Skip to main content
. 2021 May 18;241:167199. doi: 10.1016/j.ijleo.2021.167199

Table 1.

Comparison architecture of the proposed feature extractor with AlexNet CNN.

Layer index AlexNet CNN
The proposed feature extractor
Layer name Learnable parameters Layer name Learnable parameters
1 Input: 227 × 227 × 3 0 Input: 227 × 227 × 3 0
2 Convolution 34,944 Convolution 34,944
[3] ReLU 0 LeakyReLU 0
4 Normalization 0 Normalization 0
5 Pooling 0 Pooling 0
6 Convolution 307,456 Convolution 307,456
[7] ReLU 0 LeakyReLU 0
8 Normalization 0 Normalization 0
9 Pooling 0 Pooling 0
10 Convolution 885,120 Convolution 885,120
[11] ReLU 0 LeakyReLU 0
12 Convolution 663,936 Convolution 663,936
[13] ReLU 0 LeakyReLU 0
14 Convolution 442,624 Convolution 442,624
[15] ReLU 0 LeakyReLU 0
16 Pooling 0 Pooling 0
17 Fully connected 37,752,832 Fully connected 37,752,832
[18] ReLU 0 LeakyReLU 0
19 Dropout 0 Dropout 0
[20] Fully connected: 1 × 4096 16,781,312 Fully connected: 1 × 512 2,097,664
[21] LeakyReLU 0
[22] Dropout 0
[23] Fully connected: 1 × 64 32,832