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Abstract

Increased activity of the lysine methyltransferase NSD2 driven by translocation and activating 

mutations is associated with multiple myeloma and acute lymphoblastic leukemia, but no NSD2-

targeting chemical probe has been reported to date. Here, we present the first antagonists that 
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block the protein–protein interaction between the N-terminal PWWP domain of NSD2 and 

H3K36me2. Using virtual screening and experimental validation, we identified the small-molecule 

antagonist 3f, which binds to the NSD2-PWWP1 domain with a Kd of 3.4 μM and abrogates 

histone H3K36me2 binding to the PWWP1 domain in cells. This study establishes an alternative 

approach to targeting NSD2 and provides a small-molecule antagonist that can be further 

optimized into a chemical probe to better understand the cellular function of this protein.

Graphical Abstract

INTRODUCTION

NSD2 (nuclear receptor-binding SET domain-containing 2, also known as WHSC1 and 

MMSET) is a protein lysine methyltransferase that belongs to the NSD family, which also 

includes NSD1 and NSD3, and that predominantly mono- and dimethylates lysine 36 of 

histone 3 (H3K36).1 NSD2 is an oncoprotein that is aberrantly expressed, amplified, or 

somatically mutated in multiple types of cancer.2 Notably, the t(4;14) NSD2 translocation in 

multiple myeloma and the hyperactivating NSD2 mutation E1099K in a subset of pediatric 

acute lymphoblastic leukemia result in altered chromatin methylation that drives 

oncogenesis.3–5

While NSD2 is an attractive therapeutic target, efforts to target the catalytic SET domain 

with small-molecule inhibitors have so far met with little success,6–9 and only recently was 

the first selective inhibitor of an NSD family protein reported, a compound that binds 

covalently to the catalytic site of NSD1.10 Aside from the catalytic domain, NSD2 has 

multiple protein–protein interaction domains that may be clinically relevant, including plant 

homeodomain and PWWP (proline–tryptophan–tryptophan–proline) domains (Figure 1).
11,12 The N-terminal PWWP domain of NSD2 (NSD2-PWWP1) binds H3K36me2, 

presumably through a conserved aromatic cage composed of three orthogonally positioned 

aromatic side chains (Y233, W236, F266) that can engage in cation–π and hydrophobic 

interactions with the ammonium group of the methylated lysine;13 the F266A mutation at 

the aromatic cage destabilizes the chromatin occupancy of full-length NSD2 and inhibits 

cancer cell proliferation, but without significantly affecting H3K36 dimethylation.12 Small 

molecules selectively targeting the aromatic cage of NSD2-PWWP1 would be valuable 

chemical tools to probe the therapeutic relevance of this domain in NSD2-driven tumors or 

to design NSD2-targeting PROTACs.

In this study, we report the first chemical antagonists targeting the NSD2-

PWWP1:H3K36me2 interaction in biophysical and cellular assays. X-ray crystallography 

established the structural determinants for ligand binding and provided crucial information 

for future ligand optimization. To our knowledge, the present study is the first successful 
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example of using a virtual screening approach to discover antagonists that directly and 

specifically target a PWWP domain.

RESULTS AND DISCUSSION

Structure-Based Discovery of NSD2-PWWP1 Ligands.

At the onset of this project, no structure of NSD2 PWWP domains was available. Of the 

PWWP domain structures available from the Protein Data Bank (PDB), that of the 

chromatin factor ZMYND11 had a structurally well-defined methyl-lysine binding pocket 

and was identified as a good candidate for a PWWP-focused virtual screening campaign. A 

library of ~2 million commercial compounds was therefore screened virtually against the 

PWWP domain of ZMYND11.14 A total of 39 compounds were purchased and 

experimentally screened using differential static light scattering (DSLS—Table S1). Since 

no hit was confirmed for ZMYND11, we took a target class approach and screened the 

purchased compound set against other members of the PWWP family. Compound 1 (Figure 

1) displayed a stabilization effect on the N-terminal PWWP domain of NSD2, increasing its 

melting temperature by 4 °C at 400 μM. The interaction of 1 with NSD2-PWWP1 was 

further confirmed by surface plasmon resonance (SPR), which yielded a dissociation 

constant (Kd) of 41 ± 8 μM (Figure S1a). Given the poor solubility of 1, a reverse isothermal 

titration calorimetry (ITC) titration was carried out by titrating a concentrated NSD2-

PWWP1 solution (1 mM) into the sample cell containing a solution of compound 1 at 40 

μM, which produced a Kd of 8.9 μM (Figure S1b). Compound 1 did not bind six other 

PWWP-containing proteins when tested at 400 μM using DSLS (Table S2), indicating that 

this compound is selective for NSD2-PWWP1. Compound 1 contains two chiral centers but 

was found to be a single diastereoisomer where both enantiomers bound the target 

equipotently (Figures S2–S4).

Ligand-Guided Optimization Leads to Improved Compounds.

The encouraging potency and selectivity of 1 prompted us to further explore this scaffold. 

However, no analogues were commercially available, and only a limited number of building 

blocks could be purchased for analogue synthesis. We therefore sought to identify a new 

series of antagonists that would be more tractable for follow-up medicinal chemistry efforts. 

Since no structure of the NSD2-PWWP1 domain had been reported, we used ligand-based 

scaffold hopping approaches.

First, a low-energy 3D conformation of compound 1 was generated with the computational 

chemistry suite ICM15 and used as a reference to screen a virtual library of ~8 million 

commercially available compounds with the shape-matching tool ROCS (OpenEye).16 

Second, we used FTrees (Bio-SolveIT)17 to perform a 2D similarity search against the same 

library. This approach uses a fuzzy similarity searching, ignoring the three-dimensional 

structure and chirality of the reference. This feature was helpful in this case, as at the time, 

we knew neither the bioactive conformation of 1 nor the correct stereochemistry of the two 

chiral centers. In the third approach, we performed a substructure search using Filter 

(OpenEye).18 Finally, based on the structure of 1, a series of scaffold-hopping candidates 

were manually designed and the closest commercial compounds selected. The atomic 
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property field19 alignment method implemented in ICM was used to flexibly align the top 

hits of each approach to the lowest energy conformation of 1 used in the ROCS screen. 

Visual analysis and clustering with LibMCS (ChemAxon)20 led to the selection of 24 

compounds (Figure 1 and Table S1).

Of the 24 compounds tested, only one hit (compound 2) showed a modest stabilization 

ΔTagg = 1.9 °C) of NSD2-PWWP1 (Figure 1). The binding of 2 was further confirmed by 

SPR with a K of 175 μM. Although 2 was weaker than the initial hit, this new scaffold 

allowed us to perform a structure–activity relationship (SAR) by catalog, as several 

analogues were commercially available. From a substructure search, 34 analogues of 2 were 

purchased and tested (Table S1). The initial SAR showed that removing the chlorine group 

improved potency (2a), while replacing it with a methoxy group had no significant effect 

(2b, Table 1). The chlorophenyl group could be replaced with other heterocycles without a 

significant effect on potency (2c–2e) but removing the nitrile or replacing it with groups 

lacking a hydrogen bond acceptor abolished activity (Table 1: 2h vs 2a, 2i vs 2), suggesting 

that the nitrile group was forming a specific interaction with the protein.

On the basis of the preliminary SAR provided by 2 and its close derivatives, we set out to 

identify novel chemical templates that would preserve the two phenyl groups and the nitrile 

of 2 using FTrees. The seven compounds selected from this exercise (Table S1) included the 

breakthrough antagonist 3, which binds NSD2-PWWP1 with a Kd of 7 μM by SPR and 

shows strong protein stabilization ΔTagg = 5.7 °C) by DSLS (Figure 1). Compound 3 is 6 

and 25-times more potent than 1 and 2, respectively, is chemically more accessible than the 

previous scaffolds as it has no chiral center, and can easily be derivatized.

To further understand the molecular basis for the increased potency of 3, we tested 40 

analogues that were either purchased or synthesized (Tables 2, S1). The initial SAR 

demonstrated that the cyclopropyl group is an essential structural element, since compounds 

where it is absent (3b) or is replaced with smaller (3a) or larger (3c—3e) groups are much 

weaker or completely inactive (Table 2). Moreover, replacing the fluorophenyl group with 

thiophene (3f) or tetrahydrofuran (THF) (3g) resulted in similar potency (Table 2). When 

tested against 10 PWWP domains by DSLS, compound 3f only bound NSD2-PWWP1 and 

was found to be about 6 times more potent than the initial compound 1 (SPR Kd = 7 ± 3 μM) 

(Figure 2). 3f did not bind to NSD2-PWWP1 mutants where aromatic cage residues Y233 or 

F266 were mutated to alanine, indicating binding at the methyl-lysine binding site (Figure 

S5). It was previously shown that F266A antagonizes association of NSD2 to chromatin, 

indicating that 3f binds at a site that contributes to chromatin engagement.12 In agreement 

with a recent observation that high dimethyl sulfoxide (DMSO) concentrations can limit the 

potency of PWWP ligands,21 the Kd value of 3f was measured as 3.4 ± 0.4 μM in an SPR 

experiment with 0.5% DMSO (Figure S6).

Crystal Structure Confirms Binding at the PWWP Aromatic Cage.

To support follow-up chemistry focused on this chemical series, we solved the crystal 

structure of NSD2-PWWP1 in complex with compound 3f at a resolution of 2.4 Å (Figure 3, 

Table S3, and Figure S7). Examination of the complex structure revealed the molecular basis 
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for the high affinity of the antagonist and confirmed that it was binding in the Kme reader 

aromatic cage. The cyclopropyl ring is bound in a narrow and deep lipophilic pocket formed 

by the aromatic cage residues (Y233, W236, and F266) and V230, while a tightly 

coordinated water molecule is found at the bottom of the pocket. This rationalizes previous 

SAR showing that compounds lacking the cyclopropyl ring are inactive, as they do not fill 

the hydrophobic pocket. Conversely, compounds featuring larger rings such as cyclohexane 

(3e, Table 2) or even an iso-propyl group (3c, Table 2) probably clash with the amino acids 

of the aromatic cage (Figure S8). The cyanophenyl group is enclosed in a pocket formed by 

W236, G268, D269, A270, E272, L318, and Q321. The nitrile group is completely shielded 

from the solvent and the nitrogen accepts a hydrogen bond from the amide nitrogen of A270. 

This supports our previous SAR showing that compounds without the nitrile group are weak 

or inactive. In addition, the carbonyl oxygen of 3f forms a hydrogen bond with the side 

chain of Y233 (Figure 3). Finally, the thiophene ring binds within a hydrophobic pocket 

defined by V230 and A274, and partially exposed to the solvent, which is in agreement with 

the fact that chemical modifications are tolerated at this end of the molecule.

Compared to the recently published structure of NSD2-PWWP1 in complex with DNA 

(PBD ID: 5VC8), the loop residues G268, D269, A270, and P271 connecting the β3 and β4 

strands undergo significant conformational changes when the ligand binds (Figure S9). Also, 

3f induces a conformational change of Y233 and E272, opening-up the aromatic cage which 

was occluded in the apo structure.

Compound 3f Engages NSD2-PWWP1 in Cells.

Cellular target engagement and displacement of NSD2-PWWP1 from histone H3.3 were 

tested using a NanoBRET assay measuring the displacement of the NanoLuc-tagged NSD2-

PWWP1 domain from Halo-tagged histone H3.3. Encouragingly, we found that compound 

3f decreased the interaction of NSD2-PWWP1 but not NSD3-PWWP1 with histone 3 in 

cells in a dose-dependent manner with an IC50 of 17.3 μM (Figure 4).

The first potent antagonist for a PWWP domain was recently reported against NSD3-

PWWP1.21 Our results further support the idea that PWWP domains represent a chemically 

tractable target class. PWWP domains are often found in multi-modular proteins involved in 

transcriptional regulation or DNA repair,13 and pharmacological targeting of PWWP 

domains could provide an avenue to deregulate the function of these proteins. PWWP 

ligands could also serve as chemical handles toward the development of PROTACs that 

catalyze the proteasomal degradation of PWWP-containing proteins.

CONCLUSIONS

In summary, using a combination of receptor-based virtual screening and ligand-based 

scaffold hopping, we identified chemically tractable small-molecule antagonists targeting 

the NSD2-PWWP1 domain with low micromolar affinity. A crystal structure showed that 

compound 3f occupies the Kme binding aromatic cage of NSD2-PWWP1 and 3f inhibits 

histone H3K36me2 binding in cells. This study establishes an alternative approach to 

targeting NSD2 and reveals a class of compounds that we hope to further optimize into a 

high-quality chemical probe.
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EXPERIMENTAL SECTION

Computational Methods.

Docking.—The X-ray structure of the PWWP domain of ZMYND11 (PDB ID: 4N4I)14 

was prepared with PrepWizard (Schrodinger, New York) using the standard protocol, 

including the addition of hydrogens, the assignment of bond order, assessment of the correct 

protonation states, and a restrained minimization using the OPLS-AA 2005 force field. 

Receptor grids were calculated at the centroid of the trimethyllysine (M3L) with the option 

to dock ligands of similar size.

A lead-like library of ~2 million compounds was prepared with LigPrep (Schrodinger, New 

York). The resulting library was then docked using the virtual screening workflow using 

Glide HTVS in the first stage, followed by Glide SP in the second stage (Schrodinger, New 

York). After removing the compounds with a docking score worse than −7 kcal/mol and that 

do not contain a tertiary amine, the remaining 18k compounds were docked with Glide XP. 

Next, compounds with a docking score better than −8 kcal/mol or with a score better than −6 

kcal/mol and two hydrogen bonds with nearby residues (R317, F311, H313, N316, W319, 

H314, S340) were selected for visual inspection. This step selected 431 compounds, which 

were rescored with the GBSA method (AMBER 12, UCSF). The compounds were clustered 

and the ones with GBSA > −15 kcal/mol were removed. Finally, after a visual inspection, 40 

compounds were selected to be purchased.

ROCS Search.—A library of ~8 million compounds was processed with the Omega 

software (OpenEye Scientific Software, Santa Fe) to generate 200 lowest energy 

conformations for each compound. Then, ROCS (OpenEye Scientific Software, Santa Fe) 

was used to perform a 3D shape-based search against the resulting library using a low-

energy 3D conformation of 1 generated by ICM (Molsoft, San Diego) as the query. The 

compounds were ranked by the TanimotoCombo score, which is a combination of the shape 

and color similarities, and the top 7500 were saved for analysis.

FTrees Search.—The 2D structure of 1 was used as the reference to search the virtual 

library described before using the Ftrees (Feature Trees) software (BioSolveIT GmbH). 

Feature trees are descriptors that represent the molecule as a reduced graph. The graph 

encodes functional groups and rings to single nodes. The similarity between two molecules 

is calculated by comparing their associated feature trees by superposing (matching) similar 

subtrees onto each other. The top 1980 compounds with the highest similarity with 

compound 1 were selected for further analysis.

Substructure Search.—The software Filter (OpenEye Scientific Software, Sant Fe) was 

used to perform a substructure search against the virtual library using a substructure of 1 as 

the query. The substructure used in the search encoded in SMARTS was NC-

(=[OX1])C([ar5,ar6])[Ni;!$(N=C);!$(N=N);!$(N-[!#6;!#1]);!$(N–C=[O,N,S])][CX4]

[ar5,ar6]. This searched resulted in 1041 compounds.
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Isothermal Titration Calorimetry.

Purified NSD2-PWWP1 was dialyzed in ITC buffer (20 mM Tris, pH 7.5, and 100 mM 

NaCl). Protein at 1 mM was injected into the sample cell containing about 300 μL of 40 μM 

1 with 1% DMSO. ITC titrations were performed on a Nano ITC from TA Instruments (New 

Castle, DE) at 25 °C by using 4 μL injections with a total of 12 injections. The concentration 

of DMSO was adjusted to 1% for NSD2-PWWP1 solution. Data were fitted with a one-

binding-site model using Nano Analyze software.

Differential Static Light Scattering.

Experiments were carried out by determining the effect of compounds on the thermal 

stability by DSLS using StarGazer (from Harbinger). All PWWP domains for selectivity 

experiments were used at a final concentration of 0.2 mg/mL in a buffer consisting of 0.1 M 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5) and 150 mM NaCl. 

As described previously,22 this method assesses ligand binding through ligand-induced 

stability where protein aggregation/denaturation is measured while heating the sample from 

25 to 85 °C at 1 °C/min in a 50 μL volume (covered with 50 μL of mineral oil to prevent 

evaporation) in a clear-bottom 384-well plate (from Nunc). Aggregation was monitored by 

the increase of scattered light using CCD camera detection. Pixel intensities were integrated 

using image analysis software, plotted against temperature and data was then fitted to a 

Boltzmann sigmoid function to obtain the aggregation temperature (Tagg) from the midpoint 

of the transition.

Surface Plasmon Resonance.

SPR studies were performed using a Biacore T200 (GE Health Sciences Inc.) at 20 °C. 

Biotinylated NSD2-PWWP1 was captured onto one flow cell of a streptavidin-conjugated 

SA chip at approximately 6000 response units (according to the manufacturer’s protocol), 

while another flow cell was left empty for reference subtraction. Compound 3f was tested at 

200 μM as the highest concentration and dilution factor of 0.5 in HBS-EP buffer (20 mM 

HEPES pH 7.4, 150 mM NaCl, 3 mM ethylenediaminetetraacetic acid, 0.05% Tween-20) 

was used to yield 10 concentrations. Experiments were performed using the same buffer 

with 5% DMSO in single cycle kinetics with 60 s contact time and a dissociation time of 

120 s at a flow rate of 75 μL/min. Kinetic curve fittings and Kd value calculations were done 

with a 1:1 binding model using the Biacore T200 Evaluation software (GE Health Sciences 

Inc.). All compounds that were evaluated in biochemical and biophysical assays had >95% 

purity as determined by 1H NMR and liquid chromatography/mass spectrometry (LC–MS).

Crystal Structure.

The NSD2 fragment (aa 211-350) containing the first human PWWP domain of NSD2 was 

cloned into a pET28a-MHL vector with a His-tag in its N-terminus for affinity purification. 

The recombinant plasmid was transformed in the Escherichia coli BL21 (DE3), and the 

target protein overexpression was induced by 0.2 mM IPTG at 18 °C overnight. The cells 

were harvested and lysed by sonication. The cell lysis was first purified by Ni-NTA, and the 

eluted protein was treated by tobacco etch virus to remove the His-tag by dialysis against 

dialysis buffer containing 20 mM Tris pH 7.5, 150 mM NaCl, 1 mM dithiothreitol (DTT). 
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The sample was then purified by gel filtration chromatography using a Superdex 75 column 

in a buffer containing 20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM DTT. The peak fractions 

from the gel filtration column were pooled and concentrated to 20 mg/mL for crystallization. 

The purified protein was mixed with the ligand at a molar ratio of 1:3 and cocrystallized 

using the sitting drop vapor diffusion method at 18 °C. The crystals were obtained in a 

buffer containing 20% PEG 3350, 0.2 M KSCN. Crystals were soaked in a cryoprotectant 

consisting of 100% reservoir solution and 15% glycerol for data collection. X-ray diffraction 

data for NSD2 + 3f was collected at 100k at beamline 08ID-1 of Canadian Light Source 

(CLS). The data set was processed using the XDS23 suite. The structures of NSD2 + 3f were 

solved by molecular replacement using PHASER24 with PDB entry 5VC8 as the search 

template. Graphics program COOT25 was used for model building and visualization. 

Geometry restraints for the compound refinement were prepared with GRADE (Global 

Phasing Ltd.) developed at Global Phasing Ltd. Restrained refinement and validation using 

BUSTER (Global Phasing Ltd.) and MOLPROBITY,26 respectively.

NanoBRET Assay.

U2OS cells were plated in 12-well plates (1 × 105/well) in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 U/mL), 

and streptomycin (100 μ/mL). 4 h after plating, cells were transfected with 1 μg of histone 

H3.3-HaloTagFusion Vector DNA (Promega) + 0.1 μg of NSD2 PWWP1—NanoLuc Fusion 

Vector DNA (C-terminal) (Promega) using X-tremeGENE HP DNA Transfection Reagent 

(Sigma) following manufacturer’s instructions. Next day, cells were trypsinized, spun down, 

and resuspended in DMEM/F12 (no phenol red) supplemented with 4% FBS, penicillin (100 

U/mL), and streptomycin (100 μg/mL) at a density of 1.1 × 105/mL. Cells were divided into 

two pools. To the first pool, 1 μL/mL DMEM/F12 (no phenol red) of HaloTag NanoBRET 

618 Ligand (Promega) was added and to the second pool DMSO. Cells were plated (90 μL/

well) in 96-well plates (white, 655083, Greiner Bio One). 10× concentrated compound and 

DMSO control were prepared in DMEM/F12 and added to cells (10 μL/well). Next day, 25 

μL of NanoBRET Nano-GloR Substrate (Promega) solution in DMEM/F12 (10 μL/mL) was 

added to each well. Cells were shaken for 30 s, and donor emission at 450 nm (filter: 450 

nm/BP 80 nm) and acceptor emission at 618 nm (filter: 610 nm/LP) were measured within 

10 min of substrate addition using a CLARIOstar microplate reader (Mandel). Mean-

corrected NanoBRET ratios (mBU) were determined by subtracting the mean of the 618/460 

signal from cells without NanoBRET 618 Ligand × 1000 from the mean of the 618/460 

signal from cells with NanoBRET 618 Ligand × 1000.

Synthesis and Separation of All Four Isomers of Compound

1. All reagents were purchased from commercial vendors and used without further 

purification. Volatiles were removed under reduced pressure by rotary evaporation or by 

using the V-10 solvent evaporator system by Biotage. Very high boiling point (6000 rpm, 0 

mbar, 56 °c), mixed volatile (7000 rpm, 30 mbar, 36 °C), and volatile (6000 rpm, 30 mbar, 

36 °C) methods were used to evaporate solvents. The yields given refer to 

chromatographically purified and spectroscopically pure compounds. Compounds were 

purified using a Biotage Isolera One system by normal phase chromatography using Biotage 

SNAP KP-Sil or Sfar Silica D columns (part no: FSKO-1107/FSRD-0445) or by reverse-
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phase chromatography using Biotage SNAP KP-C18-HS or Sfar C18 D columns (Part no.: 

FSLO-1118/FSUD-040). If additional purification was required, compounds were purified 

by solid-phase extraction (SPE) using Biotage Isolute Flash SCX-2 cation exchange 

cartridges (part no: 532-0050-C and 456-0200-D). Products were washed with two cartridge 

volumes of MeOH and eluted with a solution of MeOH and NH4OH (9:1 v/v). Preparative 

chromatography was carried out using a Waters 2767 injector with the collector attached to 

PDA UV/Vis and SQD mass detectors. An XSelect CSH Prep C18 5 μm OBD 19 mm × 100 

mm (part no: 186005421) or XSelect CSH Prep C18 5 μm 10 mm × 100 mm (part no: 

186005415) column was used for purification. Final compounds were dried using the 

Labconco Benchtop FreeZone Freeze-Dry System (4.5 L model). 1H and proton-decoupled 
19F NMRs were recorded on a Bruker AVANCE-III 500 MHz spectrometer at ambient 

temperature. Residual protons of CDCl3, DMSO-d6, and CD3OD solvents were used as 

internal references. Spectral data are reported as follows: chemical shift (δ in ppm), 

multiplicity (br = broad, s = singlet, d = doublet, dd = doublet of doublets, m = multiplet), 

coupling constants (J in Hz), and proton integration. Compound purity was determined by 

UV absorbance at 254 nm during tandem LC–MS using a Waters Acquity separations 

module. All final compounds had a purity of ≥95% as determined using this method. Low-

resolution mass spectrometry was conducted in positive ion mode using a Waters Acquity 

SQD mass spectrometer [electrospray ionization (ESI) source] fitted with a PDA detector. 

Mobile phase A consisted of 0.1% formic acid in water, while mobile phase B consisted of 

0.1% formic acid in acetonitrile. Column 1 (method 1): Acquity UPLC CSH C18 (2.1 × 50 

mm, 130 Å, 1.7 μm. Part no. 186005296). The gradient went from 90% to 5% mobile phase 

A over 1.8 min, maintained at 5% for 0.5 min, and then increased to 90% over 0.2 min for a 

total run time of 3 min. The column was used with the temperature maintained at 25 °C.

A solution of (R)-2-(4-chlorophenyl)azetidine, hydrochloride (67.5 mg, 0.331 mmol), and 

N,N-diisopropylethylamine (121 μL, 0.694 mmol) in acetonitrile (0.5 mL) was added 

dropwise to methyl 2-bromo-2-(4-cyanophenyl)acetate (84 mg, 0.331 mmol) in acetonitrile 

(1.18 mL) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 5 

h. All volatiles were then removed under reduced pressure, and the residue was partitioned 

between EtOAc and brine. The combined organic layers were then dried over Na2SO4, 

concentrated under reduced pressure, and column chromatographed (silica gel, hexanes/

EtOAc, 10:0 to 7:3 v/v) to afford methyl 2-((R)-2-(4-chlorophenyl)azetidin-1-yl)-2-(4-

cyanophenyl)acetate (72 mg, 64% yield) as a yellow oil. LC–MS method 1, RT = 1.84 and 

2.04 min, MS (ESI): m/z = 341.3 [M + 1]+, purity (UV254) = 99%

To the above ester (72 mg, 0.211 mmol) in wet MeOH (10 mL) was added potassium 

hydroxide (59 mg, 1.06 mmol), and the reaction was stirred at room temperature overnight. 

All volatiles were evaporated, and the residue was column chromatographed (RP-C18, H2O 

(0.1% v/v FA)/MeCN, 98:2 to 10:90 v/v) to afford 2-2R-((4-chlorophenyl)azetidin-1-
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yl)-2-(4-cyanophenyl)acetic acid formic acid salt (39 mg, 50% yield) as a white solid. LC–

MS method 1, RT = 1.36 and 1.39 min, MS (ESI): m/z = 327.4 [M + 1]+, purity (UV254) = 

99%

To the above acid salt in dimethylformamide (5 mL) were added N,N-diisopropylethylamine 

(121 μL, 0.694 mmol) and 1-[bis-(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-

b]pyridinium 3-oxide hexafluorophosphate (69.6 mg, 0.183 mmol) at room temperature. To 

this mixture was added, with vigorous stirring, ammonium chloride (26.1 mg, 0.488 mmol) 

in one portion, and the reaction was stirred for 1 h. Water (20 mL) was added to quench the 

reaction, and the aqueous layer was extracted with EtOAc (3 × 10 mL) to give the desired 

compound as a mixture of diastereomers. LC–MS method 1, RT = 1.52 min, MS (ESI): m/z 
= 326.4 [M + 1]+, purity (UV254) = 99%.

This synthetic mixture was separated by preparative chiral SFC using an AD-H column (2 × 

25 cm) using 35% MeOH/CO2 as the eluant at a flow rate of 70 mL ּmin−1 and 100 bar 

pressure. Detection by UV at 220 nm. Injection volume was 1.0 mL of 5 mg ּmL−1 in MeOH/

dichloromethane. Analytical chiral SFC (Figure 1) used AD-H column (0.46 × 25 cm) with 

300% MeOH/CO2 as the eluant at a flow rate of 3 mL ּmin−1 and 120 bar pressure. Detection 

by UV at 220 nm.

2R-(2-(4-Chlorophenyl)azetidin-1-yl)-2R-(4-cyanophenyl)-acetamide (29 mg).—
Chiral SFC retention time 2.6 min. 1H NMR (500 MHz, MeOD): δ 7.38 (d, J = 8.3 Hz, 2H), 

7.33 (d, J = 8.4 Hz, 2H), 7.12 (d, J =8.6 Hz, 2H), 7.08 (d, J =8.6 Hz, 2H), 4.11 (t, J =8.2 Hz, 

1H), 4.07 (s, 1H), 3.73–3.69 (m, 1H), 3.13 (dt, J = 9.3, 8.0 Hz, 1H), 2.36 (dtd, J = 10.3, 8.0, 

2.3 Hz, 1H), 2.24–2.11 (m, 1H).

2R-(2-(4-Chlorophenyl)azetidin-1-yl)-2S-(4-cyanophenyl)-acetamide (13 mg).—
Chiral SFC retention time 4.1 min. 1H NMR (500 MHz, MeOD): δ 7.72 (d, J = 8.3 Hz, 2H), 

7.63 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 4.27 (t, J = 8.3 

Hz, 1H), 4.11 (s, 1H), 3.27–3.20 (m, 1H), 2.89–2.80 (m, 1H), 2.32 (dtd, J = 10.4, 7.9, 2.4 

Hz, 1H), 2.25–2.15 (m, 1H).

Similarly Prepared Were the Diastereoisomers from (S)-2-(4-Chlorophenyl)azetidine.

2S-(2-(4-Chlorophenyl)azetidin-1-yl)-2S-(4-cyanophenyl)acetamide (29 mg).—
Chiral SFC retention time 3.1 min. 1H NMR (500 MHz, MeOD): δ 7.36 (d, J = 8.3 Hz, 2H), 

7.31 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.6 Hz, 2H), 4.09 (t, J = 8.2 

Hz, 1H), 4.05 (s, 1H), 3.72–3.66 (m, 1H), 3.11 (dt, J = 9.4, 8.0 Hz, 1H), 2.34 (dtd, J = 10.3, 

8.0, 2.3 Hz, 1H), 2.202–2.10 (m, 1H).

2S-(2-(4-Chlorophenyl)azetidin-1-yl)-2R-(4-cyanophenyl)-acetamide (7 mg).—
Chiral SFC retention time 4.9 min. 1H NMR (500 MHz, MeOD): δ 7.72 (d, J = 8.4 Hz, 2H), 

7.63 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 4.27 (t, J = 8.3 

Hz, 1H), 4.11 (s, 1H), 3.28–3.20 (m, 1H), 2.89–2.80 (m, 1H), 2.32 (dtd, J = 10.4, 8.0, 2.4 

Hz, 1H), 2.24–2.15 (m, 1H).
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Chemical Synthesis of Compounds 3c and 3d.

All starting materials were commercially procured and were used without further 

purification unless specified. Analytical LC–MS data for all compounds were acquired using 

an Agilent 6110 Series system with the UV detector set to 220 nm. Samples were injected 

(<10 μL) onto an Agilent Eclipse Plus 4.6 × 50 mm, 1.8 μm, C18 column at room 

temperature. Mobile phases A (H2O + 0.1% acetic acid) and B (MeOH + 0.1% acetic acid) 

were used with a linear gradient from 10 to 100% B in 5.0 min, followed by a flush at 100% 

B for another 2 min with a flow rate of 1.0 mL/min. Mass spectroscopy (MS) data were 

acquired in positive ion mode using an Agilent 6110 single quadrupole mass spectrometer 

with an ESI source. Nuclear magnetic resonance (NMR) spectra were recorded on a Varian 

Mercury spectrometer at 400 MHz for proton (1H NMR); chemical shifts are reported in 

ppm (δ) relative to residual protons in deuterated solvent peaks. Normal phase column 

chromatography was performed with a Teledyne Isco CombiFlashRf using silica RediSepRf 

columns with the UV detector set to 220 nm and 254 nm. The mobile phases used are 

indicated for each compound. Reverse phase column chromatography was performed with a 

Teledyne Isco CombiFlashRf 200 using C18 RediSepRf Gold columns with the UV detector 

set to 220 nm and 254 nm. Mobile phases of A (H2O + 0.1% TFA) and B (MeCN) were 

used with default column gradients. Preparative HPLC was performed using an Agilent Prep 

1200 series with the UV detector set to 220 nm and 254 nm. Samples were injected onto a 

Phenomenex Luna 250 × 30 mm, 5 μm, C18 column at room temperature. Mobile phases of 

A (H2O + 0.1% TFA) and B (MeOH or MeCN) were used with a flow rate of 40 mL/min. A 

general gradient of 0–15 min increasing from 10 to 100% B followed by a 100% B flush for 

another 5 min was used. Small variations in this purification method were made as needed to 

achieve ideal separation for each compound. Analytical LC–MS (at 254 nm) and NMR were 

used to establish the purity of targeted compounds. All compounds that were evaluated in 

biochemical and biophysical assays had >95% purity as determined by 1H NMR and LC–

MS.

Synthesis of Compound 3c.

To a flask equipped with a stir bar were added 4-fluorobenzaldehyde (0.25 g, 0.21 mL, 1 

equiv, 2.0 mmol) and methanol (10 mL). The flask was sealed with a septum, and 

isopropylamine (0.59 g, 0.86 mL, 5 equiv, 10 mmol) was introduced via a syringe. The 

mixture was stirred at room temperature for 3 h to allow for imine formation. Next, the flask 

was cooled in an ice bath, and NaBH4 (0.15 g, 2 equiv, 4.0 mmol) was added in one portion. 

The reaction was allowed to come to room temperature with stirring overnight. The next day, 

the reaction was diluted with water and extracted three times with ethyl acetate. The 

combined organic layers were washed three times with water and once with brine, then dried 

over sodium sulfate, and concentrated to a clear oil. The oil was taken up in ether (10 mL) 

and cooled in an ice bath, and TFA (0.34 g, 0.23 mL, 1.5 equiv, 3.0 mmol) was added with 
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vigorous stirring. The voluminous white precipitate formed was filtered off, rinsed with 

additional ether, and air-dried to provide N-(4-fluorobenzyl)propan-2-amine 2,2,2-

trifluoroacetate (111.5 mg, 396.4 μmol, 20%) as a fluffy white solid.

1H NMR (400 MHz, methanol-d4): δ 7.54 (dd, J = 8.6, 5.4 Hz, 2H), 7.20 (t, J = 8.7 Hz, 2H), 

4.20 (s, 2H), 3.44 (hept, J = 6.5 Hz, 1H), 1.39 (d, J = 6.6 Hz, 6H). LC–MS (ESI, +ve mode) 

expected m/z for C10H15FN [M + H] + 168.12, found 168.20.

To a vial containing N-(4-fluorobenzyl)propan-2-amine 2,2,2-trifluoroacetate (75 mg, 1.1 

equiv, 0.27 mmol) were added acetonitrile (1 mL) and triethylamine (74 mg, 0.10 mL, 3 

equiv, 0.73 mmol). The vial was cooled in an ice bath, and 4-cyanobenzoyl chloride (40 mg, 

1 equiv, 0.24 mmol) was added in one portion. The reaction was allowed to come to room 

temperature with stirring overnight. The next day, the reaction was diluted with water and 

extracted three times with ethyl acetate. The combined organic layers were washed once 

with 0.5 M citric acid, once with water, once with saturated sodium bicarbonate, and once 

with brine, dried over sodium sulfate, and concentrated to a white solid. Normal phase 

chromatography over silica gel (0-50% ethyl acetate in hexanes) afforded compound 3c (47 

mg, 0.16 mmol, 65%) as a clear residue that solidified on standing to a white solid.

1H NMR (400 MHz, chloroform-d) complicated by rotamers. δ 7.79–7.65 (br s, 2H), 7.65–

7.38 (br s, 2H), 7.37–7.27 (br s, 2H), 7.05–6.93 (m, 2H), 4.62–4.26 (br m, 2H), 4.05–3.81 

(br s, 1H), 1.33–1.01 (br s, 6H). 13C NMR (101 MHz, chloroform-d): δ 170.3, 162.0 (d, 1JCF 

= 245.1 Hz), 141.6, 134.6, 132.7, 129.0, 127.0, 118.2, 115.5 (d, 2JCF = 21.7 Hz), 113.3, 

51.1, 43.2, 21.6. 19F NMR (376 MHz, chloroform-d): δ −114.6 (minor rotamer), −115.7 

(major rotamer). LC–MS (ESI, +ve mode) expected m/z for C18H18FN2O [M + H] + 297.14, 

found 297.10.

Synthesis of Compound 3d.

To a flame-dried microwave vial equipped with a stir bar were added 4-fluorobenzaldehyde 

(100 mg, 86.4 μL, 0.806 mmol) and cyclobutanamine (57.3 mg, 68.8 μL, 0.806 mmol), 

followed by acetic acid and THF (ratio 1:4; 4mL). The sealed vial was irradiated in the 

microwave at 60 °C (250 W) for 10 min. Upon cooling, SiliaBond cyanoborohydride was 

added (50.6 mg, 0.806 mmol) and stirred at room temperature for 10 min. The mixture was 
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irradiated in the microwave at 120 °C (250 W) for 10 min. The crude mixture was filtered, 

concentrated under vacuum, and used in the next step without further purification.

To a flame-dried microwave vial equipped with a stir bar were added the N-(4-

fluorobenzyl)cyclobutanamine synthesized previously, 4-cyanobenzoyl chloride (100 mg, 

0.604 mmol), and acetonitrile (2 mL). The sealed vial was irradiated in the microwave at 120 

°C for 60 min (250 W). Once the reaction was complete, the volatiles were evaporated. The 

crude mixture was first purified by normal phase gradient column chromatography (0–100% 

ethyl acetate in hexanes). The desired fractions were concentrated, redissolved in methanol 

(1 mL), and then purified further by preparative-HPLC [(H2O + 0.1% TFA)/MeCN] to 

afford compound 3d (56.9 mg, 184 μmol, 30% over two steps) as a colorless gum.

1H NMR (400 MHz, chloroform-d) complicated by rotamers. δ 7.81–7.59 (m, 2H), 7.57–

7.38 (m, 2H), 7.23 (br s, 2H), 7.07–6.95 (m, 2H), 4.90–4.00 (multiple br signals, 3H), 2.18–

1.33 (multiple br signals, 6H). 13C NMR (101 MHz, chloroform-d): δ 162.08 (d, 1JCF = 

245.7 Hz), 141.27, 134.02, 132.49, 128.32, 127.44, 118.21, 115.73 (d, 2JCF = 21.5 Hz), 

113.60, 77.48, 77.16, 76.84, 53.71, 44.71, 29.43, 14.60. NB—carbonyl carbon is too weak to 

be detected. 19F NMR (376 MHz, chloroform-d): δ −115.21 (minor rotamer), −116.12 

(major rotamer). NB—trace TFA in spectrum. LC–MS (ESI, +ve mode) expected m/z for 

C19H18FN2O [M + H] + 309.14, found 309.20
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ABBREVIATIONS

Kd dissociation constant

H3K36 lysine 36 of histone 3

DSLS differential static light scattering
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SPR surface plasmon resonance

ΔTagg difference in aggregation temperature

ITC isothermal titration calorimetry

PDB Protein Data Bank

REFERENCES

(1). Kuo AJ; Cheung P; Chen K; Zee BM; Kioi M; Lauring J; Xi Y; Park BH; Shi X; Garcia BA; Li W; 
Gozani O NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming. 
Mol. Cell 2011, 44, 609–620. [PubMed: 22099308] 

(2). Vougiouklakis T; Hamamoto R; Nakamura Y; Saloura V The NSD Family of Protein 
Methyltransferases in Human Cancer. Epigenomics 2015, 7, 863–874. [PubMed: 25942451] 

(3). Keats JJ; Reiman T; Maxwell CA; Taylor BJ; Larratt LM; Mant MJ; Belch AR; Pilarski LM In 
multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 
expression. Blood 2003, 101, 1520–1529. [PubMed: 12393535] 

(4). Jaffe JD; Wang Y; Chan HM; Zhang J; Huether R; Kryukov GV; Bhang H.-e. C.; Taylor JE; Hu M; 
Englund NP; Yan F; Wang Z; Robert McDonald E; Wei L; Ma J; Easton J; Yu Z; deBeaumount 
R; Gibaja V; Venkatesan K; Schlegel R; Sellers WR; Keen N; Liu J; Caponigro G; Barretina J; 
Cooke VG; Mullighan C; Carr SA; Downing JR; Garraway LA; Stegmeier F Global Chromatin 
Profiling Reveals NSD2 Mutations in Pediatric Acute Lymphoblastic Leukemia. Nat. Genet. 
2013, 45, 1386–1391. [PubMed: 24076604] 

(5). Oyer JA; Huang X; Zheng Y; Shim J; Ezponda T; Carpenter Z; Allegretta M; Okot-Kotber CI; 
Patel JP; Melnick A; Levine RL; Ferrando A; Mackerell AD; Kelleher NL; Licht JD; Popovic R 
Point Mutation E1099K in MMSET/NSD2 Enhances Its Methyltranferase Activity and Leads to 
Altered Global Chromatin Methylation in Lymphoid Malignancies. Leukemia 2014, 28, 198–
201. [PubMed: 23823660] 

(6). Chinnaiyan AM; Lnu S; Cao Q; Asangani I Compositions and Methods for Inhibiting MMSET. 
U.S. Patent 20,110,207,198 A1, 2011.

(7). Morishita M; Mevius DEHF; Shen Y; Zhao S; di Luccio E BIX-01294 Inhibits Oncoproteins 
NSD1, NSD2 and NSD3. Med. Chem. Res. 2017, 26, 2038–2047.

(8). Tisi D; Chiarparin E; Tamanini E; Pathuri P; Coyle JE; Hold A; Holding FP; Amin N; Martin 
ACL; Rich SJ; Berdini V; Yon J; Acklam P; Burke R; Drouin L; Harmer JE; Jeganathan F; van 
Montfort RLM; Newbatt Y; Tortorici M; Westlake M; Wood A; Hoelder S; Heightman TD 
Structure of the Epigenetic Oncogene MMSET and Inhibition byN-Alkyl Sinefungin Derivatives. 
ACS Chem. Biol. 2016, 11, 3093–3105. [PubMed: 27571355] 

(9). Coussens NP; Kales SC; Henderson MJ; Lee OW; Horiuchi KY; Wang Y; Chen Q; Kuznetsova E; 
Wu J; Chakka S; Cheff DM; Cheng KC-C; Shinn P; Brimacombe KR; Shen M; Simeonov A; 
Lal-Nag M; Ma H; Jadhav A; Hall MD High-throughput screening with nucleosome substrate 
identifies small-molecule inhibitors of the human histone lysine methyltransferase NSD2. J. Biol. 
Chem. 2018, 293, 13750–13765. [PubMed: 29945974] 

(10). Huang H; Howard CA; Zari S; Cho HJ; Shukla S; Li H; Ndoj J; González-Alonso P; Nikolaidis 
C; Abbott J; Rogawski DS; Potopnyk MA; Kempinska K; Miao H; Purohit T; Henderson A; 
Mapp A; Sulis ML; Ferrando A; Grembecka J; Cierpicki T Covalent Inhibition of NSD1 Histone 
Methyltransferase. Nat. Chem. Biol. 2020, 16, 1403–1410. [PubMed: 32868895] 

(11). Huang Z; Wu H; Chuai S; Xu F; Yan F; Englund N; Wang Z; Zhang H; Fang M; Wang Y; Gu J; 
Zhang M; Yang T; Zhao K; Yu Y; Dai J; Yi W; Zhou S; Li Q; Wu J; Liu J; Wu X; Chan H; Lu C; 
Atadja P; Li E; Wang Y; Hu M NSD2 Is Recruited through Its PHD Domain to Oncogenic Gene 
Loci to Drive Multiple Myeloma. Cancer Res. 2013, 73, 6277–6288. [PubMed: 23980095] 

(12). Sankaran SM; Wilkinson AW; Elias JE; Gozani O A PWWP Domain of Histone-Lysine N-
Methyltransferase NSD2 Binds to Dimethylated Lys-36 of Histone H3 and Regulates NSD2 
Function at Chromatin. J. Biol. Chem. 2016, 291, 8465–8474. [PubMed: 26912663] 

de Freitas et al. Page 15

J Med Chem. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13). Qin S; Min J Structure and Function of the Nucleosome-Binding PWWP Domain. Trends 
Biochem. Sci 2014, 39, 536–547. [PubMed: 25277115] 

(14). Wen H; Li Y; Xi Y; Jiang S; Stratton S; Peng D; Tanaka K; Ren Y; Xia Z; Wu J; Li B; Barton 
MC; Li W; Li H; Shi X ZMYND11 Links Histone H3.3K36me3 to Transcription Elongation and 
Tumour Suppression. Nature 2014, 508, 263–268. [PubMed: 24590075] 

(15). Abagyan R; Totrov M; Kuznetsov D ICM?A new method for protein modeling and design: 
Applications to docking and structure prediction from the distorted native conformation. J. 
Comput. Chem. 1994, 15, 488–506.

(16). ROCS 3.2.2.2; OpenEye Scientific Software: Santa Fe, New Mexico.

(17). FTree, 3.4; BioSolveIT GmbH: Sankt Augustin, Germany.

(18). Filter, 2.4; OpenEye Scientific Software: Santa Fe, New Mexico.

(19). Totrov M Atomic Property Fields: Generalized 3D Pharmacophoric Potential for Automated 
Ligand Superposition, Pharmacophore Elucidation and 3D QSAR. Chem. Biol. Drug Des. 2008, 
71, 15–27. [PubMed: 18069986] 

(20). LibMCS, 16.6.13.0; ChemAxon: Budapest, Hungary.

(21). Böttcher J; Dilworth D; Reiser U; Neumüller RA; Schleicher M; Petronczki M; Zeeb M; 
Mischerikow N; Allali-Hassani A; Szewczyk MM; Li F; Kennedy S; Vedadi M; Barsyte-Lovejoy 
D; Brown PJ; Huber KVM; Rogers CM; Wells CI; Fedorov O; Rumpel K; Zoephel A; Mayer M; 
Wunberg T; Böse D; Zahn S; Arnhof H; Berger H; Reiser C; Hörmann A; Krammer T; 
Corcokovic M; Sharps B; Winkler S; Häring D; Cockcroft X-L; Fuchs JE; Müllauer B; Weiss-
Puxbaum A; Gerstberger T; Boehmelt G; Vakoc CR; Arrowsmith CH; Pearson M; McConnell 
DB Fragment-Based Discovery of a Chemical Probe for the PWWP1 Domain of NSD3. Nat. 
Chem. Biol. 2019, 15, 822–829. [PubMed: 31285596] 

(22). Senisterra GA; Markin E; Yamazaki K; Hui R; Vedadi M; Awrey DE Screening for Ligands 
Using a Generic and High-Throughput Light-Scattering-Based Assay. J. Biomol. Screening 2006, 
11, 940–948.

(23). Kabsch W XDS. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 125–132.

(24). McCoy AJ; Grosse-Kunstleve RW; Adams PD; Winn MD; Storoni LC; Read RJ 
Phasercrystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [PubMed: 19461840] 

(25). Emsley P; Cowtan K Coot: Model-Building Tools for Molecular Graphics. Acta Crystallogr., 
Sect. D: Biol. Crystallogr. 2004, 60, 2126–2132. [PubMed: 15572765] 

(26). Davis IW; Murray LW; Richardson JS; Richardson DC MOLPROBITY: Structure Validation and 
All-Atom Contact Analysis for Nucleic Acids and Their Complexes. Nucleic Acids Res. 2004, 
32, W615–W619. [PubMed: 15215462] 

de Freitas et al. Page 16

J Med Chem. Author manuscript; available in PMC 2022 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Domain architecture of NSD2 and chemical evolution of NSD2-PWWP1 antagonists. 

Receptor-based virtual screening followed by target and scaffold hopping led to the 

development of 3.
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Figure 2. 
Compound 3f (structure shown in the center) selectively binds NSD2 PWWP1. (A) 

Treatment with 3f increases the melting temperature of NSD2-PWWP1 in a DSLS assay. (B) 

3f binds NSD2-PWWP1 in an SPR assay. (C) 3f only affects the melting temperature of 

NSD2-PWWP1 in a panel of 10 PWWP domains at 100 μM.
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Figure 3. 
Crystal structure of the NSD2-PWWP1 domain in complex with 3f [PDB code 6UE6]. 

Binding pocket residues (gray) and the antagonist (cyan) are displayed as sticks and 

hydrogen bonds as magenta dashed lines. Aromatic cage residues are colored in green.
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Figure 4. 
Compound 3f disengages NSD2 PWWP1 from histone H3 in cells. Mean-corrected 

NanoBRET ratios (mBU) are shown for the interaction between NSD2 (orange) and NSD3 

(green) with increasing doses of compound 3f.
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Table 1.

SARs of the Analogues of Compound 2 and Close Analogues

a
Compound concentration was 500 μM.
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Table 2.

SAR of the Analogues of Compound 3

a
Compound concentration was 500 μM.
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