173.11ms to 12.56ms, a 93% reduction. On the
other hand, the new graph model provides more straight-
forward ways to perform complex queries over metabolic
pathways.

Recon2 is another large community-driven reconstruc-
tion of the human metabolic network, with thousands of
reactions, unique metabolites and proteins, included in
an SBML model. A model of this size and complexity
comprises a challenge for advanced exploration involv-
ing associations between multiple concepts (e.g. network
neighborhood of metabolites, shortest pathways between
metabolites, proteins and complexes). Recon2Neo4j (76)
is a Neo4j-based metabolic framework that models rel-
evant concepts involved in the metabolic reactions as
nodes in the graph database and the relationships among
them as connecting edges, facilitating the exploration of
comprehensive and highly connected human metabolic
data and identification of metabolic subnetworks of
interest.

HRGRN (80) is an integrative database for plant sig-
nal transduction, metabolism and gene regulation networks
that is also backed by Neo4j. The solution, implemented
as a web platform, provides the user with a graph-
centered search interface to explore these biological sys-
tems, allowing to find potential paths or build either node-
centralized or nodes-of-interest subnetworks. Regarding
the data model, it followed an ad hoc approach, where bio-
logical entities (such as genes, proteins, small compounds
and RNAs) are represented as nodes. For the relations
between these entities, they defined eight types of edges that
link the above nodes based on their biological functions.
The Property Graph model is employed to attach a prop-
erty indicating whether the relationship was validated or
predicted.

BioGraphDB (102) is a bioinformatics database to com-
bine different types of data from ten online public resources
related to genes, microRNAs (miRNAs), proteins, path-
ways and diseases. To integrate these disparate resources,
it builds on an Extract-Transform-Load (ETL) ecosystem
capable of dealing with several formats (Tab delimited,
XML, EBML and SQL) with a precise execution order
to satisfy dependencies between the integrated resources.
This process maps each biological entity and its prop-
erties into a vertex and its attributes, and relationships
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between two biological entities into edges. In this case,
the GDBMS of choice was OrientDB. When operating in
graph mode, referenced relationships are like edges, acces-
sible as first-class objects having start and end vertices and
properties. This feature allows representing a relational
model as a document-graph model, maintaining the rela-
tionships. With the end-user in mind, the Biograph web
application (103) allows users to query, visualize and ana-
lyze biological data belonging to the sources available on
BiographDB. However, the system is leaned toward a tech-
nical, graph knowledgeable audience, with explicit Gremlin
query interfaces.

Similarly (104), Lysenko et al. illustrate how to build a
graph structure to relate biomedical information at differ-
ent levels and provide biological context to disease-related
genes and proteins. It integrated genomic and proteomic
data along with disease concepts to investigate possible
relations between specific protein interactions, pathways,
and typical phenotypes associated with asthma disease. In
this case, the modeling strategy follows a protein-centric
approach without a rigid schema or upper model (such as
an ontology). This approach provides a higher degree of
flexibility to integrate many semi-structured data sources
and eases the development of ad hoc solutions, but at the
expense of data standardization. The study provides a good
insight into how graph databases can facilitate hypothe-
sis generation. Another relevant contribution is to show
how targeted Cypher queries exploit known structures, as
well as graph algorithms like network neighborhood analy-
sis, to provide biological context. An example of structural
queries is obtaining proteins common to asthma and other
related respiratory diseases, where protein nodes are con-
nected to health conditions with a concrete ‘associated’
relation. They also demonstrate how simple graph traversal
queries have the potential to assist in hypothesis gener-
ation by exploring relationships between concepts. For
instance, to explore the relationship between asthma and
alterations in circadian rhythm, they identify all shortest
paths in the graph between asthma disease and a subset of
protein-coding genes that generate and regulate circadian
rhythms.

Epigenetics
Epigenetics is a growing area of researchwithin the biomed-
ical domain, and it is being used in many different contexts,
such as the study of cancer. Existing relational databases
that focus on various features of cancer pathways are
restricted because the integration of multiple data types
in relational databases is nontrivial, and the concept link-
ing needed in the exploration of cancer-related hypotheses
is limited. EpiGeNet (83) is a graph database that stores
conditional relationships between molecular (genetic and

epigenetic) events observed at different stages of colorec-
tal oncogenesis. It integrates statistical data on molecular
interdependencies recognized in colorectal cancer develop-
ment, mined from StatEpigen (105) (a manually curated
and annotated database) into aNeo4j instance. For the data
model, ‘MolecularEvent’ nodes represent molecular events
of conditional relationships, modeled as edges in the graph.
The edge type is determined by phenotype information
and the direction by the conditionality of the relationship.
Attributes of ‘MolecularEvent’ are used to store event type
and gene information, and the probability value is stored as
a property of the edge. The resulting graph makes it possi-
ble to explore path connections associated with the highest
‘incidence score’ and employ Cypher queries in tasks like
identifying genetic–epigenetic modifications, or molecu-
lar phenomena observed and reported in the specialized
literature.

Transcriptomics
The transcriptome is the complete set of all RNA molecules
in a cell, a population of cells, or in an organism
(106). Transcriptomics studies generate large amounts of
data, raw or processed, that may be deposited in pub-
lic databases to make them available for a broader sci-
entific community (107). These data can be expressed
as gene expression and interaction networks, which may
additionally be integrated with other biological datasets,
such as protein–protein interactions (PPIs), transcription
factors (TFs) and gene annotations. In this context and
to evaluate the performance of Neo4j (46), Wiese et
al. constructed Genome Regulatory Networks (GRNs)
based on known enhancer–promoter interactions (EPIs)
and their shared regulatory processes by focusing on coop-
erative TFs. Exploiting these data, we can find platforms
like the non-coding RNA Human Interaction Database
(ncRNA-DB), later evolved into Arena-Idb (79), miTA-
LOS v2 (81), GeNNet (84), the Association Network
Integration for Multiscale Analysis (ANIMA) (77) and the
Gene Regulation Graph Database (GREG) (89). Except
ncRNA-DB, all these platforms employ Neo4j as the
GDBMS.

The ncRNA-DB is built on top of OrientDB, which
translates class instances into nodes, permitting to follow
an object-oriented design consisting of four main classes
and its specializations: BioEntity, Alias, DataSource and
Relation. The database imported and integrated associa-
tions among non-coding RNAs (miRNAs, circulating miR-
NAs, Long non-coding RNAs (lncRNAs) and other non-
coding RNAs), genes, RNAs and associated diseases from
10 online databases. ncRNA-DB provides three alterna-
tive interfaces: a Cytoscape app named ncINetView, a web
interface, and a command-line interface for raw resource



Page 14 of 22 Database, Vol. 2021, Article ID baab026

queries. Later, ncRNA-DB evolved into Arena-Idb, intro-
ducing several improvements like a mapping procedure for
managing entities, an accurate integration process or recon-
structed data storage. The updated dataset included seven
new sources [such as Disease Ontology (108), lnc2cancer
(109), lncACTdb (110), PSMIR (111), StarBase (112) or
TarBase (113)]. Arena-Idb follows a hybrid RDBMS and
GDBMS implementation by using MySQL to store names,
annotations and sequences and Neo4j to handle the con-
struction and visualization of the networks of thousands of
biological entities.

To provide a tool to identify pathways regulated by
miRNAs in a tissue-specific manner, miTALOS v2 employs
Neo4j to integrate several heterogeneous data sources and
directly model molecular entities and their interaction net-
works. This graph model represents miRNAs, genes, path-
ways and tissues as nodes. miRNAs are connected to
genes with ‘REGULATES’ relationships, genes to tissues
with ‘EXPRESSED’ and genes to pathways with ‘MEM-
BER’ relationships. The graph structure allows to, for
instance, query the target genes of a miRNA expressed
in a tissue or the pathways in which the target genes are
involved. Furthermore, the schema-less approach enables
the platform to keep updated and integrate new aspects
like lncRNAs as regulators of gene expression or disease-
specific expression profiles to extend tissue-specific gene
expression.

GeNNet is an integrated transcriptome analysis plat-
form that unifies scientific workflows with graph databases
for selecting relevant genes according to the evaluated bio-
logical systems. The framework consists of three main com-
ponents: the Scientific Workflow (GeNNet-Wf), the Graph
database (GeNNet-DB) and the web interface (GeNNet-
Web). GeNNet-DB uses an in-house data model to group
nodes and edges into classes, according to the nature of
the objects [e.g. GENE, BP (Biological Process), CLUSTER,
EXPERIMENT and ORGANISM], and preloads a set of
specified organisms to serve as the initial layout. Along
with other associated elements, it includes genes anno-
tated/described from ENTREZ (114) and their relation-
ships integrated from STRING-DB (60), which contribute
to posterior transcriptome analysis. The study provides
analyses from the hepatocellular carcinoma (HCC) use
case, demonstrating how concise graph operations through
Cypher queries are capable of solving relatively complex
topological questions, like finding themost connected genes
that establish known connections to the PPI network. These
genes act as hubs and may be associated with relevant
pathways in the experimental context.

ANIMA allows the summarization and visualization of
different views of the state of the immune system under dif-
ferent conditions and at multiple scales. The framework

generates a multiscale association network from multiple
data types by executing a comprehensive analytic work-
flow, enumerating bipartite graphs from the results and
merging all graphs into a single network in Neo4j. ANIMA
is architectural and conceptually similar to GeNNet, dif-
fering mainly in the detail of the implementation, the con-
tainerization approach, and the complexity of the model.

GREG is an integrative database that merges numerous
source databases providing different scopes (e.g. DNA–
DNA interaction, PPIs, bindings, DNA annotations or
human cell data). It follows an in-house data model and
takes advantage of the graphmodel to tackle challenges like
integrating EPIs (with DNA binning strategy) or harmoniz-
ing data from chromatin interaction technologies with very
different resolutions. When using small bins, its graph com-
prises more than 2M nodes and more than 19M edges, and
the main limitation is that, due to include all non-coding
regions, search time grows with the size of the genomic
range. GREG provides both direct access to the Neo4j (via
Cypher) and a friendly web platform. Through the web
interface, the user can specify search parameters and access
typical network analysis algorithms.

Biological knowledge graphs

While there exist multiple definitions of Knowledge Graphs
(KGs) that depend on the application context (115), we
can define them as large, heterogeneous knowledgebases
modeled through graphs and ontologies, which derive new
knowledge from existing datasets (116). KGs are under-
going a renewed interest not only in academia but in the
industry as well (117). In addition to storing structured,
contextual data, the principal reasons are the capability of
obtaining new conclusions from existing data through rea-
soning (118), and the possibility to enrich machine-learning
models by providing context and produce extra informa-
tion through derived measures or embedding strategies
(119–124). Lastly, advances in machine learning create
new opportunities for automating the construction and
exploitation of biological KGs (125). We summarize sev-
eral platforms that, due to their broad integrative scopes,
can be seen as Biological Knowledge Graphs.

The Monarch Initiative (85) is an ambitious endeavor
that uses an ontology-based strategy to deeply integrate
genotype–phenotype data from many species and sources,
enabling computational interrogation of disease models
and revealing complex genotype–phenotype relationships.
Monarch employs RDF to ingest a variety of external data
sources, modeling several complex data types and con-
necting entities from different databases. SciGraph (https://
github.com/SciGraph/SciGraph) is its central database
engine, which provides means to represent ontologies and

https://github.com/SciGraph/SciGraph
https://github.com/SciGraph/SciGraph
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data described using ontologies as a Neo4j graph. The
resulting combined corpus of graphs, from ontologies and
ingested data, constitutes the Monarch Knowledge Graph.
The platform provides several data access means for graph
querying, application population and phenotype matching,
as well as a web portal. The Monarch Web Portal (https://
monarchinitiative.org/) exploits the graph to provide the
users with several powerful features, in the likes of basic
search, integrated information on entities of interest, search
by phenotype profile, or text annotation.

Similarly, on a smaller scale, Pheno4J (75) provides
a Java-based solution that loads annotated genetic vari-
ants and well-phenotyped patients into Neo4j. In order
to build the database, Pheno4J requires user-generated
files with the patient’s genetic variant and phenotype rela-
tions on the one hand, and both the Human Pheno-
type Ontology (HPO) (126) and a gene-to-HPO file on
the other.

Focused on the analysis and discovery of comorbid
diseases in humans, GenCoNet (127) proposes a semi-
automatic pipeline that provides the import, fusion and
analysis of stable disease, gene, variant and drug data in
a Neo4j database, resulting in a KG for network analy-
sis of gene–disease associations. The workflow consists of
four concrete steps. The first step determines comorbidi-
ties of high interest and obtains Disease Ontologies terms
associated with genes. Secondly, the workflow obtains
genes associated with disease variants from HPO, MalaC-
ards (128), DisGeNet (129) andOMIM (https://omim.org).
The third step determines the gene controlled by eQTL
and associated with the disease. Lastly, it finds the drugs,
extracted from DrugBank (130), which target genes and
treats or contraindicate the disease. GenCoNet showcases
the KG by employing network analysis to detect drug-
induced diseases or contraindications of drugs.

We can also find hybrid approaches that utilize dif-
ferent database implementations to build the KG (131).
Canevet et al. build on the Ondex software platform (132)
and employ both triple stores and the Neo4j, which sup-
ports gene-evidence graph patterns by making the KGs
accessible via Cypher. The data integration is harmonized
through the Bio-Knowledge Network Ontology (BioKNO),
a lightweight and general ontology. Likewise, focused
on bacterial whole-genome sequencing (WGS), Spfy (88)
employs ontologies and different database paradigms to
integrate disparate data sources and formats. Spfy pri-
marily uses Blazegraph (https://blazegraph.com/) for stor-
age along with MongoDB (https://www.mongodb.com/)
to cache a hash table for duplicate checking, arguing a
more efficient approach than would be possible through a

search of the graph structure. The graph allows retrospec-
tive comparisons across stored results as more genomes are
sequenced or populations change.

As mentioned before, ontological and semantic
approaches have proved its utility in knowledge-intensive
domains like the biomedical domain. Exploiting seman-
tic and logic descriptions is natural for graph databases
and triple stores and can be of great importance in KG
implementations. In contrast to the rest of similar efforts,
BioGrakn (133) builds upon Grakn (https://grakn.ai/) to
deliver a KG with deductive reasoning capabilities. It
employs almost the same data sources as BioGraphDB, but
its model is designed through an ontology implemented in
Graql, the Grankn’s declarative, knowledge-oriented graph
query language. In the same vein as OWL and SWRL stan-
dards, Graql allows categorizing objects and relationships
into distinct types, enabling inference and validation, used
for searching genes linked to a particular Gene Ontology
annotation, pathways linked to a particular gene, or finding
all the upregulated differentially expressed (DE) miRNAs
that also have validated mutations.

Discussion

The literature body shows several advantages when
biomedical systems and applications employ a graph model
in the storage layer. The graph model is especially use-
ful for representing and accessing biological data because
path-based queries are intuitive in biological networks,
closer to real-world conceptualizations. RDF schema or
OWL Bio-ontologies easily translate into a graph because
they are already based on triples, which can be further
expanded by identifying implied relations between classes
through logical reasoning (134). Also, exploiting graph
theory algorithms and subgraph matching queries enables
the inspection and discovering patterns of interest within
the graph structure. GDBMSs schema-less/schema-optional
grants a high degree of flexibility in research settings, allow-
ing applications to adapt and evolve quickly and intro-
duce abstraction and specialization of entities and relations
among them more easily. This adaptability eases data inte-
gration tasks, as we have seen in many of the integrative
platforms.

Specialized, industry-ready GDBMSs are relatively new
and well-established biological systems build upon conven-
tional databases, typically RDBMSs. Relevant examples are
the protein databases (135), which have to deal with mil-
lions of protein/complex interactions, as is PPI databases’
case (136, 137). As described in the technical back-
ground, the underlying design of relational systems can
lead to a trade-off between data integrity and performance.

https://monarchinitiative.org/
https://monarchinitiative.org/
https://omim.org
https://blazegraph.com/
https://www.mongodb.com/
https://grakn.ai/
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BioGRID (138), for instance, approaches this problem by
utilizing a suite of tables specifically engineered to optimize
query time while maintaining a structured normalized form
that does not compromise fundamental design principles.
Other relevant databases like DIP (139), IntAct (140) and
STRING (141) maintain their relational model to fulfill the
storage needs without further considerations concerning
performance.

As seen in section 2 (43), Have and Jensen employed
STRING as the use case to evaluate GDBMSs in biomedical
settings and confront against RDBMSs, generally finding
better performance of the former in usual tasks in the
context of PPI networks. In section 3, we also see that
many applications integrate PPI databases by explicitly
transforming protein entries as nodes and intermediate rela-
tionship tables directly as edges, reporting performance
improvements with GDBMSs over RDBMSs in some of the
reviewedworks (45, 87). Still, it is important to remark that
redesigning the data storage/access layer usually involves a
notable development effort, whichmay discourage research
teams (usually short in human and economic resources).
Since most of the protein databases are freely available,
it would be relevant to compare their current implementa-
tion and a GDBMS implementation through formal bench-
marks in that specific scenario, justifying or not engaging
such development.

There exist limitations and potential issues of which
developers need to be aware. While ontologies avoid
designing specific problem-oriented data models and min-
imize reliability issues, these may increment the model’s
complexity, jeopardizing the performance and integration
time. If more relaxed schema approaches are adopted,
the main trade-offs are deciding when certain data items
become nodes or attributes and restraining both model
complexity and integrity. Regarding performance, compar-
ative benchmarks and more ad hoc studies are quite hetero-
geneous and show disparate findings in some cases, making
it challenging to identify a performance baseline to favor a
concrete technology. Those focused on specific problems,
like biological questions, report better GDBMS perfor-
mances and qualitative features for managing networks
(42, 43, 45, 47, 52, 55, 56). More formal benchmarks
(50) and (52) report superior RDBMS results in several cat-
egories, especially for grouping, sorting, aggregating and
setting operations. However, in graph analytics workloads
that mainly consist of multi-table joining, pattern matching
or path identification, GDBMSs still perform better. The
gap widens as the size of the dataset increases. Yet, some
benchmarks report problems when the graph is large. In
the case of Neo4j, the number of edges to evaluate and sub-
graph pattern matching size may be a performance pit. This
situation requires GDBMSs to provide proper mechanisms,

like node replication or partitioning, or forego features like
schema-less as TigerGraph does. All in all, GDBMSs are not
necessarily superior in all graph queries, and, like any devel-
opment, the aims and operational context should dictate
the technological choices.

From a development point of view, big projects natu-
rally tend to adopt traditional relational databases because
they require industry-level tools and libraries that ensure
code quality and architectural features such as scalability,
integration and standard design patterns. Both industry
and communities back RDBMS implementations with reli-
able frameworks that ease its adoption with, for instance,
database to object abstraction layers. However, at this
point, many current GDBMS implementations also offer
proper frameworks, programming interfaces and Object-
Graph Mapping that fulfill such needs.

Another important consideration is the current lack
of standardization of query languages and data access
methods across GDBMS implementations at both syn-
tactic and theoretical levels (142). Apache Tinkerpop
(https://tinkerpop.apache.org/) provides a high-level frame-
work and the functional graph traversal language Gremlin,
but not all GDSMS integrate it and this approach implies
more coupling with the application code. Neo4j’s Cypher
is a declarative language with similarities to common query
languages and provides a clear graph path description syn-
tax with full Create, Read, Update, Delete capabilities,
making it one of the best solutions for graph querying.
Cypher is the root of openCypher, a fully specified and
open query language for property graph databases with
>10 implementations across GDBMS solutions, even non-
native ones like RedisGraph. TigerGraph follows a dif-
ferent approach with GSQL (https://docs.tigergraph.com/
dev/gsql-ref), another powerful graph query language.
It maintains backward compatibility with SQL, impos-
ing a strict schema declaration in the query definition,
and the queries behave as stored procedures, consisting
of multiple SELECT clauses and imperative instructions
such as branches and loops. This design targets enter-
prise applications, where the number and heterogeneity
of external sources are not a concern, but instead, the
size and performance, by optimizing storage format and
query execution strategy, obtaining exciting results, as
seen in Rusu and Huang (51). Fortunately, at the time
of writing, the international committees that develop the
SQL standard have voted to initiate Graph Query Lan-
guage (GQL) (https://www.gqlstandards.org/) and intend
to develop a declarative graph query language that builds
on the foundations of SQL and integrates proven ideas from
the existing openCypher, Oracle’s PGQL, GSQL and G-
CORE (143) languages, a move that ensures the future of
GDBMSs.

https://tinkerpop.apache.org/
https://docs.tigergraph.com/dev/gsql-ref
https://docs.tigergraph.com/dev/gsql-ref
https://www.gqlstandards.org/
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We have seen different technologies come and go, and
deciding a GDBMS that satisfy the necessities may also
become a time-consuming task that can be seen as five
steps or stages: problem analysis, requirements analy-
sis, GDBMS analysis, benchmarking and GDBMS selec-
tion (144). Sites like https://db-engines.com provide useful
ranks, comparative tables and insights that help in the selec-
tion process. From what we have seen in the literature,
Neo4j outstands in its adoption, not only in the biomedical
domain, mainly due to the powerful Cypher query lan-
guage, decent performance and ease of implementation. We
foresee that this situation will be less evident in the near
future, given the number of competitive developments in
the field.

Conclusion

In this work, we have followed the evolution and current
landscape of GDBMSs, reviewed the bibliography look-
ing for methods to evaluate their performance in different
contexts and explored their applications in the biomed-
ical domain. While RDBMSs and other NoSQL engines
still provide better scalability options, more standard-
ized query languages and more efficiency on typical data
aggregation operations, most of the comparative analyses
note that their performance suffers in densely connected
datasets that imply a majority of many-to-many relations.
Scenarios with a significant volume of complex relation-
ships may benefit from GDBMSs for the following reasons:
(i) graphs provide more natural modeling of many-to-
many relationships; (ii) graph-oriented query languages
provide more intuitive means for writing complex network
traversal and graph algorithm queries than table-oriented
ones like SQL, which require to join tables explicitly and
reference columns; (iii) the schema-less/optional grants
flexibility and (iv) in most situations, GDBMSs present
higher performance for relationship-centric searches, like
path traversals. These features yield several advantages
for the biomedical domain, like easing the communica-
tion between domain experts, providing tools for dis-
covering entities/clusters/patterns within the graph struc-
ture and facilitating data integration tasks, all of them
very common when the investigation involves multiple
sub-domains.

GDBMS technology is rapidly evolving to tackle scala-
bility and similar operational weaknesses, offering a wide
range of reliable choices to support the storage layer for
either small prototypes or large, production-ready projects.
The collection of described use cases and author expe-
riences provides evidence that GDBMSs are very fit for
biomedical data, as an individual storage system or as part
of a hybrid, partitioned architecture. Moreover, by provid-
ing direct access to a graph model, late GDBMSs enable the

use of graph algorithms and analytics in a very transparent
way, improving hypothesis generation and testing.
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116. Ehrlinger, L. and Wöß, W. (2016) Towards a definition
of knowledge graphs. In: CEUR Workshop Proceedings,
CEUR-WS, Vol. 1695.

117. Paulheim, H. (2017) Knowledge Graph Refinement: A Sur-
vey of Approaches and Evaluation Methods. Semant. Web.,
8, 489–508

118. Chen,X., Jia,S. and Xiang,Y. (2020) A review: knowledge
reasoning over knowledge graph. Expert Syst. Appl., 141,
112948.

119. Wang,Q., Mao,Z., Wang,B. et al. (2017) Knowledge graph
embedding: a survey of approaches and applications. IEEE
Trans. Knowl. Data Eng., 29, 2724–2743.

120. Grover,A. and Leskovec,J. (2016) Node2vec: scalable feature
learning for networks. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery andData
Mining, Vol. 13, Association for Computing Machinery,
San Francisco, CA, USA. 17 August 2016, pp. 855–864.

121. Xu,B., Liu,Y., Yu,S. et al. (2019) A network embedding
model for pathogenic genes prediction by multi-path random
walking on heterogeneous network. BMC Med. Genomics,
12, 188.

122. Wang,X., Gong,Y., Yi,J. et al. (2019) Predicting gene-
disease associations from the heterogeneous network using

graph embedding. Proceedings - 2019 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM
2019, Institute of Electrical and Electronics Engineers Inc,
San Diego, CA, USA. pp. 504–511.

123. Li,X., Chen,W., Chen,Y. et al. (2017) Network embedding-
based representation learning for single cell RNA-seq data.
Nucleic Acids Res., 45, e166.

124. Liu,X., Yang,Z., Sang,S. et al. (2019) Detection of pro-
tein complexes from multiple protein interaction net-
works using graph embedding. Artif. Intell. Med., 96,
107–115.

125. Nicholson,D.N. and Greene,C.S. (2020) Constructing
knowledge graphs and their biomedical applications.
Comput. Struct. Biotechnol. J., 18, 1414–1428.
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