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Introductory paragraph

Genome-wide association studies (GWAS) have identified many risk loci for Alzheimer’s 

disease (AD)1,2, but how these loci confer AD risk remains unclear. Here, we aimed to 

identify loci that confer AD risk through their effects on brain protein abundances to provide 

new insights into AD pathogenesis. To that end, we integrated AD GWAS results with 

human brain proteomes to perform a proteome-wide association study (PWAS) of AD, 

followed by Mendelian randomization and colocalization analysis. We identified 11 genes 

that are consistent with being causal in AD, acting via their cis-regulated brain protein 

abundances. Nine replicated in a confirmatory PWAS and eight represent novel AD risk 

genes not identified before by AD GWAS. Furthermore, we demonstrated that our results 

were independent of APOE E4. Together, our findings provide new insights into AD 

pathogenesis and promising targets for further mechanistic and therapeutic studies.

AD affects 35 million people worldwide but there is no effective disease-modifying 

treatment for it3. To support the development of new AD therapeutics, genetic studies of 

AD, especially GWAS, have identified many risk loci1,2, but how these risk loci contribute 

to AD remains unclear. To gain insight into how these loci contribute to AD pathogenesis, 

we integrated AD GWAS results1 with human brain proteomes4 to identify genes that confer 

AD risk through their effects on brain protein abundance.

In the discovery phase, we performed a PWAS by integrating AD GWAS results 

(N=455,258)1 with 376 human brain proteomes profiled from the dorsolateral prefrontal 

cortex (dPFC; Supplementary Table 1a)4 using the FUSION pipeline5. Before integration, 

the proteomic profiles underwent quality control and effects of clinical characteristics and 

technical factors were regressed out before we estimated effects of genetic variants on 

protein abundance, referred to as protein weights. After quality control, the proteomic 

profiles included 8356 proteins, of which 1475 were heritable and their protein weights 

could be estimated for the PWAS. The PWAS identified 13 genes whose cis-regulated brain 

protein levels were associated with AD at false discovery rate (FDR) p<0.05 (Figure 1, Table 

1, Extended Data Figure 1a, Supplementary Table 2).

A confirmatory PWAS was performed using the same AD GWAS1 and an independent set of 

152 human brain proteomes profiled from the dPFC (Supplementary Table 1b)6. After 

quality control, 8168 proteins remained and 1139 were heritable. Correlation between the 

protein weights in the discovery and confirmatory datasets was high (median 0.85, 

interquartile range 0.21; Supplementary table 3). Three of the 13 discovery PWAS-

significant proteins could not be tested in the confirmatory PWAS – one protein was not 

profiled and two were profiled but did not have significant heritability, likely due to the 

smaller sample size. Ten of these 13 proteins could be tested and all 10 proteins replicated in 

the confirmatory PWAS (Table 1; Extended Data Figure 1b; Supplementary table 4).

Associations in the PWAS of AD may result when a variant is associated with protein 

expression (i.e., the variant is a protein quantitative trait locus [pQTL]) and AD 

simultaneously, or from a coincidental overlap between pQTLs and sites in linkage 

disequilibrium with AD GWAS sites. The former is interpreted as evidence supporting either 
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a pleiotropic or causal role for the gene (and will be referred to as consistent with being 

causal for simplicity) while the latter suggests a non-causal role. We investigated these 

possibilities using two independent but complementary approaches. First, using a Bayesian 

colocalization method, COLOC7, we examined the posterior probability for a shared causal 

variant between a pQTL and AD for the 13 discovery AD PWAS-significant genes. We 

found 9 of 13 genes consistent with being causal (Table 2; Supplementary Table 5). Second, 

we used the summary data-based Mendelian randomization (SMR)8 and its accompanying 

heterogeneity in dependent instruments (HEIDI)8. SMR results suggest that the cis-regulated 

protein abundance mediates the association between genetic variants and AD for all these 13 

genes, but HEIDI results argue against a causal role for 4 genes due to linkage 

disequilibrium (Table 2; Supplementary Table 6). Thus, 9 of the 13 genes have evidence 

consistent with a causal role in AD by SMR/HEIDI. In sum, we found 7 genes with 

consistent results for causality by both COLOC and SMR/HEIDI (CTSH, DOC2A, ICA1L, 
LACTB, PLEKHA1, SNX32, and STX4; Table 2), and 4 genes with conflicting results for 

causality by these two approaches (ACE, CARHSP1, RTFDC1, and STX6; Table 2). Results 

for EPHX2 and PVR argued against causality (Table 2).

Combining evidence for replication and results of causality tests, there were 5 genes (CTSH, 
DOC2A, ICA1L, LACTB, and SNX32) with evidence for both replication and causality 

(Table 3). There were 4 genes with evidence for replication and mixed results supporting 

causality (ACE, CARHSP1, RTFDC1, and STX6; Table 3). Thus, among the 13 discovery 

PWAS-significant genes, 11 were consistent with being causal in AD, and 9 of 11 replicated 

in the confirmatory PWAS (Table 3).

Since the APOE E4 allele is strongly associated with AD, we investigated whether APOE 
E4 influenced our PWAS findings. To that end, we regressed out the effect of APOE E4 
from the proteomes and used the regressed proteomic profiles to perform the PWAS of AD. 

That analysis found the 13 original PWAS-significant genes and 6 additional significant 

genes at FDR p<0.05 (ACOT8, DDX58, ISLR2, PITPNC1, TBC1D1, and TRIM65; 

Supplementary table 7). All the 13 genes had the same directions of association as those in 

the discovery PWAS. Moreover, results from COLOC and SMR/HEIDI tests found the same 

evidence of causality as the original findings except that ACE was now consistent with 

causality by both COLOC and SMR/HEIDI compared to mixed findings before 

(Supplementary tables 8-9). The 6 additional genes were not consistent with being causal by 

COLOC (Supplementary Table 8). These observations suggest that our findings are unlikely 

to be influenced by APOE E4.

To understand the specificity of the AD PWAS results, we performed PWAS for other brain-

relevant and biometric traits. We expected the degree of overlap of significant genes to 

roughly correspond to their genetic correlations. GWAS results from individuals of 

European descent for clinical AD (N=63,926)2, amyotrophic lateral sclerosis (ALS; 

N=80,610)9, Parkinson’s disease (PD; N=1,474,097)10, neuroticism (N=390,278)11, height 

(N=693,529)12, body mass index (BMI; N=681,275)12, and waist-to-hip ratio adjusting for 

BMI (WHRadjBMI; N=694,649)13 were combined with the discovery proteomic profiles 

(N=376) to perform a PWAS of each trait. The PWAS of clinical AD identified 4 genes, 

ALS 7 genes, PD 17 genes, neuroticism 72 genes, height 662 genes, BMI 395 genes, and 
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WHRadjBMI 244 genes (Supplementary Tables 10-16). Overlap of the significant genes 

between the discovery AD PWAS and PWAS of other traits was 75% for clinical AD, 0% for 

ALS, 5.9% for PD, 2.8% for neuroticism, 1.7% for height, 1.5% for BMI, and 0.4% for 

WHRadjBMI (Extended Data Figure 2). The small overlap with biometric traits is not 

surprising given their estimates of genetic correlation with AD1. These results suggest the 

specificity of our AD PWAS findings.

Given the central dogma of molecular biology that DNA is transcribed into mRNA, which is 

translated into protein, we asked whether the identified 11 genes with evidence for being 

causal in AD at the protein level had similar evidence at the transcript level. We integrated 

the AD GWAS results1 with 888 human brain transcriptomes to perform a TWAS of AD 

using FUSION5. The 888 transcriptomes were mainly from the frontal cortex donated by 

participants of European descent (Supplementary table 1c), and quality control was 

analogous to that of the proteomes to remove technical and clinical characteristics before 

estimating the effect of genetic variants on mRNA expression. Among the 13,650 transcripts 

after quality control, 6870 were heritable. The AD TWAS identified 40 genes whose 

genetically regulated mRNA expression levels were associated with AD at FDR p<0.05 

(Extended Data Figure 3; Supplementary table 17). Among the 11 potentially causal genes 

identified at the protein-level, five genes, ACE, CARHSP1, SNX32, STX4, and STX6, 
showed at least nominal significance with similar directions of association with AD as seen 

at the protein-level (Table 3; Supplementary table 18a).

For the 5 genes with evidence at both the transcript and protein levels, results from SMR test 

for two molecular traits14 suggested their protein abundance is mediated by mRNA 

expression (Supplementary table 18a,b). For the three genes with suggestive evidence for 

cis-regulated mRNA’s association with AD (CTSH, LACTB, and RTFDC1), only CTSH 
had evidence to suggest protein expression is mediated by mRNA expression level 

(Supplementary table 18a,b). In sum, about half (6 of 11) of the genes with evidence 

consistent with being causal in AD at the protein level were also associated with AD at the 

transcript level.

We previously identified 31 modules of co-expressed proteins in ROS/MAP reference 

proteomes using Weight Gene Co-expression Network Analysis4,15. We found that 6 of the 

11 potential AD causal proteins belonged to one of these modules while 5 did not. For these 

6 proteins, each belonged to a different module, which implies that our PWAS findings are 

not simply the result of correlated protein expression16.

Using human single-cell RNA-sequencing data profiled from the dPFC17 we found cell-type 

specific enrichment for expression of 6 of the 11 causal genes at FDR p-value < 0.05 

(adjusted for 17,775 genes). DOC2A, ICA1L, PLEKHA1, and SNX32 were enriched in 

excitatory neurons, whereas CARHSP1 showed enrichment in oligodendrocytes and CTSH 
in astrocytes and microglia (Extended Data Figure 4; Supplementary table 19).

Lastly, 8 of the 11 identified causal genes were not within 1Mb of AD genome-wide 

significant sites1 while 3 were (LACTB, RTFDC1, and STX4), implying that these 8 genes 
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were from novel sites. The 8 genes were in regions with suggestive AD associations in 

GWAS (p-values of 5.3×10−5 to 1.9×10−7), which is in line with other TWAS studies18–20.

In conclusion, we identified 11 brain proteins that have evidence consistent with being 

causal in AD for future mechanistic studies to find new treatments for the disease.

Methods

Human Brain Proteomic and Genetic Data in the Discovery PWAS

We generated human brain proteomes from the dorsolateral prefrontal cortex (dPFC) of 

post-mortem brain samples donated by 400 participants of European descent of the 

Religious Orders Study and Rush Memory and Aging Project (ROS/MAP)21. Participants in 

the ROS/MAP studies gave informed consent for longitudinal assessments, agreed to an 

Anatomic Gift Act, and consented to repurposing their data and biospecimens for future 

studies. The Institutional Review Board of Rush University Medical Center approved the 

ROS/MAP studies.

We performed proteomic sequencing using isobaric tandem mass tag (TMT) peptide 

labeling and analyzed these peptides by liquid chromatography coupled to mass 

spectrometry. Samples were randomized by age, sex, post-mortem interval, cognitive 

diagnosis, and pathologies into 50 batches prior to TMT labeling to minimize batch effects. 

Peptides from each individual sample (N=400) and the global internal standard (GIS; 

N=100) were labeled using the TMT 10-plex kit (ThermoFisher) and high pH fractionation 

was used to increase peptide depth as previously described22. Two of the exact same GIS 

were included in each batch. We used Proteome Discoverer suite (version 2.3 ThermoFisher 

Scientific) and MS2 spectra searched against the canonical UniProtKB Human proteome 

database (February 2019) with 20,338 total sequences to assign peptide spectral matches. 

Peptide spectral matches (PSM) were filtered using percolator to a false discovery rate 

(FDR) of less than 1%, and, after spectral assignment, peptides were collated into proteins 

such that the combined probabilities of their constituent peptides achieved an FDR of 1%. 

Peptides shared among multiple proteins were assigned based on parsimony. Integration of 

ion quantification from MS2 or MS3 scans with a tolerance of 20 ppm at the most confident 

centroid setting was used to quantify reporter ions.

After quantification of the proteins, we identified proteins that were not reliably measured 

using the two GIS that were run in each batch. Proteins whose measurements fell outside the 

95% confidence interval for any batch were removed from further analysis. Proteomic 

analysis identified 12,691 proteins and after we excluded proteins with missing values in 

more than 50% of the 400 subjects, 8356 proteins remained. To remove the effects of protein 

loading differences, we scaled each protein abundance with a sample-specific total protein 

abundance and log2 transformed the abundance. Next, we identified and removed poorly 

performing samples using iterative principal component analysis (PCA) to remove samples 

with greater than four standard deviations from the mean of either the first or second 

principal component. Subsequently, regression was used to estimate and remove the effects 

of proteomic sequencing batch, MS reporter quantification mode, sex, age at death, 

postmortem interval, study (ROS vs. MAP), and the final clinical diagnosis of cognitive 
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status from the proteomic profile. Expanded details on the proteomic sequencing and quality 

control are published here4.

Genotyping was obtained from either whole genome sequencing (WGS) or genome-wide 

genotyping by either Illumina OmniQuad Express or Affymetrix GeneChip 6.0 platforms as 

described here23. Quality control of genotyping from either source was performed separately 

using Plink24. WGS data was preferred over array-based genotyping in cases where 

individuals had genotyping data from both sources. Individuals with overall genotyping 

missingness >5% were excluded. Variants were excluded if they had evidence of deviation 

from Hardy Weinberg equilibrium (p-value < 1×10−8), missing genotype rate >5%, minor 

allele frequency <1%, or are not a single nucleotide polymorphism (SNP). Next, KING25 

was used to remove individuals estimated to be closer than second degree relatives. For 

array-based data, we imputed genotyping to 1000 Genome Project Phase 326 using the 

Michigan Imputation Server27 and SNPs with imputation R2 > 0.3 were retained. Principal 

component analysis was performed to compare genetic ancestry of these individuals to CEU 

from 1000 Genomes Project (Extended Data Figure 5; Supplementary Table 20). All 

samples were kept for analyses. All of our analyses used only the 1,190,321 HapMap SNPs 

present in the 489 individuals of European descent from the 1000 Genomes Project, which 

was provided by FUSION5 and commonly referred to as the linkage disequilibrium 

reference panel. After quality control, there were 376 subjects with both proteomic and 

genetic data for our discovery PWAS.

Human Brain Proteomic and Genetic Data in the Confirmation PWAS

The confirmation human brain proteomes were profiled from the dPFC of post-mortem brain 

samples from 198 participants of European descent recruited by the Banner Sun Health 

Research Institute (Banner). Participants in this study were recruited from the retirement 

communities in the greater Phoenix, Arizona, USA. All enrolled participants or their legal 

representatives signed an informed consent and the study was approved by the Institutional 

Review Board of Banner Sun Health Research Institute. Participants consented to annual 

standardized medical, neurological, and neuropsychological testing. Research diagnoses 

were made using approved research guidelines and a final clinicopathological diagnosis was 

made after review of all clinical, medical records, and neuropathological findings6. Only 

subjects with a final diagnosis of normal cognition or AD were included in the proteomic 

analysis. Proteomic profiling was performed using the same approach as described above for 

the discovery proteomes with two differences: only MS2 scans were obtained and MS2 

spectra were searched against the UniProtKB human brain proteome database downloaded 

in April 2015. Due to different databases, exact Uniprot IDs were used when comparing the 

discovery and confirmation results. In total, there were 11,518 proteins quantified. We 

applied the same quality control procedure as was done in the discovery proteomic dataset to 

the confirmation proteomic data. Likewise, we used regression to remove the effects of 

proteomic sequencing batch, age, sex, post-mortem interval, and final clinical diagnosis of 

cognitive status from the confirmatory proteomic profiles before estimating the protein 

weights.
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Genotyping was performed using the Affymetrix Precision Medicine Array using DNA 

extracted from the brain with the Qiagen GenePure kit. We applied the same approach to 

quality control as described for the discovery dataset, including removing individuals based 

on data completeness or relatedness, removing sites with evidence of deviation from Hardy 

Weinberg equilibrium, missingness above 5%, minor allele frequency below 1%, or are not a 

SNP. Genotyping was imputed to the 1000 Genome Project Phase 326 using the Michigan 

Imputation Server27. SNPs with imputation R2> 0.3 were retained. Finally, only sites 

included in the linkage disequilibrium reference panel were used in our confirmation PWAS, 

as recommended by the FUSION pipeline. After quality control, there were 152 subjects 

with both proteomic and genetic data to include in our confirmation analyses.

Brain Transcriptomic and Genetic Data in the AD TWAS

The brain transcriptomes were profiled from post-mortem brain samples donated by 783 

individuals of European descent recruited by ROS/MAP, Mayo, and Mount Sinai Brain 

Bank studies23,28,29. These transcriptomes were profiled mainly from the dPFC and also 

from frontal cortex, temporal cortex, inferior frontal gyrus, superior temporal gyrus, and 

perirhinal gyrus. Details on alignment, quality control, and normalization of the RNA-

sequencing data have been described previously30. Briefly, Picard was used to convert BAM 

files to FASTQ format and STAR31 was used to align reads to the GRCh38 reference 

genome and compute gene counts for each sample. We removed genes with < 1 count per 

million in at least 50% of the samples and genes with missing gene length and percent GC 

content. Next, we removed outlier samples. Then, we regressed out effects of batch, sex, 

post-mortem interval, age at death, brain region, and final diagnosis of cognitive status from 

the transcriptomic profiles before estimating mRNA weights.

For subjects with transcriptomic data, their genome-wide genotyping was generated as 

described previously23,28,29. Quality control of the genotyping data was performed as 

described above for the discovery ROS/MAP dataset. After quality control, there were 

13,650 mRNAs quantified from 783 individuals using 888 transcriptomes. Genotyping was 

filtered to include only sites in the linkage disequilibrium reference panel provided by 

FUSION before estimating mRNA weights as described below.

AD GWAS summary statistics

We used the summary association statistics from the latest GWAS of AD by Jansen et al1, 

which had 455,258 Caucasian participants, most of whom were from the UK Biobank with 

family history of dementia.

Statistical Approach

We used FUSION5 to estimate protein weights in the discovery and confirmation dataset, 

separately. For simplicity, we described here the process for the discovery dataset and 

followed the same steps for the confirmation dataset. As mentioned above, we subset 

ROS/MAP genome-wide genotyping into a linkage disequilibrium reference panel of 

1,190,321 SNPs provided by FUSION to minimize the influence of linkage disequilibrium 

on the estimated test statistics5. Next, the SNP-based heritability for each gene was 

estimated using the discovery proteomic and genetic data. For proteins with significant 
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heritability (i.e. heritability p-value <0.01), we used FUSION to compute the effect of SNPs 

on protein abundance using multiple predictive models - top1, blup, lasso, enet, bslmm5. 

Protein weights from the most predictive model were selected. Subsequently, we used 

FUSION to combine the genetic effect of AD (AD GWAS Z-score) with the protein weights 

by calculating the linear sum of Zscore × weight for the independent SNPs at the locus to 

perform the PWAS of AD5. Lambda (λobs)and lambda 1,000 (λ1000), which is a 

standardized estimate of genomic inflation scaled to a study of 1,000 cases and 1,000 

controls32–34, were calculated for each PWAS. Lambda 1,000 was calculated using the 

following formula32–34: 

λ1000 = 1 + λobs − 1 × 1 ncases + 1 ncontrols ÷ 1 1, 000cases + 1 1, 000controls  . They were found 

to be consistent with other studies using FUSION that calculated lambda34 (Extended Data 

Figure 1). The slightly higher λobs in the confirmation PWAS may reflect some difference in 

the heterogeneity of the datasets.

For the transcriptomic data, we calculated the transcript weights using FUSION with two 

modifications to accommodate individuals with transcriptomic profiles from more than one 

brain region. First, the flag -scale 1 was added to handle pre-scaled expression values. 

Second, the family ID in the plink FAM file was used to ensure that samples from the same 

individual were always in the same fold within cross validation, and that no fold differed by 

more than 5% in size from any other fold. RNA weights were estimated using all five 

models and the most predictive model was used. Next, we used FUSION to combine the 

genetic effect of AD (AD GWAS Z-score) with the mRNA expression weights to perform 

the TWAS of AD.

For the colocalization test we used the COLOC software7 to estimate the posterior 

probability of the protein and AD sharing a causal variant, as well as the posterior 

probability of the protein and AD not sharing a causal variant using the marginal association 

statistics. For summary data-based Mendelian Randomization, SMR software8 was used to 

test whether the AD PWAS-significant genes (from the FUSION) were associated with AD 

via their cis-regulated brain protein expression. We used plink24 to estimate protein 

quantitative trait loci (pQTL) in the discovery proteomic dataset by linear regression. Then, 

we applied SMR to the pQTL results and the AD GWAS summary statistics. We used the 

conservative unadjusted p-value <0.05 from the heterogeneity in dependent instrument 

(HEIDI) to declare that presence of linkage likely influences the main SMR findings. For 

genes with both mRNA and protein abundance associated with AD, we applied SMR for two 

molecular traits14 to the eQTL summary statistics from Siebert et al35 and pQTL summary 

statistics described above to determine if the mRNA mediates the influence of SNP on 

proteins.

We examined the cell-type specific expression of the 11 genes with evidence for a causal 

role in AD at the brain protein level using human brain single-cell RNA-sequencing data 

profiled from the dPFC from Mathys et al17. First, we performed data preprocessing and 

transformation on the raw single-cell RNA-sequencing data using the Seurat package36. We 

removed genes with fewer than 3 counts in a cell and cells with unique feature counts over 

2,500 or less than 200. The RNA counts were then normalized and scaled using the 
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NormalizeData and ScaleData functions. The RNA-sequencing data had 17,926 genes in 

70,634 cells before and 17,775 genes in 53,083 cells after quality control and normalization. 

We focused on the 5 main cell types - excitatory neuron, inhibitory neuron, astrocyte, 

microglia, and oligodendrocyte. For the 11 potentially AD causal genes, we performed 

differential expression analysis to compare their expression levels in one cell type versus the 

rest of the other cell types to determine if they are highly expressed in a particular cell type. 

Multiple testing correction applied to this analysis was corrected for all 17,775 genes.

To determine the novelty of the genes identified in the discovery PWAS, we asked whether 

each gene was within 1Mb window of the 2358 significant AD GWAS sites (p < 5×10−8) 

that correspond to the 29 independent risk loci1.
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Extended Data

Extended Data Fig. 1. Quantile-quantile plots for the discovery and replication PWAS of AD
Quantile-quantile plot for A) the discovery PWAS of AD (λ = 1.36; λ1000 = 1.003) and B) 
confirmatory PWAS of AD (λ = 1.39; λ1000 = 1.003).
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Extended Data Fig. 2. Overlap of significant genes between AD and other traits
Overlap between results of the AD PWAS and PWAS for other traits. All the PWAS used the 

discovery ROS/MAP proteomic dataset (n=376) and GWAS summary results from 

Caucasian individuals. The following outcomes were tested: clinical AD GWAS 

(N=63,926), amyotrophic lateral sclerosis (ALS; N=80,610), body mass index (BMI; 

N=681,275), height (N=693,529), neuroticism (N=390,278), Parkinson’s disease (PD; 

N=1,474,097), and waist-to-hip ratio adjusting for BMI (WHRadjBMI; N=694,649). 

Significant genes considered for overlap are those with FDR p<0.05.
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Extended Data Fig. 3. Quantile-quantile plot for the TWAS of AD
Quantile-quantile plot for the TWAS of AD (λ = 1.22; λ1000 = 1.002).

Wingo et al. Page 12

Nat Genet. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4. Single cell-type expression
Single-cell type expression for AD PWAS-significant genes with evidence of causality in 

AD. Using human brain single-cell RNA-sequencing data profiled from the dPFC, we found 

that 6 genes (of the 11 genes) had evidence of enrichment in a cell type at FDR p < 0.05. 

Enrichment testing was performed using Wilcoxon rank sum test, as implemented by the 

Seurat package, and multiple testing was accounted for by FDR adjusted for 17,775 tested 

genes. CARHSP1 showed enrichment in oligodendrocytes. CTSH showed enrichment in 

astrocytes and microglia. DOC2A, ICA1L, PLEKHA1, and SNX32 were enriched in 

excitatory neurons.
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Extended Data Fig. 5. Genetic principal components of genetic ancestry for each dataset
Genetic principal components of genetic ancestry for each dataset. The first two genetic 

principal components for individuals in each dataset are plotted (grey boxes) with 

individuals from the 1000G CEU dataset (purple triangles) for A) the discovery proteomic 

dataset, B) the replication proteomic dataset, and C) the transcriptomic dataset.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Manhattan plot for the discovery AD PWAS integrating the AD GWAS (N=455,258) with 

the discovery ROS/MAP proteomes (N=376). Each point represents a single test of 

association between a gene and AD ordered by genomic position on the x axis and the 

association strength on the y axis as the -log10 p value of a z-score test. The discovery 

PWAS identified 13 genes whose cis-regulated brain protein abundances were associated 

with AD at FDR p< 0.05. The red horizontal line reflects the significant threshold of FDR p 

<0.05 and is set at the highest unadjusted p value that is below that threshold (p = 2.6×10−4).

Wingo et al. Page 17

Nat Genet. Author manuscript; available in PMC 2021 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wingo et al. Page 18

Table 1:

The discovery AD PWAS identified 13 significant genes, of which, 10 were found in the confirmatory PWAS 

and all 10 replicated.

Discovery PWAS Confirmatory PWAS
Evidence for Replication

Gene CHR PWAS.Z PWAS.p PWAS.FDR.p PWAS.Z PWAS.p

1 ACE 17 −5.36 8.5×10−8 4.2×10−5 −5.28 1.3×10−7 yes

2 EPHX2 8 5.46 4.7×10−8 3.4×10−5 4.68 2.8×10−6 yes

3 SNX32 11 −4.69 2.8×10−6 8.4×10−4 −4.27 2.0×10−5 yes

4 DOC2A 16 −4.51 6.4×10−6 1.6×10−3 −4.23 2.3×10−5 yes

5 LACTB 15 3.76 1.7×10−4 2.1×10−2 4.08 4.5×10−5 yes

6 ICA1L 2 −3.88 1.1×10−4 1.6×10−2 −3.96 7.5×10−5 yes

7 CARHSP1 16 3.66 2.6×10−4 2.9×10−2 3.48 5.1×10−4 yes

8 RTFDC1 20 4.25 2.1×10−5 3.9×10−3 3.10 2.0×10−3 yes

9 STX6 1 3.83 1.3×10−4 1.7×10−2 2.96 3.1×10−3 yes

10 CTSH 15 4.68 2.9×10−6 8.4×10−4 2.36 1.8×10−2 yes

11 PLEKHA1* 10 4.40 1.1×10−5 2.3×10−3 − − −

12 PVR** 19 −10.94 7.1×10−28 1.0×10−24 − − −

13 STX4** 16 4.00 6.2×10−5 1.0×10−2 − − −

This table gives the z scores for the AD PWAS associations with their corresponding p-values and FDR-adjusted p-values for all significant genes 
in the AD discovery PWAS. Confirmatory AD PWAS z scores and their corresponding unadjusted p-values are provided for the significant genes in 
the discovery AD PWAS.

(*)
Asterisk indicates protein not profiled in the confirmatory proteomic dataset.

(**)
Double asterisks denote proteins profiled but did not have significant SNP-based heritability estimates in the confirmatory proteomic dataset.
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Table 2:

COLOC and SMR analysis of the 13 significant genes in the discovery AD PWAS. Eleven genes had evidence 

consistent with a causal role by either COLOC or SMR.

COLOC SMR

Gene Chr H4 Causal variant SMR.p HEIDI.p Causal variant

1 CTSH 15 0.962 yes 3.1×10−5 0.464 yes

2 DOC2A 16 0.907 yes 1.0×10−3 0.742 yes

3 ICA1L 2 0.672 yes 4.1×10−4 0.977 yes

4 LACTB 15 0.754 yes 3.8×10−4 0.070 yes

5 PLEKHA1* 10 0.581 yes 3.0×10−3 0.455 yes

6 SNX32 11 0.975 yes 2.7×10−5 0.588 yes

7 STX4* 16 0.918 yes 5.0×10−3 0.808 yes

8 ACE 17 0.976 yes 4.0×10−3 0.039 no

9 RTFDC1 20 0.643 yes 4.6×10−5 0.034 no

10 CARHSP1 16 0.188 no 1.2×10−2 0.397 yes

11 STX6 1 0.072 no 1.0×10−2 0.748 yes

12 EPHX2 8 0 no 7.1×10−7 0.008 no

13 PVR* 19 0.022 no 1.4×10−5 n/a n/a

For the 13 FDR-significant genes in the discovery AD PWAS, the result of COLOC H4, which is the Bayesian posterior probability that a genetic 

variant is shared by both traits (i.e., gene and AD), and P values for SMR and SMR HEIDI tests are given.

(*)
Asterisk denotes genes not found in the confirmatory PWAS. n/a (not applicable) indicates undetermined result since the number of pQTL 

SNPs were too small for HEIDI to test. Genes were sorted by whether they are consistent with being a causal variant.
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Table 3:

Summary of the 11 AD PWAS-significant genes with evidence for being consistent with a causal role in AD.

Discovery Confirmatory Evidence for causality TWAS Novel

Gene Chr PWAS PWAS COLOC SMR significant gene

1 CTSH 15 significant replicated yes yes suggestive yes

2 DOC2A 16 significant replicated yes yes n/a yes

3 ICA1L 2 significant replicated yes yes no yes

4 LACTB 15 significant replicated yes yes suggestive no

5 SNX32 11 significant replicated yes yes yes yes

6 ACE 17 significant replicated yes no yes yes

7 RTFDC1 20 significant replicated yes no suggestive no

8 CARHSP1 16 significant replicated no yes yes yes

9 STX6 1 significant replicated no yes yes yes

10 STX4* 16 significant − yes yes yes no

11 PLEKHA1* 10 significant − yes yes n/a yes

(*)
Asterisk denotes proteins not found in the confirmation PWAS. n/a refers to genes that did not have significant heritability estimates to be 

included in the TWAS of AD. Full results for TWAS is in Supplementary tables 17-18. “suggestive” in “TWAS significant” column refers to genes 
with 0.05 <TWAS nominal p <0.1. Novel gene refers to genes not within 1Mb window of SNPs with p < 5E-08 identified in Jansen et. al. AD 

GWAS1.
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