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Abstract

Constitutive modeling is a cornerstone for stress analysis of mechanical behaviors of biological 

soft tissues. Recently, it has been shown that machine learning (ML) techniques, trained by 

supervised learning, are powerful in building a direct linkage between input and output, which can 

be the strain and stress relation in constitutive modeling. In this study, we developed a novel 

generic physics-informed neural network material (NNMat) model which employs a hierarchical 

learning strategy by following the steps: (1) establishing constitutive laws to describe general 

characteristic behaviors of a class of materials; (2) determining constitutive parameters for an 

individual subject. A novel neural network structure was proposed which has two sets of 

parameters: (1) a class parameter set for characterizing the general elastic properties; and (2) a 

subject parameter set (three parameters) for describing individual material response. The trained 

NNMat model may be directly adopted for a different subject without re-training the class 

parameters, and only the subject parameters are considered as constitutive parameters. Skip 

connections are utilized in the neural network to facilitate hierarchical learning. A convexity 

constraint was imposed to the NNMat model to ensure that the constitutive model is physically 

relevant. The NNMat model was trained, cross-validated and tested using biaxial testing data of 63 

ascending thoracic aortic aneurysm tissue samples, which was compared to expert-constructed 

models (Holzapfel-Gasser-Ogden, Gasser–Ogden–Holzapfel, and four-fiber families) using the 

same fitting and testing procedure. Our results demonstrated that the NNMat model has a 

significantly better performance in both fitting (R2 value of 0.9632 vs 0.9019, p=0.0053) and 

testing (R2 value of 0.9471 vs 0.8556, p=0.0203) than the Holzapfel–Gasser–Ogden model. The 

proposed NNMat model provides a convenient and general methodology for constitutive 

modeling.
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1. Introduction

Constitutive modeling is a cornerstone for stress analysis of mechanical behaviors of 

biological soft tissues [1–3]. Among the three key components required to solve a 

continuum biomechanics problem, i.e., the geometry (the domain of interest), the 

constitutive relations (how the material responds to applied loads under conditions of 

interest), and the applied loads (or associated boundary conditions), the identification of a 

robust constitutive model is probably the most challenging one to obtain and the key to 

success in this approach [4].

Currently, the approach to identify a robust constitutive model follows the DEICE procedure 

[4]: (1) Delineation of general characteristic behaviors, (2) Establishment of an appropriate 

theoretical framework, (3) Identification of specific functional forms of the constitutive 

relation, (4) Calculation of the values of the material parameters, and (5) Evaluation of the 

predictive capability of the final constitutive relation. In this approach, a domain expert, (i.e., 

a biomechanicist with years of advanced training), plays a central role in the first 3 steps. A 

classic example is how Dr. Y. C. Fung discovered the famous Green-strain based, 

exponential form of the strain–energy function for soft tissues, iconized now as the Fung-

elastic model [5,6]. Briefly, Fung showed that preconditioned soft tissue can be considered 

pseudo-elastic [5,6], and the slope of load–deflection curve is proportional to the load in 

uniaxial elongation tests of rabbit mesentery [7]. Consequently, an exponential function was 

used to account for the nonlinearity of the stress–strain curve for soft tissues. Indeed, the 

Green-strain based orthotropic form of the strain–energy function constructed by Fung 

provides excellent fitting capability with experimental data. To study biaxial mechanical 

properties of myocardial tissues, Humphrey et al. [8] performed constant invariant biaxial 

experiments, in which each of the strain invariant was independently varied, to infer specific 

functional forms of strain invariant-based constitutive equations. Based on the experimental 

observations, a polynomial form of the strain–energy function was devised [8]. To formulate 

a microstructurally-motivated constitutive model, Holzapfel et al. [9] modeled the arterial 

tissue as bi-layer fiber-reinforced composite, in which the contributions of a ground matrix 

and collagen fibers can be modeled separately in a strain–energy function.

Constitutive models [6,9–18] constructed by biomechanics experts have been widely 

adopted to model mechanical behaviors of soft tissues. By following the 3rd and 4th steps of 

the DEICE procedure, the specific formulations of these models usually contain several 

constitutive parameters that can be adjusted to describe constitutive behaviors of an 

individual subject (e.g. a tissue sample); therefore, the expert-constructed models can be 

used to describe constitutive behavior of a new subject (within the same class of materials) 

without deriving new constitutive equations. In addition, these expert-constructed 

constitutive models demonstrate excellent in-sample descriptive/fitting capability (e.g., R2 

value is high when fitting to mechanical testing data). However, their out-of-sample 
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predictive capability may be limited when new data (i.e., data that are not used in the fitting) 

is employed to assess their performance [19].

Recently, machine learning (ML) techniques, especially deep neural networks have led to 

revolutionary breakthrough in many applications [20–28], including recent works [29–34] in 

the field of biomechanics. Since ML techniques are capable of automatically discovering 

and capturing complex multi-dimensional input–output dependencies without the need of 

manually deriving specific functional forms, we hypothesize that a generic ML-based 

constitutive model can be developed and can have a similar, if not better, performance 

compared to the expert-constructed constitutive models.

Based on the universal function approximation theorems, a neural network with adequate 

capacities can approximate any continuous function with a small error [35–38]. Traditional 

feedforward fully-connected neural networks (FFNN) have been used to model the strain 

(input) and stress (output) relations [39–41]. However, such FFNN-based model uses all of 

its parameters (a.k.a. weights and biases) to construct the constitutive relation for an 

individual subject, which does not strictly follow the 3rd and 4th steps in the DEICE 

procedure; therefore, it often contains hundreds to thousands of constitutive parameters. 

Compared to an expert-constructed model, a FFNN-based constitutive model has three 

major disadvantages: (1) a large number of constitutive parameters with no physical 

meanings, in contrast to only a few constitutive parameters in an expert-constructed model. 

(2) An expert-constructed model can not only delineate and capture the general mechanical 

behaviors of a class of materials, but also can accurately model an individual subject (e.g. 

individual material responses) by fine tuning the constitutive parameters. A FFNN-based 

model, however, cannot capture general characteristic behaviors of a class of materials, i.e., 

it cannot utilize data from multiple subjects (e.g. tissue samples from many patients) for 

better modeling of an individual subject (e.g. a tissue sample from a single patient). The 

model parameters of FFNN-based models for different subjects are completely independent 

to each other. (3) a FFNN-based model cannot guarantee its convexity, which is important 

for ensuring the model is physically meaningful with unambiguous mechanical behaviors 

[9].

In this study, we developed a novel neural network-based material model (NNMat) which 

employs a physics constraint and a hierarchical learning strategy (Fig. 1): (1) establishing 

constitutive laws to describe general characteristic behaviors of a class of materials; (2) 

determining constitutive parameters for an individual subject. These two steps are equivalent 

to 3rd and 4th steps of the DEICE procedure. The neural network structure consists of two 

parameter sets corresponding to the two steps: (1) a “class” parameter set for characterizing 

the general elastic properties of the class of materials; and (2) a “subject” parameter set with 

three parameters for modeling individual material response. Skip connections are utilized in 

the neural network structure to facilitate hierarchical learning. Hence, the class parameters 

can function as the expert-constructed constitutive equations, and the NNMat model has 

only three constitutive parameters. The trained NNMat model may be directly adopted for a 

different subject without re-training the class parameters. The predictive capability of the 

proposed NNMat model is compared with the expert-constructed constitutive models 

(Holzapfel–Gasser–Ogden [9], Gasser–Ogden–Holzapfel [11], and four-fiber families [18]).
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2. Constitutive modeling of soft biological tissues

Soft biological tissues comprise bundles of collagen fibers embedded in a ground matrix and 

can be regarded as fiber-reinforced composites. Constitutive modeling of the hyperelastic 

tissues is often achieved by specifying the strain energy density W as a function of 

deformation gradient W(F), where F represents the deformation gradient tensor. 

Microstructurally-motivated constitutive models have become increasingly utilized for soft 

tissues, in which the contributions of the matrix and collagen fibers can be modeled 

separately. In such models, the strain energy density function W is usually formulated based 

on strain invariants of the right Cauchy–Green tensor, C = FT F. In this study, we consider a 

subclass of anisotropic responses, in which the strain energy density depends on four strain 

invariants: I1, I2, I4 and I6. The first two strain invariants I1, I2 are defined as

I1 = tr(C), I2 = 1
2 I1

2 − tr C2
(1)

For a fiber-reinforced composite material with two families of fibers, I4 and I6 are two 

additional pseudo-invariants that describes deformations in the preferred fiber directions

I4 = a01 ⋅ Ca01 , I6 = a02 ⋅ Ca02 (2)

where unit vectors a01 and a02 characterize two fiber directions in the reference 

configuration. Typically, these two fiber directions are assumed to be symmetric about an 

axis. a01 = (cos θ, sin θ, 0) and a02 = (cos θ, − sinθ, 0), where θ is the angle between the 

fiber direction and the axis of symmetry. In this study, the circumferential axis of the aorta 

was used as reference. Thus, I4 and I6 are equal to squares of the stretches in the fiber 

directions.

The stress–strain relation can be derived by differentiating the strain energy density W. For 

incompressible materials, the second Piola–Kirchhoff stress can be derived as [42]:

S = − pC−1 + 2W 1I + 2W 2 I1I − C + 2W 4a01 ⊗ a01 + 2W 6a02 ⊗ a02 (3)

where I is the identity tensor, W k = ∂W
∂Ik

, k = 1, 2, 4, 6 represent the derivatives of strain 

energy with respect to the strain invariants. p is the Lagrangian multiplier, which can be 

determined from boundary conditions. To characterize constitutive behavior, the relationship 

between strain invariants I1, I2, I4, I6 and W1, W2, W4, W6 needs to be established. Four 

nonlinear functions need to be constructed:

W k = fk I1, I2, I4, I6 , k = 1, 2, 4, 6 (4)

2.1. Expert-constructed constitutive equations

Many expert-constructed models are available with specific formulations of Wk [9,11,13–

17]. For comparison with our ML-based constitutive model, the Holzapfel–Gasser–

Ogden(HGO) model [9] with two families of fibers was selected.
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In the work by Holzapfel et al. [9], the total strain energy density functionW can be 

additively split into isotropic Wiso and anisotropic Waniso parts, according to

W C, a01, a02 = W iso(C) + Waniso C, a01, a02 (5)

The isotropic matrix material is characterized by strain energy function of the neo-Hookean 

type

Wiso(C) = C10 I1 − 3 (6)

where C10 is a material parameter to describe the matrix response. To account for the strong 

stiffening effect of the collagen fiber recruitment, an exponential function is employed. The 

anisotropic contribution is given by

Waniso C, a01, a02 = k1
2k2

∑
k = 4, 6

exp k2 Ik − 1 2 − 1 (7)

where k1 is a positive material parameter that has the same unit of stress, while k2 is a 

unitless material parameter. Hence, in the Holzapfel–Gasser–Ogden model [9], the 

relationship between strain invariants I1, I2, I4, I6 and strain energy derivatives W1, W2, W4, 

W6 can be obtained as:

W 1 = C10
W 2 = 0
W 4 = k1 I4 − 1 exp k2 I4 − 1 2

W 6 = k1 I6 − 1 exp k2 I6 − 1 2

(8)

The four constitutive parameters {C10, k1 ,k2, θ} can be determined through curve fitting to 

describe material properties of an individual subject. Stress–strain relation can be obtained 

using Eq. (3).

The Holzapfel–Gasser–Ogden model [9] has been extended to other forms. Using the 

generalized structural tensor (GST), Gasser et al. [11] constructed the following anisotropic 

contribution of the strain energy density function

Waniso C, a01, a02 = k1
2k2

∑
k = 4, 6

exp k2 κI1 + (1 − 3κ)Ik − 1 2 − 1 (9)

where κ is a parameter describing dispersion of the fiber orientation. This model is known as 

the Gasser–Ogden–Holzapfel (GOH) model, which has five constitutive parameters {C10, 
k1, k2, κ, θ}. Hu et al. [18] proposed a four-fiber family model, which makes use of two 

additional invariants Iθ = aθ · (Caθ) and Iz = az · (Caz), along the circumferential (aθ = (1, 0, 

0)) and longitudinal (az = (0, 1, 0)) directions, respectively. The anisotropic part of the strain 

energy density function is
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Waniso C, a01, a02 = k1
4k2

∑
k = 4, 6

exp k2 Ik − 1 2 − 1

+ k3
4k4

∑
l = θ, z

exp k4 Il − 1 2 − 1
(10)

Hence, the four-fiber model has six constitutive parameters {C10, k1, k2, k3, k4, θ}. In this 

study, the fitting and predictive capabilities of the Gasser–Ogden–Holzapfel model and the 

four-fiber family model are also demonstrated.

2.2. ML-based constitutive model

In this study, we developed a generic neural network-based material (NNMat) model (Fig. 2) 

with a novel neural network structure and a novel hierarchical learning strategy. The goal of 

the NNMat model is to establish the nonlinear mapping between I1, I2, I4, I6 and W1, W2, 
W4, W6 as described in Eq. (4) (W2 may be non-zero). A physical constraint is added to the 

training process to ensure that convexity of the strain energy density is achieved by the 

NNMat model. Following the 3rd and 4th steps of the DEICE procedure, the NNMat model 

employs the hierarchical learning strategy: (1) constructing constitutive laws to describe 

general characteristic behaviors of a class of materials; (2) determining constitutive 

parameters for an individual subject. Therefore, the NNMat model has two sets of 

parameters: (1) a “class” parameter set for characterizing hyperelastic properties of the class 

of materials; and (2) a “subject” parameter set of three parameters for fitting mechanical 

response of an individual subject. NNMat models of different subjects will share the same 

class parameter set, but with different sets of subject parameters. In other words, each 

individual subject has an individual set of subject parameters and shares the same class 

parameter set with other subjects, assuming these subjects are from the same class of 

material.

Skip connections are increasingly utilized in deep learning research, e.g., additive skip 

connections in ResNet [43] and concatenative skip connections in DenseNet [44], to skip 

one or more layers in the neural network and connects the output of a previous layer to the 

next layers as the input. It can alleviate the vanishing-gradient problem by strengthening 

feature propagation and encouraging feature reuse [44]. In this study, a novel neural network 

structure with skip connections are proposed for the NNMat model to facilitate the 

hierarchical learning strategy.

The structure of the NNMat model is shown in Fig. 2. The class parameter set is processed 

by a fully-connected neural network, and two subject parameters are connected to each layer 

via concatenative skip connections, the subject parameter θ is incorporated in the unit 

directional vectors in Eq. (2). Therefore, the two subject parameters can have contributions 

to the output of each neuron in the hidden and output layers, which parametrizes the 

nonlinear mapping between I1, I2, I4, I6 and W1, W2, W4, W6. Comparing to only one 

subject parameter for one layer, skip connections may introduce more interactions between 

the subject parameters and the hidden/output layers. Specifically, the output of the ith neuron 

of the jth layer is a weighted sum of the input vector z j, with weight wi
j and bias bi

j. In 
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addition, two subject parameters m = [m1, m2]T are also connected (i.e. input) to each 

neuron with weight pi
j utilizing concatenative skip connections,

ui
j = wi

jT
zj + pi

jT
m + bi

j (11)

where the superscript j represents the layer index, and subscript i represents the neuron 

index. z j represents the input to the neuron z1
j, z2

j, …, znj
j T

, and n j denotes the number of 

neurons in the jth layer. Wi
j, bi

j, pi
j, i, j = 1, 2, …  is the class parameter set, which is 

contained in two hidden layers and the output layer, shown in blue color in Fig. 2. The linear 

combination ui
j is nonlinearly transformed into the output zi

j + 1 (the input to layer j + 1) 

using the softplus [45] activation function, given by

zi
j + 1 = log 1 + exp ui

j (12)

This function is a smooth version of the rectified linear unit (ReLU) [46]. The number of 

softplus units in the three layers are 128, 128 and 4, respectively. Consequently, in total, 

there are 18,188 class parameters Wi
j, bi

j, pi
j, i, j = 1, 2, …  in the NNMat model. The class 

parameters can function as the expert-constructed constitutive functional forms. Only the 

subject parameters {m1, m2, θ} are considered as constitutive parameters.

After Wk are determined from the neural network, the second Piola–Kirchhoff stress can be 

computed using Eq. (3). The discrepancy between the experimental and predicted second 

Piola–Kirchhoff stress was measured by the mean squared error (MSE) loss function,

LS = ∑
m = 1

3 1
N ∑

n = 1

N
Sm

(n) − Sm
(n) 2

(13)

where n is the data point index, N is the number of data points in the training dataset, Sm
(n)

and Sm
(n) denote the kth predicted and experimental second Piola–Kirchhoff stress, 

respectively. m is the in-plane component index in the Voigt notation.

A physically-relevant strain energy field needs to be convex: the strain energy density should 

be at minimum (zero) when there is no deformation. In addition, since Newton’s iterative 

method is often employed for solving nonlinear equations in commercial finite element (FE) 

packages, convexity of the strain energy density ensures that the material stiffness (Hessian) 

matrix will be positive definite and well-conditioned, which could stabilize the numerical 

solution [47]. For in-plane components, the Hessian matrix of the strain energy function can 

be expressed as:
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H =

∂S11
∂E11

∂S11
∂E12

∂S11
∂E22

∂S12
∂E11

∂S12
∂E12

∂S12
∂E22

∂S22
∂E11

∂S22
∂E12

∂S22
∂E22

(14)

For the strain energy function W = ∫ S: dE to be path independent, it is required that H is 

symmetric. In the NNMat model, symmetry of H is enforced by a loss function at each data 

point n:

Lc1
(n) = ∂S11

∂E12
− ∂S12

∂E11
+ ∂S11

∂E22
− ∂S22

∂E11
+ ∂S12

∂E22
− ∂S22

∂E12
(15)

Strict convexity requires positive definiteness of H to be satisfied for all possible strain 

values, which can be shown for expert-constructed model which has closed form solutions 

[48]. In the NNMat model, convexity of the strain energy density function is enforced by an 

additional loss function that ensures the positive semi-definiteness of Hessian matrix for all 

training stress–strain data points: for all x ∈ ℝ3, xT Hx ≥ 0 needs to be satisfied. Using 

Sylvester’s criterion of symmetric matrix, the requirement for positive semi-definiteness is 

that all of the principal minors must be non-negative [49,50]. Therefore, the positive semi-

definiteness can be quantified by the following loss function for each data point n:

Lc2
(n) = ∑

p = 1

3
∑

q = 1

3
p

max −Δp, q, 0 (16)

where Δp,q denote the qth principal minor of order p (p = 1, 2, 3) of the Hessian matrix. 

There are 
3
p  principal minors of order p. Hence, the loss function of the convexity 

constraints can be obtained by adding Lc1
(n) and Lc2

(n) with a weight α:

Lc = 1
N ∑

n = 1

N
Lc1

(n) + αLc2
(n)

(17)

Since the loss functions are based on stress and its derivative, Eq. (3) needs to be included in 

the NNMat model for backpropagation, which is the last layer shown in yellow color in Fig. 

2. The angle θ which defines the two fiber directions is another subject parameter in the 

NNMat. Hence, three subject parameters {m1, m2, θ} in the NNMat model can be adjusted 

for modeling properties of an individual subject. A bound constraint was imposed on the 

subject parameters to ensure that m1, m2 are in the range of −1 to 1 and θ is within −90° to 

90°, which is realized by using the hyperbolic tangent function:
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m1 = tanh m1
m2 = tanh m2
θ = 90°tanh(θ)

(18)

where m1, m2 and θ  represent the normalized parameters.

Therefore, the combined loss function for training the NNMat model is

L m1, m2, θ , Wi
j, bi

j, pi
j, i, j = 1, 2, … = LS + βLc (19)

where β is another weight parameter. In this study, α and β were chosen using grid search in 

cross validation (Section 3.3). We note that the result may be refined using adaptive grid 

search. Other methods may be used for the hyperparameter optimization, e.g., random 

search [51] and Bayesian optimization [52]. Consequently, the combined loss function is a 

function of the (unknown) parameters in the NNMat model. The goal of training is to find 

the optimal values of the parameters in the NNMat model by minimizing the loss function 

on the training dataset.

We used a novel hierarchical training strategy to find the optimal parameters of the NNMat 

model. The class and subject parameters are determined in two sequential steps: (1) training 

and (2) fitting, which is equivalent to the 3rd and 4th steps of the DEICE procedure. During 

the model training, the class parameter set Wi
j, bi

j, pi
j, i, j = 1, 2, …  is first optimized across 

all subjects in the training set, and the subject parameter set {m1, m2, θ} is then only 

optimized for the corresponding subject. During the model fitting, the class parameter set 

Wi
j, bi

j, pi
j, i, j = 1, 2, …  is fixed, i.e., it will no longer be updated through backpropagation; 

only the subject parameters {m1, m2, θ} are updated, which is similar to fitting an expert-

constructed model. Therefore, the trained NNMat model may be directly adopted to a 

different subject without re-training the class parameters. When the trained NNMat model is 

used to characterize constitutive relation of a new subject, only the subject parameters need 

to be updated/fitted.

The NNMat model was implemented in PyTorch 1.0 [53]. Adam algorithm [54] was used 

for optimization to obtain the optimal parameters. Training, fitting and validation/testing of 

the NNMat model was run on a multi-GPU server (10-core CPU with 128 GB RAM, 4 × 

NVIDIA GeForce GTX 1080 Ti GPU).

3. Cross validation and testing

In this study, stress–strain data (63 patients) was split into two sets: a training and validation 

set (57 patients) and a testing set (6 patients). In the training mode, parameters in both the 

class set and subject set are updated. While in the fitting mode, the class parameters are 

fixed and only the three subject parameters are adjusted to optimal for an individual subject. 

For the testing/validation mode, all the parameters are fixed. The network structure and 

hyperparameters, e.g., α and β, were determined through cross validation using the training 
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and validation dataset. The performance of the NNMat model was evaluated using the 

additional testing dataset.

3.1. Planar biaxial testing data

In this study, we demonstrate the capability of the proposed NNMat model by using seven-

protocol planar biaxial testing data [55] of ascending thoracic aortic aneurysm (ATAA) 

tissues from 63 patients/subjects that were published previously by our group [55,56]. 

Briefly, before planar biaxial testing, cryopreserved tissue samples were submerged in a 37 

°C water bath until totally defrosted, following the two-stage slow thawing method to 

remove the cryopreservation agent [57]. The samples were trimmed into square-shaped 

specimens with a side length of 20~25 mm. Each specimen was subjected to biaxial tension 

with the circumferential (11) and longitudinal (22) directions aligned with the primary axes 

of the biaxial test fixture. A stress-controlled biaxial testing protocol was used. N denotes 

the nominal stress, and the ratio N11 : N22 was kept constant. Each tissue specimen was 

preconditioned for at least 40 continuous cycles with N11 : N22 = 1: 1 to minimize 

hysteresis. Seven successive protocols were performed using ratios N11: N22 = 0.3: 1, 0.5: 1, 

0.75: 1, 1: 1, 1: 0.75, 1: 0.5, 1: 0.3. Fig. 3 shows representative biaxial testing results of two 

ATAA samples. Biaxial testing data was chosen since it contains hyperelastic properties 

under various in-plane stress ratios, which can be easily split into fitting and testing/

validation dataset (i.e., data from six stress protocols for fitting the subject parameters and 

data from one protocol for testing/validation).

3.2. Fitting and testing of the expert-constructed models

Traditionally, for fitting an expert-constructed constitutive model to data, an error function is 

built based on difference between the experimental data and model predictions, and then 

constitutive parameters can be determined through nonlinear optimization. Typically, the 

model fitting process uses all experimental data (i.e. all seven stress protocols), and a 

coefficient of determination (R2) as an accuracy metric is reported. However, since this R2 

metric corresponds to the in-sample prediction, the model’s ability for out-of-sample 

prediction cannot be assessed, as shown in Schroeder et al. [19]. It is also reported [58] that 

a Fung-type hyperelastic model [59] with good in-sample fitting could result in erroneous 

out-of-sample stress predictions. As a consequence, the particular form of the constitutive 

model [59] needed to be modified by domain experts [58] to achieve a reasonable out-of-

sample accuracy.

In this study, the predictive capabilities of the expert-constructed constitutive models in 

Section 2.1 were evaluated using cross validation. For each subject (i.e. a tissue sample from 

a patient), leave-one-out cross validation was performed: for each round, data from one 

stress protocol were selected for testing, and data from the remaining six stress protocols 

were used for fitting the model to obtain constitutive parameters. The process is repeated 

seven times for all protocols for each subject/patient in the testing dataset. Therefore, the 

averaged out-of-sample testing R2 is used to evaluate the model performance, which 

provides a baseline to compare with that of the NNMat model. The fitting process was 

implemented in MATLAB using a nonlinear least square solver.
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3.3. Cross validation and testing of the ML-based constitutive model

To assess performance of the NNMat model, cross validation was performed at two levels 

using the training and validation dataset of 57 patients. As can be seen in Fig. 4, the cross 

validation procedure consists of an outer loop and an inner loop which correspond to the 

patient level and stress protocol level, respectively. At the patient level, ten-fold cross 

validation was performed as follows: (1) split the patient data into ten groups, and each 

group contains the data from 5~6 patients; (2) in each round of the ten-fold cross validation, 

select one group for validation and use the remaining nine groups for training. The NNMat 

model parameters in both the class set and subject set are updated during the training stage. 

From the cross validation on a patient level, the performance of the NNMat model can be 

assessed for each individual patient in the training and validation set.

Similar to Section 3.2, leave-one-out cross validation was carried out for each patient on the 

stress protocol level: data from six protocols were used for fitting the subject parameters 

{m1, m2, θ}, and then data from the remaining one protocol were used for assessing the 

model performance. The capability of the NNMat model to predict stress–strain response 

under various in-plane stress ratios can be evaluated. The weights α and β, and the number 

of training epochs were determined during cross validation.

After the hyperparameters were determined, the NNMat model was trained using the 

training and validation set (57 patients). Using the additional testing dataset of 6 patients, 

fitting and testing R2 were evaluated for each patient using the same leave-one-out fashion 

on the stress protocol level (see Fig. 5). The averaged testing accuracy was used to evaluate 

performance of the NNMat model. The computing time for training the NNMat model is 

approximately 16~18 h using the training and validation set (73,614 stress–strain data 

points) with 10,000 epochs on a single GPU. Fitting of subject parameters for one patient 

can be completed in less than one minute. Using the trained and fitted NNMat model, stress 

computation can be achieved instantaneously.

4. Results

4.1. Cross validation

Using the training and validation set of 57 patients, grid search was performed to select the 

weights α and β. To reduce computational cost, the number of training epochs was set to be 

1000 for the grid search. It is convenient to examine the convexity of a strain energy density 

function with respect to two in-plane components of the Green strain E11 and E22 while the 

shear component E12 is set to zero [47]. To examine its convexity, using the trained and 

fitted NNMat model, the second Piola–Kirchhoff stress S11 and S22 can be computed at a 

series of strain E11 and E22 values (−0.1 to 0.5). To evaluate whether the convexity condition 

is satisfied, using Sylvester’s criterion [49,50], we define a convexity criterion Ξ for each 

pair of E11 and E22
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Ξ E11, E22 = max − ∂S11
∂E11

∂S22
∂E22

+ ∂S11
∂E22

∂S22
∂E11

, 0 + max − ∂S11
∂E11

, 0

+ max − ∂S22
∂E22

, 0
(20)

For all strain values, the percentage of convexity criterion equal to zero (Ξ = 0) can be used 

to quantify convexity of the NNMat model. Therefore, we define a convexity index (CI) for 

a trained and fitted NNMat model

CI = 1
M ∑

E11
∑
E22

1c Ξ E11, E22 (21)

where M represents the total number of E11 and E22 values. 1c (Ξ) is an indicator function, 

1c (Ξ) = 1 when Ξ = 0; otherwise, 1c (Ξ) = 0. Hence, for all fitted NNMat models (using 

different patients and protocols in the validation set), the mean CI can be used to measure 

the convexity of the NNMat model. The results of grid search are reported in Table 1. The 

set of weights, α = 0.1 and β = 10−5, was selected because it yields good validation R2 and 

an acceptable mean CI. The small α and β values may be explained by the fact that the 

values of lost terms are orders of magnitude different.

The number of training epochs was then treated as another hyperparameter. The NNMat 

model was cross validated using different number of epochs (1000, 5000, 10000, 15000), the 

results are listed in Table 2. The number of epochs 10000 was chosen because it resulted in 

the best performance.

4.2. Testing

The NNMat model was trained using the training and validation set of 57 patients. The 

expert-constructed models [9,11,18] (Section 2.1) and the trained NNMat model (Section 

2.2) were fitted to biaxial data of the 6 ATAA patients in the testing set. Typical stress–strain 

results of the NNMat and the HGO model for a representative patient are shown in Fig. 6. 

For comparison, coefficients of determination (R2) were computed for model predictions in 

terms of the Cauchy stress. For this particular patient (patient 59), it can be seen that the 

NNMat model is slightly more accurate than the HGO model. To compare the testing results 

of the NNMat and expert-constructed models, the fitting R2 (using six protocols) and testing 

R2 (using one protocol) of the four constitutive models for the testing patients are reported 

Table 3. The mean and standard deviation of fitting R2 and testing R2 are shown in Table 4. 

It is demonstrated that the NNMat model significantly outperforms the HGO model in fitting 

and predicting the ATAA biaxial data (p-value is 0.0053 for fitting and 0.0203 for testing). 

Power of the t-test is 0.9939 and 0.8329 for fitting and testing, respectively, which represents 

the probability that the null hypothesis is correctly rejected. The NNMat model has a slightly 

better performance than the GOH model which employs GST for fiber dispersion, but the 

result is non-significant. The NNMat model has a similar performance comparing to the 

four-fiber model which makes use of two additional invariants.
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To visualize the convexity of strain energy density function, similar to Section 4.1, S11 and 

S22 were computed at a series of E11 and E22 values (−0.1 to 0.5). The strain energy density 

function can be calculated through trapezoidal numerical integration of W = ∫ S:dE. The 

resulting contours of strain energy function are plotted and examined for each patient. Strain 

energy functions of four representative patients are shown in Fig. 7, which are 

approximately convex (strict convexity was not proved). CI values for the fitted NNMat 

models can be evaluated using Eq. (21), the mean CI in the testing set is 100.00%.

4.3. Parametric study

To study the effect of the two subject parameters m = [m1, m2]T on hyperelastic properties of 

the tissue, a trained NNMat model was employed (trained using the training and validation 

set) with θ = 0°. The parameter space was sampled at various values of m1 and m2. with an 

interval of 0.01 in each dimension (from −1 to 1). Note that sampling was performed with 

the normalized parameters (i.e., m1 and m2). We evaluated tangent modulus T =
ΔSii
ΔEii

 under 

low strain (Eii = 0.1) and high strain (Eii = 0.5) in the circumferential (11) and longitudinal 

(22) directions. The results are shown in Fig. 8. It can be observed that the high modulus 

regions are concentrated in the upper right corner of the parameter space, where m1 and m2
are both at maximum. Thus, the larger m1 and m2 are, the higher stiffness the material is, 

which is physically meaningful.

5. Discussion

In this study, a novel generic physics-informed machine learning model was proposed for 

constitutive modeling of soft biological tissues. The proposed NNMat model utilizes a 

hierarchical learning strategy: it can learn from data of multiple subjects to improve its 

prediction for individuals. The structure of the NNMat model consists of a class parameter 

set for characterizing hyperelastic properties of a class of materials and a subject parameter 

set (three parameters) for fitting mechanical response of an individual subject. In the NNMat 

model, the subject parameter set is connected to the neural network via skip connections to 

facilitate hierarchical learning. In addition, a novel hierarchical training strategy was devised 

to determine the optimal parameters, which involve the determination of common 

mechanical properties for a class of material (training) and fitting of mechanical response of 

individual subjects (fitting). The modeling process is analogous to the DEICE procedure for 

expert-constructed models. Consequently, the NNMat model provides a convenient and 

general methodology for constitutive modeling of soft biological tissues. It inherits 

advantages of ML approaches: (1) construction of the NNMat model is an automatic process 

and does not involve any manual derivations, and (2) predictive capability of the NNMat 

model with 3 constitutive parameters is, superior to the 4-parameter HGO model; slightly 

better than the 5-parameter GOH model with consideration of fiber dispersion; and similar 

to the 6-parameter four-fiber model with two additional invariants. It also shares desired 

properties with the expert-constructed models: (1) only a few constitutive (subject) 

parameters {m1, m2, θ} are needed for modeling an individual sample response; (2) a 

physics constraint was enforced for convexity of the strain energy density function, which 

ensures that the constitutive relation is physically-relevant and numerically stable. Since the 
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NNMat model is differentiable, the elasticity tensor can be numerically computed, which 

makes the model suitable to be intergraded into a FE solver; (3) physical meanings of the 

constitutive (subject) parameters can be analyzed. Although training of the NNMat model 

takes approximately 16~18 h in our exemplary application. It should be noted that more time 

and efforts may be required for a domain expert to derive constitutive equations [8].

The current NNMat model was developed for modeling the hyperelastic properties of soft 

tissues and trained by using planar biaxial data of aortic wall tissues, it may also be extended 

to model history- or rate-dependent constitutive relations. For materials that exhibit history 

dependence, stress/strain history and internal state variables may be included as additional 

input variables. For rate-dependent material behavior, stress/strain rate may be incorporated 

similar to the traditional FFNN models [60,61].

A constitutive model with a large number of constitutive parameters often results in over-

parameterization: different combinations of constitutive parameters are nonlinearly coupled 

which can lead to very similar mechanical response. This is undesirable from a data fitting 

perspective, in which the optimization problem is highly nonlinear, multivariate and non-

convex, which can cause optimization difficulty known as the local optima [62]. In this case, 

the mechanical properties cannot be unambiguously represented by a set of constitutive 

parameters. Therefore, a constitutive model with fewer constitutive parameters is always 

preferred [63,64]. In contrast to the traditional FFNN models [39–41,60,61] that have 

hundreds to thousands of parameters, the proposed NNMat model with only three 

constitutive (subject) parameters is analogous to the expert-constructed models, which may 

be more suitable for practical applications. The NNMat model may also facilitate inverse 

estimation of constitutive parameters from in vivo clinical data, such as image-derived aortic 

wall motions [62,65–69], for which only the data within the physiological range can be 

obtained and therefore the identification solution may not be unique if there are too many 

constitutive parameters in the model.

Classically, the bias–variance trade-off, which implies that the model complexity must be 

limited to avoid overfitting, is often considered when training a ML model. In many 

applications, neural network size is significantly larger than data size, and training error 

approaches zero, which would be traditionally considered overfitted. Therefore, standard 

regularization procedures, e.g., weight decay and weight pruning, are often employed when 

training a neural network to prevent overfitting. However, surprisingly, the performance of 

the over-parameterized network on test set can be excellent [70]. This could be explained by 

a “double-descent” risk curve [70], which indicates that once the network complexity 

exceeds a threshold (i.e., being over-parameterized), the test risk starts to decrease (i.e. high 

performance on test set). The choice of whether to regularize the model can also depend on 

the available data size. In this study, the NNMat model has 18,188 class parameters and 3 

subject parameters. In total, our biaxial data consists of 82,200 strain–stress data points, and 

there are 73,614 strain–stress data points in the training and validation dataset. In addition, it 

is shown recently that physics constraint may provide regularization effect in the physics-

informed neural network [71], which may significantly reduce the required training data size 

[72]. Hence, our model may be “underfitting” the data, not complex enough. Nevertheless, 

the NNMat model has good fitting and testing performance on the testing data without using 
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standard regularization methods. Readers may choose to incorporate standard regularization 

procedures when implementing their own model, depending on the type of application and 

available data size.

It is often necessary to modify the general form of the constitutive relation for modeling of a 

new (structurally different) class of material, e.g. from modeling the arterial wall to the 

passive myocardium [10]. Although the exponential functional form of strain energy density 

has been widely adopted in many expert-constructed constitutive models of soft tissues [6,9–

13] to describe the strain stiffening effect due to recruitment of collagen fibers following the 

work by Dr. Y.C. Fung [7], a number of studies [8,73,74] advocated polynomial strain 

energy functions. In general, the choice of constitutive model should be dependent on the 

type of tissues and loading ranges in specific applications, e.g., the exponential function 

without consideration of damage can lead to over-prediction of stress at large strain 

conditions [15,75–77]. Since the proposed NNMat model is generic (i.e., not specifically 

designed for ATAA tissues), we anticipated that its network structure can be applied to other 

tissue behaviors and characteristics, and its predictive capability is largely dependent upon 

the training data provided to it. With abundant training data to be collected (larger 

population, wider loading range) in the future, the predictive capability of the NNMat is 

expected to be improved.

6. Conclusions

In this study, a physics-informed machine learning model was proposed for constitutive 

modeling of soft biological tissues. A neural network material model (NNMat) with novel 

structure and hierarchical learning strategy is proposed. The NNMat model consists of two 

parameter sets: the class parameter set for characterizing the general elastic properties of a 

class of materials and the subject parameter set with three parameters for individual material 

response. Skip connections are utilized in the neural network structure to facilitate 

hierarchical learning. The proposed NNMat model can learn from the data of multiple 

subjects to improve its prediction for individuals. Physics constraints were enforced for 

convexity of the strain energy density function. From the tests we performed, both in-sample 

and out-of-sample accuracy metrics of the NNMat model are significantly higher than the 

expert-constructed model.
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Fig. 1. 
The proposed machine learning-based constitutive model.
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Fig. 2. 
The novel neural network material model (NNMat) with a physics constraint and two 

parameter-set structures: the class parameter set (blue) and the subject parameter set (red), 

dashed arrows indicate skip connections. The subject parameter set consists of three 

constitutive parameters: {m1, m2, θ}.
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Fig. 3. 
Representative stress–stretch results of the seven-protocol planar biaxial testing of two 

ATAA tissues. Each row represents one patient. (a) and (d): seven successive nominal stress 

ratios. (b) and (e): circumferential stress–stretch data. (c) and (f): longitudinal stress–stretch 

data.
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Fig. 4. 
Cross validation of the NNMat model on patient level and stress protocol level. Ten-fold 

cross validation was performed for different patient groups. For each patient, leave-one-out 

cross validation was performed with different stress protocols.
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Fig. 5. 
Evaluating accuracy of the NNMat model using an additional testing dataset of 6 patients.
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Fig. 6. 
Representative Cauchy stress stretch results of the NNMat model and the Holzapfel–Gasser–

Ogden model [9] (Section 2.1) in fitting and testing for patient 59.
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Fig. 7. 
Strain energy density function with respect to E11 and E22 with E12 = 0. Four representative 

patients are plotted. (a): patient 58, (b): patient 59, (c): patient 60 and (d): patient 62.
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Fig. 8. 
Contour plots of tangent moduli in the subject parameter space (θ = 0°, trained using 

patients 7~63). (a) and (b): circumferential; (c) and (d): longitudinal. (a) and (c): tangent 

modulus at high strain region (0.5); (d) and (d): tangent modulus at low strain region (0.1). 

Units of tangent moduli are in MPa.
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Table 1

Fitting and validation results obtained from grid search with different α and β values. The number of training 

epochs was set to be 1000.

(β, α) Mean fitting R2 Mean validation R2 Mean CI

(10−3,1) 0.8280 0.7884 99.43%

(10−3,0.1) 0.8628 0.8310 94.56%

(10−3,0.01) 0.8603 0.8204 95.40%

(10−5,1) 0.8668 0.8397 95.93%

(10−5,0.1) 0.8765 0.8586 96.08%

(10−5,0.01) 0.8789 0.8564 95.07%

(10−7,1) 0.8833 0.8620 95.25%

(10−7,0.1) 0.8865 0.8645 93.84%

(10−7,0.01) 0.8872 0.8641 92.90%
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Table 2

Fitting and validation results obtained using different number of training epochs.

Number of epochs Mean fitting R2 Mean validation R2 Mean CI

1000 0.8765 0.8586 96.08%

5000 0.8998 0.8691 97.40%

10 000 0.9359 0.9139 99.10%

15 000 0.9192 0.8940 96.24%
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Table 3

Fitting and testing R2 predicted by the NNMat model and expert-constructed models using the testing dataset.

NNMat (3 parameters) Holzapfel–Gasser–Ogden (4 parameters)

Patient ID Fitting R2 Testing R2 Patient ID Fitting R2 Testing R2

58 0.9832 0.9747 58 0.9006 0.8737

59 0.9755 0.9749 59 0.9303 0.9197

60 0.9736 0.9511 60 0.9247 0.9171

61 0.9672 0.9658 61 0.8903 0.8094

62 0.8902 0.8272 62 0.8475 0.7297

63 0.9895 0.9891 63 0.9178 0.8838

Gasser–Ogden–Holzapfel (5 parameters) Four-fiber families (6 parameters)

Patient ID Fitting R2 Testing R2 Patient ID Fitting R2 Testing R2

58 0.9683 0.9523 58 0.9710 0.9620

59 0.9638 0.9491 59 0.9821 0.9784

60 0.9395 0.9187 60 0.9779 0.9605

61 0.9422 0.9185 61 0.9767 0.9661

62 0.8780 0.8103 62 0.8881 0.7803

63 0.9748 0.9627 63 0.9764 0.9705
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Table 4

Fitting and testing R2 (mean ± standard deviation) obtained by the NNMat model and the expert-constructed 

models. The p-values are computed using Behrens–Fisher two-sample t-test with the null hypothesis that R2 of 

the expert-constructed model is greater than that of the NNMat model. The results indicate that performance of 

the NNMat model is much better than the HGO model.

Model Fitting R2 p-value Testing R2 p-value

NNMat 0.9632 ± 0.0366 0.9471 ± 0.0601

Holzapfel–Gasser–Ogden 0.9019 ± 0.0306 0.0053 0.8556 ± 0.0735 0.0203

Gasser–Ogden–Holzapfel 0.9445 ± 0.0355 0.1944 0.9186 ± 0.0561 0.2076

Four-fiber families 0.9620 ± 0.0364 0.4782 0.9363 ± 0.0767 0.3956
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