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Abstract

Background

Respiratory Syncytial Virus (RSV) is the main cause of pediatric morbidity and mortality.

The complex evolution of RSV creates a need for worldwide surveillance, which may assist

in the understanding of multiple viral aspects.

Objectives

This study aimed to investigate RSV features under the Brazilian Influenza Surveillance Pro-

gram, evaluating the role of viral load and genetic diversity in disease severity and the influ-

ence of climatic factors in viral seasonality.

Methodology

We have investigated the prevalence of RSV in children up to 3 years of age with severe

acute respiratory infection (SARI) in the state of Espirito Santo (ES), Brazil, from 2016 to

2018. RT-qPCR allowed for viral detection and viral load quantification, to evaluate associa-

tion with clinical features and mapping of local viral seasonality. Gene G sequencing and

phylogenetic reconstruction demonstrated local genetic diversity.

Results

Of 632 evaluated cases, 56% were caused by RSV, with both subtypes A and B co-circulat-

ing throughout the years. A discrete inverse association between average temperature and

viral circulation was observed. No correlation between viral load and disease severity was

observed, but children infected with RSV-A presented a higher clinical severity score (CSS),

stayed longer in the hospital, and required intensive care, and ventilatory support more fre-

quently than those infected by RSV-B. Regarding RSV diversity, some local genetic groups
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were observed within the main genotypes circulation RSV-A ON1 and RSV-B BA, with

strains showing modifications in the G gene amino acid chain.

Conclusion

Local RSV studies using the Brazilian Influenza Surveillance Program are relevant as they

can bring useful information to the global RSV surveillance. Understanding seasonality, viru-

lence, and genetic diversity can aid in the development and suitability of antiviral drugs, vac-

cines, and assist in the administration of prophylactic strategies.

Introduction

Respiratory Syncytial Virus (RSV) is the most common pathogen associated with acute respi-

ratory tract infections (ARTI), as well as the main cause of bronchiolitis and pneumonia in

infants and small children [1]. RSV infection can cause a range of symptoms, varying from

mild upper respiratory tract illness to severe lower respiratory tract infection [2]. The reason

for different outcomes is still unclear, however, it can be related to the underlying conditions,

genetic or acquired host factors, and/or viral characteristics [3, 4]. Some studies have evaluated

the association between viral load and disease severity with significant associations [4, 5].

However, most of these studies did not use standardized methods of viral load measurement,

therefore, this relationship must be more carefully evaluated. Understanding the role of the

viral load in RSV infection may be a tool to establish its relationship with disease progression,

severity, clinical outcome, and drug intervention timeframe [6].

RSV treatment is based only on supportive care and infection prevention is limited to pas-

sive immunoprophylaxis (Palivizumab) and case isolation [2]. No approved RSV vaccine is

available, but promising candidates are currently in development and in advanced clinical trial

phases [7].

RSV strains can be classified into two serogroups: RSV-A and RSV-B [8]. The potential vir-

ulence attributed to a specific group remains controversial: some authors have pointed RSV-A

[9, 10] or RSV-B [11] as the most virulent subtype, while another study has not found signifi-

cant differences between them [12]. Multiple genotypes were described for RSV-A and RSV-B,

based on the gene G second hypervariable region (HVR-2) [13, 14]. In the past two decades,

important genetic changes occurred with the emergence of new RSV-A and RSV-B genotypes:

RSV-A ON1 containing a duplication of 72 nucleotides, and RSV-B BA with a duplication of

60 nucleotides in the HVR-2 gene G [14, 15]. These genotypes replaced previous ones and

have spread globally. Understanding their genetic diversity may reveal the virus’s ability to

cause re-infections throughout life, and help in the development of antiviral drugs, diagnostic

assays, and vaccines [13].

In 2017, the World Health Organization (WHO) launched the Global Respiratory Syncytial

Virus Surveillance Pilot to test the feasibility of using the Global Influenza Surveillance and

Response System (GISRS) for RSV surveillance without adversely affecting influenza surveil-

lance [16]. This pilot study results from the global concern about RSV’s impact on public

health. Brazil, one of four countries in the Americas included in the pilot, has a remarkable

respiratory virus surveillance program, however, more data are required for a better under-

standing of factors such as RSV circulation, evolution, and pathogenicity. In this study, we

used the Brazilian Influenza Surveillance Program to analyze the local prevalence of RSV in

children with SARI and to evaluate which factors are potentially associated with disease
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severity. We also explored the viral seasonality and investigated the influence of climatic fac-

tors on circulation. Finally, we conducted a phylogenetic study to understand how the local

genetic diversity of RSV behaves when compared to what is observed in the rest of the world.

Materials and methods

Population sampling, study period, and location

This study is a retrospective investigation of respiratory samples (nasopharyngeal secretions,

tracheal and bronchoalveolar aspirates, and bronchoalveolar lavages) collected from the Brazil-

ian Influenza Surveillance Program over 34 months. (March 7th, 2016, to December 14th,

2018). A total of 632 samples collected from pediatric patients (from 0 to 36 months old) classi-

fied as SARI, residents of 60 municipalities in the state of Espirito Santo (ES), were enrolled in

this study. ES is located in southeastern Brazil (S1 Fig) and has a territory of 46,074.447 km2,

with a population of approximately 4,1 million inhabitants [17]. These samples were screened

by real-time RT-qPCR for RSV and Influenza A/B at the ES Central Public Health Laboratory

(LACEN/ES), one of 26 Brazilian laboratories that integrate the Brazilian Ministry of Health

Influenza Surveillance Program.

RSV and influenza detection and subtyping

Nucleic acids were extracted from respiratory samples using the PureLink™ Viral RNA/DNA

Mini Kit (Invitrogen1, Thermo Fisher Scientific©), according to the manufacturer’s protocol.

All samples were initially tested for Influenza A and B in a TaqMan1 one-step real-time

RT-PCR (RT-qPCR) assay using specific primers and probes for influenza (CDC, USA),

according to the manufacturer’s recommendations. Additionally, an RT-qPCR assay was per-

formed to identify positive RSV cases using a GoTaq1 Probe 1-Step RT-qPCR Kit (Promega,

Madison, WI, EUA). RSV positive samples (i.e. those with cycle threshold [CT]� 40) were

subtyped using specific primers and probes for RSV-A and RSV-B N genes. In parallel, Ribo-

nuclease P RNA (RNase P) was used as an internal control for each sample and, in all batches,

RNA extraction negative control (MOCK) and a PCR negative control (NTC) were used. All

primers and probes are described in the S1 Table.

Clinical and epidemiological data collection

Clinical and epidemiological data were retrieved mainly from the Brazilian Notifiable Diseases

Information System (SINAN) database and, in some cases,—when the SINAN form was

incomplete—patients’ Medical Records were assessed to fill in missing information. The main

information retrieved from SINAN were: 1) clinical outcome (recovery or death); 2) hospitali-

zation length of stay; 3) need for oxygen administration and type (invasive or not invasive); 4)

intensive care unit (ICU) need and length of stay; 5) clinical characteristics (fever, cough, dys-

pnea, O2 saturation, respiratory distress, comorbidities), and 6) epidemiological and demo-

graphical features (age, town or area of residence).

We have used the Brazilian Ministry of Health’s definition of SARI, which is: hospitalized

patients with fever and cough or sore throat, and presenting dyspnea or O2 saturation <95%,

or respiratory distress [18]. A Clinical Severity Score (CSS) was adapted from Martinello et al.
[19]. A 6-point scale (0 to 5 spectrum) was used, where 0 indicated the mildest condition and 5

indicated the most severe. ICU admission, hospitalization length of stay�5 days, oxygen satu-

ration�95%, and oxygen therapy noninvasive methods accounted for 1 point each. Two

points were assigned for mechanical ventilation.
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Viral load quantification

RSV viral load was determined by RT-qPCR using a protocol adapted from Álvarez-Argüelles

et al. [20], including a synthetic β-globin dsDNA as a template. To quantify the RSV copy num-

ber, expressed in copies per cell (c/c), we designed a dsDNA containing the annealing regions

of RSV primers and probe, as well as the upstream and downstream regions (150 bp). This syn-

thetic DNA was incorporated into a pMA-T plasmid, which was used in the RT-qPCR. Stan-

dard curves for absolute quantification of RSV and β-globin gene were generated by 10-fold

serial dilutions (106−101 gene copies), in triplicate. The RSV primers, probe, and thermal

cycling protocol adopted were the same used in the diagnostic phase. β-globin primers and

probe are listed in the S1 Table. All amplification assays were carried out in an ABI 7500 equip-

ment (Applied Biosystems, Foster City, CA, USA). The viral load status was compared with

different clinical features and epidemiological data.

Climate data collection

Climate data (precipitation, temperature, and humidity) of five cities—representing the differ-

ent geographic regions of the state—were collected daily and kindly provided by the Capixaba

Institute of Research, Technical Assistance, and Rural Extension (INCAPER), Vitoria, Espirito

Santo, Brazil. The weekly average was accessed by assembling daily data from all collection

sites for each epidemiological week (EW). The definition of the RSV epidemic period was

based on a previously described protocol [21], which considers RSV outbreak onset, peak, and

end. Seasonality onset was defined as the first of 2 consecutive weeks when�10% of tested

samples for respiratory pathogens were positive for RSV. Similarly, RSV season end was

defined when the proportion of positive RSV tests fell below 10% for two consecutive weeks.

Peak was determined as the week when the maximum number of RSV positive cases occurred

[21].

Partial amplification and sequencing of glycoprotein gene

RSV-A and RSV-B positive samples were selected for sequencing based on the following crite-

ria: a) cycle threshold (ct) value less than 30, due to the difficulty in sequencing samples with ct

higher than this; b) representativeness by collection date; c) distinct clinical outcomes; and d)

different viral load values.

The partial gene G amplification (about 730 bp) was performed at LVRS/IOC/FIOCRUZ,

the National Influenza Center, by conventional RT-PCR, using the QIAGEN OneStep RT-PCR

Kit (Qiagen) and a pair of primers (S1 Table) for each subtype. The reverse transcription was

performed at 55˚C for 30 minutes and the cDNA was amplified by PCR (40 cycles of 94˚C/30

seconds, 60˚C /1 minute, 72˚C/1 minute and a final extension at 72˚C/10 minutes). Amplifica-

tion was confirmed in a 1% agarose gel. DNA was purified using an ExoSap-IT Kit (Affymetrix,

Inc., USA) and submitted for sequencing reaction using a BigDye™ Terminator v3.1 Cycle

Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and primers at 3.2 μmolar. The

reads were obtained in the ABI 3130XL Genetic Analyzer (Applied Biosystems). Consensus

sequences were built from electropherograms comparison with a reference sequence in the

software Sequencher 5.1 (Gene Codes Corporation, Ann Arbor, MI, USA). The adopted

nomenclature pattern hereon was “hRSV subtype/country/ES-sample number/year.”

RSV genotyping and gene G phylogenetic reconstruction

RSV-A and RSV-B gene G DNA sequences (711 bp and 726 bp, respectively) were used to

reconstruct phylogenetic relationships. Genotyping was based on gene G HVR-2, using
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RSV-A and RSV-B sequences (336 bp and 318 bp, respectively). Reference sequences of previ-

ously described genotypes are shown in the S2 Table. Additionally, to place our sequences in a

global context we performed a BLAST search (Basic Local Alignment Search Tool), available at

https://blast.ncbi.nlm.nih.gov/Blast.cgi. These sequences (S3 Table) were labeled with country

of origin and collection year, and those with more than 99.5% genetic similarity using the

CD-HIT tool (http://weizhongli-lab.org/cd-hit/servers.php) were removed from the final data-

set. Alignments were conducted using Muscle algorithm, via MEGA 6.0 software [22], and,

when necessary, they were adjusted manually. The phylogenetic trees were constructed using

the Maximum Likelihood (ML) method, complete deletion for gap or missing data treatment,

and 1000 replicates of bootstrap probabilities tools, and analyzed using the Mega 6.0 software.

General Time Reversible + Gamma (GTR+G) was the nucleotide substitution model elected

for all analyses on JModelTest software, except for RSV-A, where the Tamura-Nei + Gamma

(TrN+G) substitution model nucleotide recommended for the analysis was used [23]. Mega

6.0 software was employed to calculate the average pairwise distance (p-distance) and to com-

pare the amino acid changes between Brazilian samples and the reference sequences of ON1

(JN257693) and BA (AY333364).

Statistical treatment

Statistical analyses were performed using SPSS 20.0 (SPSS, Inc., Chicago, IL) and R v.3.4.4 soft-

ware. Chi-square, Fisher exact, Mann–Whitney, Kaplan-Meier, and Kruskal Wallis were used

whenever appropriate. The Cox regression model was used to assess whether the viral load had

a statistically significant effect on length of stay in ICU, and Schoenfeld Residuals were used to

check the proportional hazards assumption. To test the association between climate data and

RSV circulation, we performed the Spearman correlation test. A p-value of less than 0.05 was

considered statistically significant.

Ethics statement

This project was approved by the Human Research Ethics Committee of the Health Sciences

Center of the Federal University of Espirito Santo (UFES), under the number: 018577/2018;

CAAE: 84633518.1.0000.5060. The need for consent from parents or guardians was waived by

the ethics committee.

Results

RSV clinical and epidemiological data

A total of 632 respiratory samples collected from children under 3 years of age were tested by

RT-qPCR for Influenza A, Influenza B, and RSV. RSV is the most prevalent pathogen found in

these samples (56%; 352/632) (Table 1). From the RSV positive cases, 51% (180/352) were

RSV-A, 42% (147/352) were RSV-B, and co-detections with both subtypes were found in 1.4%

(5/352). Twenty samples could not be subtyped (5.7%). Influenza frequency was 7.4% (47/

632), of which 74% (35/47) were Influenza A H1N1 pdm09, 15% (7/47) were H3N2, and 11%

(5/47) were Influenza B. The median age was 4 months old (1–11.0 interquartile range; IQR).

Of the positive cases, 99.7% (351/352) were classified as SARI and 14 deaths (4%) were

reported.

Table 2 shows patients’ clinical features of RSV+ and subtypes. The most frequent symptom

reported was cough (93%, 318/341), followed by respiratory distress (88%, 269/307), and fever

(86%, 288/336). Seventy-four percent (252/342) of the children needed oxygen therapy and

38% (95/252) of these required mechanical ventilation. The median hospitalization length of
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stay was 8 (6–14 IQR) days. Intensive care was needed for 61% (202/333) of patients and the

median number of days in ICU was 6 (3–10 IQR). The Kaplan-Meier test was used as a sur-

vival analysis technique and revealed that patients’ recovery took, on average, 8 days from the

date of admission to the ICU (S4 Fig and S5 Table).

Table 1. Number of tested samples, RSV positivity, subtype prevalence, and demographic data from each year

and the whole study period.

2016 n (%) 2017 n (%) 2018 n (%) 2016–18 n (%)

General data

Sample n˚ 251/632 (40%) 135/632 (21%) 246/632 (39%) 632/632 (100%)

RSV + 155/251 (62%) 80/135 (59%) 117/246 (48%) 352/632 (56%)

RSV - 96/251 (38%) 55/135 (41%) 129/246 (52%) 280/632 (44%)

Flu + 27/251 (11%) 6/135 (4%) 14/246 (6%) 47/632 (7%)

RSV+ deaths 6/155 (4%) 5/80 (6%) 3/117 (3%) 14/352 (4%)

Subtyped samples 141/155 (91%) 78/80 (98%) 113/117 (97%) 332/352 (94%)

Subtypes

RSV-A 58/141 (41%) 14/78 (18%) 108/113 (96%) 180/352 (51%)

RSV-B 80/141 (57%) 63/78 (81%) 4/113 (4%) 147/352 (42%)

RSV-A and RSV-B 3/141 (2%) 1/78 (1%) 1/113 (1%) 5/352 (1.4%)

Demographic data (RSV+)

Median age (months) 4 (1–12.0) 4 (1–10.5) 3 (1–8.0) 4 (1–11.0)

Gender

Male 72/155 (46%) 49/80 (61%) 61/117 (52%) 182/352 (52%)

https://doi.org/10.1371/journal.pone.0251361.t001

Table 2. Summary of clinical and epidemiological data by RSV+ and each subtype.

RSV+ n (%) RSV-A n (%) RSV-B n (%) p-value
Demographic profile

Sample number 352 180 147

Age

Median age: months (IQR1) 4 (1–11) 4 (1–10.0) 4 (1–12.5) 0.78

Gender

Male (%) 182/352 (52%) 92/180 (51%) 78/147 (53%) 0.725

Clinical profile

Fever 288/336 (86%) 147/174 (84%) 124/139 (89%) 0.223

Cough 318/341 (93%) 162/176 (92%) 134/142 (94%) 0.418

Dyspnea 251/331 (76%) 135/172 (78%) 97/136 (71%) 0.148

O2 saturation�95% 169/277 (61%) 101/150 (67%) 56/109 (51%) 0.009

Respiratory distress 269/307 (88%) 154/167 (92%) 96/120 (80%) 0.002

O2 Therapy 252/342 (74%) 138/177 (78%) 98/143 (68%) 0.092

Invasive 95/252 (38%) 56/138 (41%) 33/98 (34%)

Noninvasive 157/252 (62%) 82/138 (59%) 65/98 (66%)

Intensive Care 202/333 (61%) 113/168 (67%) 78/142 (55%) 0.03

Median hospitalization days 8 (6–14) 9 (6–15) 8 (5–14.0) 0.15

Median days in Intensive Care 6 (3–10) 7 (4–11.0) 6 (3–9) 0.13

Deaths RSV+ 14/352 (4%) 3/180 (2%) 8/147 (5%) 0.07

1IQR: interquartile range.

Statistically significant values are highlighted in bold. Although the study included 352 patients with RSV, it is possible to observe that the denominators in the clinical

profile differ from this number. This occurred because not all clinical data were recorded for all children.

https://doi.org/10.1371/journal.pone.0251361.t002
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When compared to RSV-B, patients affected by RSV-A showed a higher frequency of respi-

ratory distress (92% vs 80%, p = 0.002), and more often manifested O2 saturation�95% (67%

vs 51%, p = 0.009) and higher requirement for intensive care (67% vs 55%, p = 0.03). Our data

also indicate that patients affected by RSV-A stayed one day longer in the hospital and inten-

sive care units than those affected by RSV-B, however, these data were not statistically signifi-

cant. Lastly, the RSV-A viral load showed more than twice the number of virus copies per cell

(median = 57.41 copies/cell) than RSV-B (median = 27.35 copies/cell). RSV-A CSS median

was 4 and RSV-B’s was 3, and children infected by RSV-A were most frequently classified in

higher severity scores than those infected by RSV-B (Table 3).

Viral load

A total of 156 (44%) samples were submitted to the viral load analysis (Table 4). According to

age, the median viral load was higher in children with 4 to 6 months of age (63.0 cop/cell,

p = 0.007). Regarding patients’ clinical conditions, we found a lower viral load in patients with

fever (26.15 cop/cell) than in those without (111.29 cop/cell; p<0.001), and a higher viral load

(70.24 cop/cell) in patients without the need for oxygen therapy (22.69 cop/cell; p = 0.02).

Deceased patients had a lower viral load (2.80 cop/cell; p = 0.02) in comparison to the others

(37.96 cop/cell). Although lacking statistical support (p = 0.089), a noteworthy observation is

the tendency towards a lower viral load in patients with elevated CSS. The viral load analysis

was performed regardless of the time between symptoms onset and date of collection, which,

in theory, could cause an analytical bias due to the natural decrease in viral load over the

course of the disease. However, a segmented analysis (0–3; 4–7 and>7 days between symptom

onset and sample collection) revealed very similar results. Furthermore, of the 156 samples

used to measure viral titers, only 26 (16%) were collected 7 days after symptoms onset. There-

fore, we opted to maintain full sampling for viral load analysis.

The Cox regression model showed that the viral load did not have a statistically significant

effect on ICU length of stay (p = 0.29; 95% CI: 0.99–1.00). Schoenfeld Residuals (S5 Fig and S6

Table) showed that the proportional hazards assumption was met (p = 0.95).

Viral seasonality and climatic analysis

In 2016 and 2017, the RSV season started in the 12th EW (March, early fall season), peaked

between the 16th–20th EW, and ended in the winter season, between the 31st–32nd EW (Fig 1;

S7 Table). In 2018, the beginning of RSV seasonality was observed earlier, with the first cases

occurring in the 3rd EW, (January, in the middle of summer). The peak took place in the 14th

Table 3. Clinical Severity Score (CSS): Scores varied from 0 to 5.

Clinical Severity Score (CSS)

CSS RSV-A n (%) RSV-B n (%) p-value Viral load median (IQR) n p-value
0 1 (1%) 10 (15%) 0.003 54.06 (6.12–603.61) 8 0.089

1 8 (8%) 8 (12%) 217.41 (96.38–370.56) 9

2 19 (20%) 11 (17%) 41.18 (6.53–112.59) 16

3 14 (15%) 15 (23%) 17.31 (6.33–125.40) 14

4 26 (27%) 9 (14%) 12.05 (4.32–36.63) 9

5 28 (29%) 13 (20%) 11.81 (1.14–54.24) 18

Higher values indicated more severe illness. Need for ICU, O2�95%, hospitalization length of stay >5 days, and requirement of O2 therapy accounted for 1 point each.

The need for mechanical ventilation accounted for 2 points. Patients infected with RSV-A were most commonly classified into the most severe scores.

https://doi.org/10.1371/journal.pone.0251361.t003

PLOS ONE Landscape of Respiratory Syncytial Virus (RSV)

PLOS ONE | https://doi.org/10.1371/journal.pone.0251361 May 18, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0251361.t003
https://doi.org/10.1371/journal.pone.0251361


EW and the end occurred in the 27th EW. Thus, the RSV seasonal period in 2016, 2017, and

2018 lasted 20, 19, and 24 weeks, respectively.

Precipitation rate and relative humidity percentage have not been shown to influence the

distribution of RSV cases by Spearman’s correlation test (p = 0.55 and 0.11, respectively). The

Table 4. Comparison of viral load values between gender, age, outcome, and clinical condition.

Demographic data

Parameter N Median (IQR1) p-value
Gender Male 78 51.40 (8.13–265.31) 0.08

Female 78 24.63 (4.46–88.29)

Age (months) 0–3 86 51.40 (6.12–152.90) 0.007

4–6 22 63.09 (32.12–211.67)

7–12 21 39.29 (2.32–236.91)

>12 26 7.77 (1.72–36.92)

Outcome Recovery 130 37.96 (6.72–122.71) 0.02

Death 7 2.80 (0.04–21.49)

Clinical data

Fever Yes 121 26.15 (4.33–104.46) <0.001

No 27 111.29 (51.80–408.21)

Cough Yes 144 41.53 (4.86–148.15) 0.59

No 7 11.52 (7.98–106.29)

Dyspnea Yes 106 37.96 (3.91–154.88) 0.69

No 40 42.05 (8.58–120.16)

O2 saturation� 95% Yes 71 26.41 (3.95–150.65) 0.40

No 51 50.16 (8.36–196.81)

Respiratory distress Yes 115 39.29 (4.78–150.13) 0.27

No 18 75.69 (12.66–214.26)

Days of hospitalization 1–4 20 79.36 (11.10–245.08) 0.20

5–8 49 39.45 (11.89–176.21)

>8 54 24.42 (4.08–78.04)

Ventilatory support No 48 70.24 (11.41–342.96) 0.02

Yes (total) 22.69

Yes—noninvasive 65 26.41 (6.26–105.11) 0.35

Yes—invasive 40 17.31 (3.95–68.70)

Intensive Care Yes 82 30.01 (4.41–113.44) 0.73

No 67 39.29 (6.90–154.61)

Days of Intensive Care 1–4 20 34.74 (3.60–226.28) 0.547

5–8 16 16.27 (2.09–106.22)

>8 24 36.24 (9.10–106.65)

Days of symptom until collect 0–3 51 36.63 (5.99–220.48) 0.19

4–6 67 39.98 (7.65–135.24)

7–9 24 19.98 (0.53–77.39)

>9 12 10.45 (3.92–50.98)

Subtype RSV-A 64 57.41 0.03

RSV-B 76 27.35

1 IQR: interquartile range.

Statistically significant p-values are highlighted in bold.

https://doi.org/10.1371/journal.pone.0251361.t004
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mean temperature, however, showed a minor and inverse correlation with RSV infections

(-0.16; p = 0.05).

Although RSV-A and RSV-B co-circulated each year, it is noteworthy that the subtype dis-

tribution changed over the years. In 2016, RSV-B predominated (n = 80; 58%) over RSV-A

(n = 58; 42%). In 2017 this difference increased, and RSV-B was responsible for 82% of the

cases (n = 63). Finally, in 2018, there was a shift in this pattern and almost all RSV cases were

caused by RSV-A (n = 108; 96%).

Phylogeny of RSV and genetic analysis

The phylogenetic reconstructions revealed that 36 RSV-A were classified as GA2.ON1 geno-

type and 21 RSV-B were classified as BA genotypes, based on the 2nd HVR (S2 and S3 Figs).

Some local genetic groups of both genotypes and a slightly higher diversity among the RSV-A

strains (p-distance = 1.8%) were observed in comparison to RSV-B (p-distance = 1.6%) (Figs 2

and 3).

RSV-A ES Brazilian strains, from 2016 to 2018, are clustered with strains that circulated in

North America, South America, Asia, Africa, and Oceania, from 2011 to 2018. A Brazilian

main local cluster BR.1 (L142S, L274P, Y304H, and T320A) circulated in ES state, from 2016

to 2018. Additionally, two new subclusters, BR.1.1 (E106G,) and BR.1.2 (N103T, S144I,

E224V, S270P, and/or P298L) were detected co-circulating in the ES state in 2018. Amino

acid substitutions, compared with the RSV-A GA2.ON1 reference strain (JN257693), can be

observed in the S8 Table. The average CSS inside the BR.1 cluster was 2.84, while the average

in the rest of the BR strains was 3.78, showing that the BR.1 cluster may be more associated

with lower severity disease than the other strains. The viral load seemed to be higher on BR.1

strains when compared to other Brazilian strains.

RSV-B gene G phylogenetic reconstruction (Fig 3) revealed that Brazilian strains from 2016

to 2018 belonged to a cluster containing global strains circulating since 1999. ES Brazilian

strains were distributed through this main cluster and presented punctual amino acid

Fig 1. Circulation of RSV-A and RSV-B between 2016 and 2018 in Espirito Santo State. The X-axis shows the epidemiological weeks (EW) for each

year. The primary Y-axis displays the number of positive cases for each of the subtypes and the secondary Y-axis shows the values of the climatic

variables. The gray zone indicates the total number of samples tested in each EW.

https://doi.org/10.1371/journal.pone.0251361.g001
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Fig 2. RSV-A phylogenetic tree. The tree was built using the maximum likelihood method on MEGA 6.0 software

from a MUSCLE alignment of G gene sequences of 711 bp. Previously published sequences from known genotypes

were retrieved from the NCBI database. Numbers from 1 to 5 within the squares indicate the patients’ CSS. The cross

indicates patients who died due to RSV infection. The stars indicate the viral load, categorized by color (in copies per

cell).

https://doi.org/10.1371/journal.pone.0251361.g002
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Fig 3. RSV-B phylogenetic tree. The tree was built using the maximum likelihood method on MEGA 6.0 software

from a MUSCLE alignment of G gene sequences of 726 bp. Previously published sequences from known genotypes

were retrieved from the NCBI database. Numbers from 1 to 5 within the squares indicate the patients’ CSS. The cross

indicates patients who died due to RSV infection. The stars indicate the viral load, categorized by color (in copies per

cell).

https://doi.org/10.1371/journal.pone.0251361.g003
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substitutions, some of them with a potential loss of O-glycosylation, such as T229N and/or

S287F (strains from 2017). Inside the main cluster, some local subclusters were observed, such

as the BR.1 (S101G loss glycosylation site, P217L, and T248A loss glycosylation site) and BR.2

(G136S and S269P), in samples from 2016, revealing a large diversity among RSV-B viruses

circulating in the ES State during that year. Additionally, two strains from 2017 presented an

insertion of tree nucleotides at codon 228. All these amino acid substitutions, compared with

the RSV-B BA reference strain (AY333364), are described in the S9 Table. CSS and viral load

data were unavailable for most of the RSV-B sequences, therefore, we could not compare those

data with the genetic strains observed.

Discussion

In this paper, we investigated RSV features using the Brazilian Influenza Surveillance Program

and addressed some RSV issues listed in the WHO global RSV surveillance pilot objectives

[16], such as the RSV burden in hospitalized children and mapping of local seasonality. Addi-

tionally, we described the molecular characteristics of gene G which revealed RSV-A and

RSV-B local clusters co-circulating in Brazil.

RSV is prevalent in Brazilian children with SARI

RSV prevalence in different Brazilian regions is highly diverse, ranging from 7.7% to 77.6%

[24–26]. In the ES state, from 2016 to 2018, the prevalence in hospitalized children up to 3

years of age was 56%. These differences are probably related to the use of diverse methods of

RSV detection (e.g. RT-PCR or immunofluorescence) or patient inclusion criteria (e.g. age,

symptoms, period of the year). During the 1997–98 season, Checon et al. found a prevalence

of 28% in the capital of ES State [26]. This lower prevalence in comparison to our study can

be attributed to the less sensitive method used by the authors (immunofluorescence) and a

broader target population age (children� 5 years old).

In our study, the median age of four months in hospitalized children with RSV confirms

the higher prevalence in children younger than one year of age [2], which justifies why RSV

vaccine candidates are aiming to protect, primarily, infants and young children [7]. Although

the median hospitalization length of stay found here is similar to some other studies [27, 28],

notably, most of them report a shorter duration [1, 4, 25]. One hypothesis that could explain

this finding is the fact that all children included in our study were diagnosed with SARI, which

makes our study group a cohort with severe RSV infection. Another hypothesis is linked to the

possibility that most of the children in the study had an infection in the lower respiratory tract.

Aerosol transmission increases the chances of inhaling viral particles in the lower airways,

while larger droplets are retained in the upper airways [29]. Naturally, aerosol infections tend

to trigger a more severe course of infection [30].

The subtype but not the viral load appears to be associated with disease

severity

RSV infection can cause a range of clinical outcomes [2], but factors attributed to a worse out-

come remain unclear [3, 4]. Several studies have shown that the male gender is a risk factor for

RSV infection [2], while others have not observed such a connection [31]. Although not statis-

tically significant, we observed that male children were slightly more affected than female,

which could support the hypothesis that male children are at higher risk. Nevertheless, the CSS

median was three for both genders.

Although some authors have found no correlation between subtypes and disease severity

[32, 33], many others indicate RSV-A as the most virulent subtype [9, 10, 12, 34, 35]. We have
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found that children infected with RSV-A revealed a higher clinical score index (CSS

median = 4)–therefore, a more severe disease—when compared to those infected with RSV-B

(CSS median = 3). Children infected by RSV-A required O2 therapy more often than those

infected by RSV-B and, of all children who needed O2 therapy, those affected by subgroup A

needed mechanical ventilation more frequently. Although these data did not have statistical

support, other studies found the same connection [9, 10]. Our data also show that children

infected by subgroup A required ICU more often (p = 0.03) and remained hospitalized and in

ICU a day longer, on average, when compared to those infected by RSV-B, which is in agree-

ment with previous studies [35, 36]. Notwithstanding, we highlight that only one genotype was

found for each subtype (ON1 and BA), thus, those differences in severity could be a conse-

quence of differences in the genotype’s virulence, rather than in the subtype’s.

The correlation between disease severity and viral load remains controversial. While several

authors have shown that the severity of the infection follows the viral load [4, 5, 37, 38], others

have not [7, 12, 33]. Some studies found an association between viral load and symptom fre-

quency, but not severity itself [39, 40]. Viral load measurement methods are widely variable

between studies: some authors use plaque assay [4] or semi-quantitative analyses, such as ct [5,

7, 32], others use quantitative methods [38–41]. Moreover, most studies that use quantitative

methods do not normalize the measurements. Respiratory samples are naturally heteroge-

neous and the collection technique can influence viral genome concentration [38].

In this study, we used a standardized method for measuring the viral load. Interestingly,

we found a lower viral load in patients with fever (p = 0.00), with the need for ventilatory

support (p = 0.02), and in those who died (p = 0.02). Our data conflict with previous studies

that demonstrated a positive association between viral load and the presence of cough, fever

[39], and the need for intubation [37]. However, two recent studies reported a higher viral

load in less severe RSV disease [42, 43]. Piedra et al. observed a positive correlation between

viral load and mucosal concentration of proinflammatory cytokines that may suggest that

high RSV loads can protect from disease progression due to the promotion of an early robust

innate immune response [42, 43]. Conflicting results between studies could be attributed to

the different methods used to calculate viral load, various study designs, and indicators of

disease severity.

The seasonal period of RSV may fluctuate and its circulation is slightly

associated with temperature

In temperate countries, RSV peak activity occurs in the winter and several studies have shown

the connection between cold temperatures and viral circulation [44]. In contrast, in tropical

countries, there is a wide range of variability in the timing and duration of epidemics and the

correlation between climatic factors and viral activity is controversial [21, 45]. Although in the

Southern Hemisphere the RSV wave usually starts between March and June and decreases

between August and October [21], in Brazil, a continental country with five geographic

regions, a wide variation in the seasonality is seen, such as those observed in the northeastern

[46] and southern [47] regions.

Here, we showed that RSV’s activity was very similar between the 2016 and 2017 seasons,

with the circulation onset occurring in March (EW 12) and ending in July/August (EW 31–

32), during the winter season. These data are in accord with the Brazilian Society of Pediatrics,

which recommends the administration of Palivizumab from February to July [48]. Nonethe-

less, in 2018, we observed an early occurrence of the seasonality onset by nine weeks, with the

beginning of circulation occurring in January (summer season) and the end taking place in the

Fall instead of Winter.
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In the southeastern region, it was observed that the RSV peak usually happens in early April

[49]. Our data shows that, in 2016, the RSV peak occurred in May, suggesting subtle differ-

ences even inside the same geographical region. In 2018, there was an extension of RSV’s

seasonality duration by 4.5 weeks when compared to the average in 2016–2017. Those observa-

tions are especially worrisome since major variations could make a preventive measure harder

to implement. Understanding local epidemics is important in managing the time of prophy-

laxis, supporting vaccine development, and following morbidity and mortality caused by RSV

infection [44]. Thus, establishing RSV surveillance in real-time may allow for the identification

of patterns and possible variations in prophylaxis time. RSV seasonality usually lasts five to six

months [21]. In our study, the longest seasonal period occurred in 2018 (6 months), followed

by 2016 (5 months) and 2017 (4.75 months). Interestingly, the prevalence of RSV-A was high

in 2018 (96%), medium in 2016 (41%), and low in 2017 (18%). These data reinforce the theory

that RSV-A may lengthen the seasonality [50].

Climatic factors, such as humidity, rainfall, and temperature have been assumed to impact

RSV seasonality [44, 51]. However, this association remains controversial. An inverted correla-

tion between RSV circulation, temperature, and humidity was observed in a Brazilian study,

carried out in the state of São Paulo [52]. In this study, a minor correlation was found between

temperature decrease and case number increase. However, no correlation was found concern-

ing humidity or precipitation.

ON1 and BA were the only genotypes detected

All RSV-A isolates were ON1 genotype and all RSV-B were BA, which confirms the fast-global

dissemination of RSV with nucleotide duplication. These findings are consistent with recently

published reports performed in other countries, such as the Philippines [53], Kenya [54], Italy

[55], USA, and Puerto Rico [56].

Overall p-distance during the study period in RSV-A was 1.8%. A recent study observed an

overall p-distance of 1.4% within ON1 [13]. A noteworthy observation is the fact that in 2017

we found the lowest prevalence of RSV-A in ES (18%), and yet, still, the highest genetic diver-

sity. Phylogeny showed that 2017 strains were distributed in almost all genetic clusters, which

showed high diversity that year. RSV-A phylogenetic analysis revealed ongoing genetic

changes, with BR.1 grouping the most recent strains, suggesting that BR.1 strains may be

under positive selective pressure. Changes in the circulation of RSV strains have been consid-

ered a mechanism for evading immune response generated by previous strains, which possibly

allows for re-infections to occur [57].

As demonstrated, in 2018 RSV-B was responsible for only 4% of cases. Therefore, the phy-

logenetic analysis did not include any RSV-B samples from that year. Older strains, from 2009

to 2014, are positioned at the base of the BA cluster, however, sample strains collected between

2015 and 2018 did not form genetic groups related to the year of collection. This observation

may suggest an absence of positive pressure.

Although we found clusters composed exclusively of ES samples, it is necessary to expand

the sequencing of RSV samples globally to verify if there is, in fact, the formation of local

genetic groups or if the observation is caused by a sample bias.

Previous studies showed that a large part of the genetic variability between RSV strains

comes from changes in the O-glycosylation profile and that this may be associated with an evo-

lutionary mechanism of immune response evasion [58]. Here, we investigated and listed strain

amino acid substitutions and also those shared within and between clusters. However, we did

not carry out an in-depth analysis to understand the role of these mutations, as our objective

was purely observational. Among the mutations found, one of the most interesting was the
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insertion of three nucleotides at codon 228 in RSV-B. Further studies are essential to under-

stand virus evolution and pathogenicity mutation consequences.

Limitations of this study include the fact that the majority of patients had an acute infection,

thus, the prevalence found refers only to SARI, and the absence of a mild infection group pre-

vents further analysis of severity influencing factors. Furthermore, clinical data were taken

from notification forms, which often contain inconsistencies and missing data. Despite those

caveats, we believe the data provide valuable epidemiological, genetic, and clinical information

on RSV.

Conclusion

In this study, we observed a high prevalence of RSV in children under three years of age even

when using the Brazilian Influenza Surveillance Program. This result is important because it

shows that the establishment of global RSV surveillance within the Influenza surveillance sys-

tem allows for the detection of a large number of cases. Our data suggest that RSV-A is, in fact,

more virulent than RSV-B. Notably, no correlation between viral load and disease severity was

observed. The observation of a marked early onset of the seasonal period is worrisome since

this can make it difficult to administer prophylactic measures at the right time, however, it is

necessary to expand the historical series of seasonality in the state of Espirito Santo. The aver-

age temperature was the only climatic factor to show interference with the viral circulation.

Our data show the annual co-circulation of RSV-A and RSV-B, however, with considerable

fluctuations in the prevalence of subtypes. ON1 and BA were the only genotypes found in the

studied period, which corroborates a series of recent studies. The establishment of a global and

standardized real-time RSV surveillance may allow for the collection of data that will help to

understand the complex mechanisms of viral evolution and will facilitate the development of

future vaccines and antiviral drugs.

Supporting information

S1 Fig. Map of the Espirito Santo State (Brazil) and its federal highways. The state is divided

into 78 municipalities, of which 60 were represented by children with SARI and 46 with chil-

dren with confirmed RSV infection. The colors of the municipalities represent the number of

positive RSV cases.

(TIF)

S2 Fig. RSV-A phylogenetic tree based on 336 bp of the HVR-2 of G gene. The tree was

built using the maximum likelihood method on MEGA 6.0 software from a MUSCLE align-

ment, with some manual editions. Reference sequences from each described genotype were

downloaded from the NCBI GenBank and used in the phylogenetic reconstruction. The geno-

types were classified by colors and all ES strains were grouped within the ON1 genotype.

(TIF)

S3 Fig. RSV-A phylogenetic tree based on 318 bp of the HVR-2 of G gene. The tree was

built using the maximum likelihood method on MEGA 6.0 software from a MUSCLE align-

ment, with some manual editions. Reference sequences from each described genotype were

downloaded from the NCBI GenBank and used in the phylogenetic reconstruction. The geno-

types were classified by colors and all ES strains were grouped within the BA genotype.

(TIF)

S4 Fig. Survival curve in relation to ICU length of stay estimated by the Kaplan-Meier test.

Given the small number of deaths, it was necessary to modify the analysis to assess the
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likelihood of cure.

(TIF)

S5 Fig. Graph of Schoenfeld residues: There was no marked trend, indicating that the

premises for the application of the Cox model were met.

(TIF)

S1 Table. Primers, probes, and DNA fragments used in the study. “F”, “R”, and “P”, repre-

sent the sequence of the forward and reverse primers, and the probe, respectively. A synthetic

DNA fragment from RSV was included in a pMA-t vector.

(DOCX)

S2 Table. List of the sequences used to build the phylogeny based on HVR-2 of gene G for

both subtypes RSA-A and RSV-B.

(DOCX)

S3 Table. List of the sequences used to build the phylogeny based on gene G for both sub-

types RSV-A and RSV-B. The collection date of some sequences was unavailable.

(DOCX)

S4 Table. General table that provides all epidemiological, clinical, and climatic data of the

study.

(XLSX)

S5 Table. Cox (proportional hazards) regression: Given that the p-value is >0.05, it can be

inferred that the viral load has no significant effect on ICU length of stay.

(DOCX)

S6 Table. Proportional hazards assumption test: The premises for the application of the

Cox model were met.

(DOCX)

S7 Table. Duration and climatic characteristics of RSV seasonality in the years studied.

(DOCX)

S8 Table. List of amino acid changes in RSV-A. Residues in blue and red show potential

losses and gains of O-glycosylation sites, respectively.

(XLSX)

S9 Table. List of amino acid changes in RSV-B. Residues in blue and red show potential

losses and gains of O-glycosylation sites, respectively.

(XLSX)
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