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Abstract
Pollution by microplastics is of increasing concern due to their ubiquitous presence in most biological and environmental

media, their potential toxicity and their ability to carry other contaminants. Knowledge on microplastics in freshwaters is

still in its infancy. Here we reviewed 150 investigations to identify the common methods and tools for sampling

microplastics, waters and sediments in freshwater ecosystems. Manta trawls are the main sampling tool for microplastic

separation from surface water, whereas shovel, trowel, spade, scoop and spatula are the most frequently used devices in

microplastic studies of sediments. Van Veen grab is common for deep sediment sampling. There is a need to develop

optimal methods for reducing identification time and effort and to detect smaller-sized plastic particles.
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Introduction

Ecosystems and their different organisms have been widely

impacted by anthropogenic activities such as the discharge of

pollutants (Hamidian et al. 2019; Mirzajani et al. 2016, 2015;

Padash Barmchi et al. 2015; Rezaei Kalvani et al. 2019),

including emerging contaminants (Jafari Ozumchelouei et al.

2020) such as microplastics. Endurance, flexibility, light-

weight, being low cost and being waterproof allows for

plastic use in different applications, leading to their accu-

mulation in the environment (Pellini et al. 2018; Razeghi

et al. 2020). Plastic materials are used in a wide variety of

markets and industries, including packaging, building and

construction, electrical, agriculture, consumer and household

appliances such as toothpaste and facial scrubbers, etc. (Wu

et al. 2018). According to data from Plastics Europe, world

production of plastics reached 335 million tons in 2016

(Plastics Europe 2018). It is estimated that by 2050, this may

increase to 33 billion tons (Horton et al. 2017). By then,

12,000 million metric tons (Mt) of plastic waste will have

been accumulated in landfills and natural environments

(Geyer et al. 2017). Recently, a sharp increase is induced in

plastic waste production such as masks, gloves, and plastic

shopping bags by the coronavirus disease (COVID-19) pan-

demic (Gorrasi et al. 2020). Once plastics are discharged into

aquatic environments, they can persist for up to 50 years.

Complete plastic mineralization may take hundreds or thou-

sands of years (Holland et al. 2016).

Microplastics are generally defined as plastic particles

smaller than a specified upper size limit (\ 5 mm). How-

ever, sometimes smaller size limits have also been pro-

posed. Currently, there is no specific lower size cutoff for

this definition (Connors et al. 2017). Since the 1970s when

the first reports of micro-sized particles were published,

marine plastic pollution has been of concern (Carpenter

and Smith 1972; Carpenter et al. 1972; Colton et al. 1974).

Plastic debris in the ocean was recognized by the United

Nations Environment Program (UNEP) as an emerging
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global environmental issue (Kershaw et al. 2011). How-

ever, ‘‘microplastics’’ were first described by Thompson

and colleagues in 2004. They reported the occurrence and

presence of plastics around 50 lm in size on shorelines and

in water column (Thompson et al. 2004). Microplastics are

commonly defined as plastic particles with sizes below

5 mm (Hidalgo-Ruz et al. 2012).

Depending on the way in which microplastics are pro-

duced, they can be classified into two classes as primary or

secondary. Primary microplastics are small plastic particles

released directly into the environment by domestic and

industrial effluents, spills and sewage discharge or indirectly

by runoff. Secondary microplastics are formed as a result of

fragmentation of larger plastic particles already present in

the environment. Fragmentation takes place due to UV

radiation (photo-oxidation), mechanical transformation

(e.g., via waves abrasion) and biological degradation by

microorganisms (de Sá et al. 2018; Thompson et al. 2009).

There are hundreds of commercially available plastic

materials. Polypropylene and low- and high-density poly-

ethylene are the three most common used plastic polymers

in packaging. Polyvinyl chloride, polyurethanes, poly-

ethylene terephthalate, polystyrene and polyester are also

widely used due to their various applications (Plastics

Europe 2018).

In terms of shape, microplastics fall into five main

groups. Fragments are three-dimensional and hard jagged-

edged particles. Pellets have hard rounded shape. Fibers are

fibrous or thin uniform plastic strands, and films are thin,

two-dimensional plastic pieces. Foam is a mass of tiny

bubbles (i.e., styrofoam-type material) (Anderson et al.

2017; Rezania et al. 2018). Using different measuring

instruments, different results may be obtained in terms of

shape, size and type of microplastics. The major sampling

techniques are shown in Fig. 1.

Despite extensive research on microplastics in marine

environments, less effort has been made to monitor

microplastics in freshwaters. Freshwaters include water in ice

sheets, ice caps, glaciers, icebergs, bogs, ponds, lakes, rivers,

streams, marshlands, wetlands and groundwater. Freshwaters

are generally characterized as having low concentrations (less

than 1000 mg L-1) of dissolved salts and other total dis-

solved solids (American Meteorological Society 2012).

Although the ocean floor is considered to be the ultimate fate

of marine microplastics, inland water bodies might also be a

terminal or transient sink for microplastics (Z. F. Wang et al.

2018b). Freshwater bodies can have comparable plastic

concentrations to marine waters.

Microplastics can cause several harmful physical effects

on humans and living organisms through such mechanisms

as entanglement and ingestion. They can cause blockage of

the gastrointestinal tract or inflammatory responses and

consequently a range of adverse effects. Some effects

include lower energy reserves, reduced reproduc-

tion/growth, oxidative damage, metabolism disruption,

cellular lesions, starvation and even death (Ding et al.

2018; Ogonowski et al. 2016). Exposure of microplastics to

a cohort of human adults (hand-face skin, head hair and

saliva) has been reported (Abbasi and Turner 2021).

The trophic transfer of microplastics in the aquatic food

web has been demonstrated by researchers (Farrell and

Nelson 2013; Setälä et al. 2014). Microplastics’ large

surface area to volume ratio provides a high association

potential for environmental contaminants. Microplastics

have an affinity for certain hazardous hydrophobic organic

chemicals, non-essential trace elements and persistent

organic pollutants. Some examples include polychlorinated

biphenyls, dichlorodiphenyltrichloroethane, additives,

plasticizers and heavy metals (Brennecke et al. 2016;

Hartmann et al. 2017; Holland et al. 2016; Koelmans et al.

2016; Naqash et al. 2020).

Wastewater treatment plants receive large amounts of

microplastics among other pollutants. However, efforts of

treatment (Mojoudi et al. 2018, 2019) including biological

methods (Alavian et al. 2018; Hamidian et al. 2016;

Mansouri et al. 2013; Mirzajani et al. 2017) remove most

of these emerging pollutants.

Different microplastics treatment methods include

sorption and filtration, biological removal and ingestion,

and chemical treatments. Sorption of microplastics on

green algae is based on charged microplastics. Membrane

technology regarding durability, influent flux, size and

concentration of the microplastics in water and wastewater

have shown good efficiency. Coagulation and agglomera-

tion processes, using Fe-based and Al-based salts, are also

reported. Electrocoagulation technique and photocatalytic

degradation using TiO2 and ZnO semiconductors are used

as robust and environmentally friendly techniques.

Microplastics ingestion by organisms is also discussed as a

removal strategy. However, sorption and filtration pro-

cesses coupled with membrane bioreactors lead to higher

microplastics removal compared to other methods

(Hamidian et al. 2021; Padervand et al. 2020). Othman and

coworkers reviewed microplastics degradation through

enzymatic processes (Othman et al. 2021). ZnO nanorod

photocatalysts excited by visible light were used to degrade

low density polyethylene film in water (Tofa et al. 2019).

Inland waters and marine environments are facing

similar issues related to microplastics presence. However,

some differences like physical and chemical characteristics

of water cannot be ignored. Here we review techniques for

sampling microplastics in waters and sediments with focus

of the following issues:

a. What is the evolution of the number of scientific

studies on microplastics in freshwater and sediment?
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b. Which freshwater compartments are more commonly

investigated for microplastics?

c. Which sampling matrix, water or sediment, is most

frequently studied?

d. What are the most common sampling methods in water

and sediment studies?

e. What are the advantages and disadvantages of sam-

pling methods?

Data acquisition

Literature was gathered through online search in the ISI

Website of Knowledge, Science Direct and Google Scholar

using keywords and phrases including ‘‘microplastic’’ OR

AND ‘‘freshwater’’, OR AND ‘‘plastic particle’’, OR AND

‘‘plastic fragment’’, OR AND ‘‘pellets’’ OR AND ‘‘river’’

OR AND ‘‘estuary’’ OR AND ‘‘lake’’. The retrieved articles

were then screened by study area, of which studies in water

and sediment of inland water systems were selected

including rivers, estuaries, lakes, reservoirs, estuaries, etc.

After identifying candidate research, the abstracts of all

studies reporting microplastics in freshwater ecosystems

were studied. It is worthy noticing that microplastic research

solely on microplastics in freshwater species was excluded.

However, a combination of water or sediment studies with

biota or all three (water, sediment and biota) were included

simultaneously. A total of 150 published pieces of research

between 2010 and 2020 were retrieved and evaluated.

Details of each study were recorded in an EXCEL spread-

sheet for subsequent analysis. This information was used to

determine the extent and depth of current microplastic

research and to identify important data gaps.

Microplastics presence in freshwater
environments

Research papers with an emphasis on microplastics in inland

water bodies are mostly published in the last ten years.

Microplastics have been recorded along shorelines of the

Tamar estuary, UK (Browne et al. 2010). In two urban rivers

Fig. 1 Common techniques to sample microplastics
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(the Los Angeles River and the San Gabriel River), Southern

California, microplastics were found 16 times more abundant

than macroplastics and three times heavier than the bigger

particles (Moore et al. 2011). Zbyszewski and Corcoran

(2011) scrutinized the distribution and degradation of plastic

particles along the beaches of Lake Huron, Canada (Zbys-

zewski and Corcoran 2011). The first ecosystemic review,

assessing microplastics in different compartments, including

water, sediment and biota, was reported by Faure et al. in Lake

Geneva, Switzerland. Plastics were found on every beach and

in the surface layer of Lake Geneva. However, no plastics

were observed in biota in this study (Faure et al. 2012). Studies

detecting microplastics in different freshwater compartments

across continents and even in remote areas (Free et al. 2014;

Zhang et al. 2016) are summarized in Tables 1–4.

The numbers of microplastic studies in freshwater envi-

ronments increased rapidly from four in 2013 to 37 studies

in 2019 and 27 papers as of September 2020 (Fig. 2).

In the early stages, it was suggested that the chemical types

of microplastics in freshwater seem to be less diverse com-

pared to those collected from the marine salty environment.

This observation was attributed to the higher density of sea-

water, which enables more types of plastic materials with

different densities to float on the surface of the water (Zhang

et al. 2015). However, this is not always the case, because the

processes of controlling distribution and exposure to plastics

particles are not necessarily restricted to a specific environ-

mental compartment. Polymers with higher density (den-

sity[ 1.0 g mL-1) were observed in freshwater

environments (Moore et al. 2011; Zhou et al. 2020). Nega-

tively buoyant particles (e.g., polyester, rayon, nylon and

cellulose acetate) may remain suspended in water (Baldwin

et al. 2016). There may be differing degrees of physical and

chemical characteristics, such as storms and wave action and

saline water in marine systems. But plastics in freshwater

systems still experience physical and chemical degradation

(Andrady et al. 2011). It was suggested that polymer density

alone is not the most significant control on microplastic

particle fate within the aquatic environment. Microplastic

morphology, incorporation into copolymeric materials during

manufacturing and inclusion within aggregates of varying

overall densities may play major roles in microplastics dis-

tribution (Hendrickson et al. 2018).

The ability to capture plastic particles from water or

sediment matrix and separating them from organic and

mineral material are challenging. Identifying types of

plastics in the samples and on different surfaces is also

important (Costa et al. 2021). It is suggested that

microplastics in freshwater systems are similar to those in

marine environments, and they are exposed to similar

threats (Holland et al. 2016). Therefore, microplastic

characteristics, detection methods, methods of analysis and

impacts on biota are suggested to be similar.

Sampling procedure and tools

Choice of preservation techniques in different stages of

microplastic studies largely depend on the research ques-

tion (Lusher et al. 2017), economic proportionality of the

methods and also the study compartment. Microplastics

have now been reported in a range of freshwater environ-

ments, including surface water, water column, benthic

sediments, littoral sediments and aquatic biota. Three main

strategies are identified for sampling. They include selec-

tive sampling, volume-reduced sampling and bulk sam-

pling. Different sampling strategies may be selected when

the type of matrix to be examined for microplastics (water

or sediment or biota) has been taken into account. Selective

sampling in field consists of direct collection of items from

the environment which are recognizable by the naked eye.

This method is usually used on the surface of shore sedi-

ments and is more practical for large microplastics

(1–5 mm). Bulk samples refer to samples where the whole

volume of the sample is taken without reducing it during

the sampling process. Volume-reduced samples in both

sediment and water samples refer to samples where the

volume of the bulk sample is usually reduced during

sampling. Only a portion of the sample is preserved in this

method, and it is mostly used for water samples (Hidalgo-

Ruz et al. 2012).

Water compartment

In water samples, microplastic burden in the measuring

units is much lower compared to that in sediment samples.

Consequently, analysis of water samples requires higher

sampling volumes (Huppertsberg and Knepper 2018).

Volume-reduced methods are on-site filtration by nets or

sieving. They are more suitable for water samples as they

give a promising specimen volume without the need to

transfer the whole to the laboratory. Therefore, resulting in

a relatively small concentrated final sample. Here we dis-

cus three main water sampling methods, including trawls,

pump samplers and grab samples.

Trawls and nets

Different types of trawls and nets like manta, neuston or

plankton nets and bongo net are used (Fig. 3). Trawl is

usually deployed off of a boat, submerged and towed on a

linear course at a low speed for a set time or distance

(Hidalgo-Ruz et al. 2012; Sighicelli et al. 2018). The area

of each sampling is calculated by multiplying the towing

distance with the width of the trawl. The volume of water

through the net uses either a flow meter or calculations

based on the distance traveled by boat at a constant speed
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Table 1 Microplastic studies in water of inland water bodies around the world

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

River–estuary 1 Three Gorges Dam—China Trawl with a rectangular

opening 50 cm high by

100 cm wide, and1.5 m

long, 112-mm-mesh size

nylon net with a 500-mL

polyethylene collecting

bottle at the end

Sheets, PP, 500 lm–1.6 mm Zhang et al.

(2015)

2 The North Shore Channel

(NSC) in Chicago, Illinois

(IL), USA

Two neuston nets

(0.92 9 0.42 m and

0.36 9 0.41 m), 333 lm
mesh size

Fiber McCormick

et al.

(2014)

3 29 Great Lakes tributaries,

USA

Neuston net 1.5-m-long net

with an opening 100 cm

wide by 40 cm high,

333 lm mesh size

Fibers, 0.355–0.999 mm Baldwin

et al.

(2016)

4 Inflow (Red and Assiniboine

rivers) and outflow (Nelson

River) of LakeWinnipeg,

Canada

Manta trawl 295 cm long, an

aperture width of 61 cm,

and a heightof 18 cm,

333 lm mesh size

Fibers Warrack

et al.

(2018)

5 Tamar Estuary, UK Manta net 0.50 m by 0.15 m,

300 lm mesh size

Fragments, PE, 1–3 mm Sadri and

Thompson

(2014)

6 Los Angeles and San Gabriel

Rivers, USA

Manta trawl 0.9 m 9 0.15 m,

333 lm mesh size, hand

nets 0.46 m 9 0.25 m,

800 lm mesh size and

0.43 m 9 0.22 m, 500 lm
mesh size, streambed

0.15 m 9 0.15 m, 333

mesh size, rectangular net

0.45 m 9 0.25 m, 333

mesh size

Foams, PS, C 1 mm

and\ 4.75 mm

Moore et al.

(2011)

7 Danube River, Austria Stationary conical drift nets

0.5 m diameter, 1.5 m long,

500 lm mesh size

– Lechner

et al.

(2014)

8 Four Estuarine Rivers in the

Chesapeake Bay ( Patapsco,

Magothy, Rhode, and

Corsica rivers), USA

Manta net 70 cm wide,

330 lm mesh size

– Yonkos et al.

(2014)

9 Yangtze Estuary and East

China Sea, China

Teflon pump passed through a

32-lm steel sieve, neuston

trawl 30 9 40 cm2 opening,

333 lm mesh size

Fibers,[ 0.5–1 mm Zhao et al.

(2014)

10 Rhine River—Switzerland Manta trawl with rectangular

opening of 60 cm 9 18 cm,

mesh 300 lm mesh size

Opaque spherules, PS Mani et al.

(2015)

11 Solent estuarine complex (

Hamble, Itchen and Test

rivers), UK

Plankton net trawl, 300 lm
mesh size

Fibers, blue, black, clear,

white

Gallagher

et al.

(2016)

12 Three urban estuaries (

Jiaojiang, Minjiang and

Oujiang Estuaries), China

Teflon pump passed through a

333-lm steel sieve

Fibers,

PP,\ 0.5–1 mm,\ 1–2 mm

Zhao et al.

(2015)

13 Pearl River along Guangzhou

city and Pearl River estuary,

China

Water sampler passed through

a 50-lm stainless steel sieve

Films, PA,\ 0.5 mm Yan et al.

(2019)
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Table 1 (continued)

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

14 Saigon River, Vietnam A bucket and plankton net,

300 lm mesh size

Fibers, PES Lahens et al.

(2018)

15 Hudson River, USA Grab sample, metal bucket

(3L)

Fibers, PET Miller et al.

(2017)

16 Raritan River, New Jersey,

USA

Plankton nets 0.2 m diameter,

0.51 m long, 153 mm mesh

size

– Estahbanati

and

Fahrenfeld

(2016)

17 Rivers State, Nigeria Plankton net – Briggs et al.

(2019)

18 Meuse, Rhine, Europe – Fibers Brandsma

et al.

(2013)

19 Goose Creek, Little Kickapoo

Creek, and East Branch of

the DuPage River, USA

Neuston nets

0.52 m 9 0.36 m, 333 lm
mesh size

Pellets, PE McCormick

et al.

(2016)

20 Rhine, Dalålven, Danube and

Po Rivers, Europe

Manta net internal width

60 cm, 330 lm mesh size,

Pump, waste free water

sampler mesh size 3.2 mm

Fragments, pellets, PE van der Wal

et al.

(2015)

21 Jade system, south North Sea,

Germany

Grab sample, PE bottle

(100 ml) passed through

1.2-lm cellulose nitrate

filters

Fibers Dubaish and

Liebezeit

(2013)

22 Snake River and Palisades

Reservoir, USA

– Fibers McDevitt

and Perez

(2016)

23 29 Rivers, Japan Plankton net 30 cm 9 75 cm,

335 lm mesh size

– Kataoka

et al.

(2019)

24 Snake River and Columbia

River, USA

Grab sample, glass jars, mean

volume 1.85 L, plankton

net, 100 lm mesh size

Fibers, 100–333 lm Kapp and

Yeatman

(2018)

25 Rhine River, Germany Manta trawl 60 cm 9 18 cm

rectangular aperture,

300 lm mesh size

PS-DVB ion-exchange resins Mani et al.

(2019a)

26 Gallatin River watershed,

USA

Grab sample, stainless steel

bottles (1L)

Fibers, Semi-synthetic

cellulose, PES, 0.1–1.5 mm

Barrows

et al.

(2018)

27 Changjiang Estuary, China A screw pump (100 L) passed

through a stainless steel

sieve 60 lm pore size

Fiber, PE Zhao et al.

(2019)

28 Changjiang Estuary, China A pump (100 L) passed

through stainless steel sieve

70 lm mesh size

Fibers, PE0.07–1.0 mm Xu et al.

(2018)

29 Pasig River, Philippines Two Manta trawl 25.7 cm

diameter openingand

10.4 cm diameter opening,

355 lm mesh size

Fragments, 1.16 ± 0.42 mm Deocaris

et al.

(2019)

30 Danube River, Austria Net 600 9 600 mm opening,

500, 250, 41 lm mesh size,

BFG basket sampler

300 9 600 mm opening,

500 lm mesh size

– Liedermann

et al. (2018
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Table 1 (continued)

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

31 Muskegon River, Milwaukee

River, and St. Joseph River,

USA

Grab samples, 2-L glass bottle

passed through a 0.363 lm
mesh (surfaces water),

Wading seine nets (biota)

Fibers,\ 1.5 mm McNeish

et al.

(2018)

32 Clyde, Bega and Hunter

estuaries, Australia

Horizontal surface tows using

45 lm mesh size (biota),

vertical towl 37 lm net

(biota)

Fragments, 45–100 lm Hitchcock

and

Mitrovic

(2019)

33 Douro estuary, Portugal A conical 1 m diameter, 4 m

long, 500 lm mesh size

(biota)

– Rodrigues

et al.

(2019)

34 Ofanto River, Italy Plankton nets 2.5 m long with

an opening of

55 cm 9 55 cm, 333 lm
mesh size

Fragments, flakes, PE,

500–1000 lm,

1000–2000 lm

Campanale

et al.

(2020)

35 Yellow River, China Stainless steel bucket (5 L) Fibers, 50–100 lm Han et al.

(2020)

36 Swiss Rhine River catchment

at Brugg and the

downstream German-Dutch

border at Rees (Germany

and Switzerland)

Manta trawl 60 cm 9 18 cm,

300 lm mesh size

Fragments, PE, 0.3–1 mm Mani and

Burkhardt-

Holm

(2020)

37 Urban waters of seven cities in

the Tuojiang River basin,

China

Steel sampler (25 L) passed

through 50 lm mesh size

sieve

Fibers, PP, 0.5–1 mm Zhou et al.

(2020)

38 Manas River, China Stainless steel drum (2.5 L) Fibers, PP, 0.3–1.0 mm G. Wang

et al.

(2020)

39 Minjiang River watershed,

Southeast China

Metal pail passed through

300 lm mesh size

Fibers, PET, 1–2 mm Huang et al.

(2020)

40 Meuse river and in

Netherlands and the

Dommel, Germany

A centrifugal water pump

passed through of 300, 100,

and 20 lm mesh size sieve

PE, 0–1000 lm Mintenig

et al.

(2020)

41 Cherating river and mangrove,

Malaysia

Conical nylon plankton net

0.3 m x 1 m, 100 lm mesh

size

Fragments, 0.5–1.0 mm Pariatamby

et al.

(2020)

42 Yulin River, China Teflon pump ( 0.05 m3)

passed through 64 lm
stainless steel sieve mesh

size

Lines/fibers, PE, 64–100 lm Y. Mao et al.

(2020)

43 Qing River, Beijing, China Stainless steel bucket (20 L)

passed through stainless

steel 5000 lm mesh size

Fragments, PE, EPR C. Wang

et al.

(2020)

Lake–reservoir 1 3 connected urban lakes and

drainage playa wetlands,

Lubbock, Texas, USA

Grab sample (3.50 L) passed

through sieve ([ 300,

250–299, 180–249,

106–179, and 53–105 lm
mesh size

53–105 lm Lasee et al.

(2017)

2 Lake Hovsgol (mountain

remote lake), Mongolia

Manta trawl 16 cm

high 9 61 cm wide and a

3 m long, 333 lm mesh size

Lines/fibers, 0.355–0.999 mm,

1.00–4.749 mm

Free et al.

(2014)

3 Laurentian Great Lakes (

Lakes Superior, Huron and

Erie), USA

Manta trawl with a

rectangular opening 16 cm

high 9 61 cm wide, and a

3 m long, 333 lm mesh size

Pellets, 0.355–0.999 mm Eriksen et al.

(2013)
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Table 1 (continued)

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

4 Lake Winnipeg, Canada Manta 61 cm wide 9 18 cm

high and a 3 long, 333 lm
mesh size

Fibers Anderson

et al.

(2017)

5 Dongting Lake and Hong

Lake, China

12 V DC Teflon pump (20 L)

passed through 50 lm mesh

size

Fibers, PP, PE, 50–330 lm,

330–1000 lm
W.F. Wang

et al.

(2018)

6 Western Lake Superior, USA Manta net 85 cm

wide 9 14 cm high and a

3 m long, 333 lm mesh size

Fibers, PVC Hendrickson

et al.

(2018)

7 Lake Michigan, USA Manta trawl 61 cm

wide 9 16 cm high and a

3 m long, 333 lm mesh size

Fragments, PE, 0.355–

.999 mm

Mason et al.

(2016)

8 Lake Maggiore, Iseo and

Garda, Italy

Manta trawl 60 9 20 cm,

300 lm mesh size

Fragments, PE Sighicelli

et al.

(2018)

9 Urban Lakes in Changsha,

China

40 L water passed through

45 lm mesh size

Lines, 50–500 lm Yin et al.

(2019)

10 Feilaixia Reservoir in the

Beijiang River, China

Conical plankton 20 cm

diameter, 112 lm mesh size

Films, PP, 0.6–2 mm Tan et al.

(2019)

11 Lake Ulansuhai, China 12-V DC Teflon pump passed

through 48 lm mesh size

Fibers, PE,\ 0.5 mm Wang et al.

(2019

12 Mecklenburg Lake District in

Mecklenburg-Western

Pomerania, Germany

Pump water samples, Manta

trawl

Irregular particles, PE, PET,

0–1000 lm
Tamminga

et al. 2020

13 Wuliangsuhai Lake, northern

China

Stainless steel buckets (20L)

passed through 75 lm mesh

size sieve

Fibers, PS,\ 0.5 mm R. Mao et al.

(2020)

Stream 1 Six Mile Creek and Fall Creek

streams, USA

Neuston net

1 9 0.5 m,335 lm mesh

size

Fibers Watkins

et al.

(2019b)

Stream–lake 1 Streams and wetlands,

Victoria, Australia

Grab surface, polypropylene

jars (5L) (water), dip nets

(biota)

Fibers, PES, rayon, 0–1 mm Nan et al.

(2020)

Pond 1 North of Jutland, Denmark A positive displacement pump

passed through 10 lm
stainless steel mesh size

PP Liu et al.

(2019)

River–estuary–

lake

1 Urban lakes and urban reaches

of the Hanjiang River and

YangtzeRiver, Wuhan,

China

12 V DC Teflon pump (20 L)

passed through 50 lm
stainless steel sieve

Fibers, PET, 50–500 lm
(or\ 0.5 mm)

W.F. Wang

et al.

(2017)

City creeks–

rivers–estuary

and coastal

waters

1 City creeks (Shanghai), rivers

(Suzhou River and Huangpu

River), an estuary (Yangtze

Estuary) and coastal waters

(East China Sea), Yangtze

Delta area, China

Metal pail (5 L) passed

through 20 lm mesh size

filter, air lift pump

Fibers, PES, 0.1–1.0 mm Luo et al.

(2019)

River water–

wastewater–

total

atmospheric

fallout

1 Greater Paris–Seine River,

France

Manta trawl 330 lm mesh

size, Plankton net 80 lm
mesh size

Fibers, 1001–5000 lm Dris et al.

(2015)
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(Sadri and Thompson 2014). However, because the net’s

immersion depth changes constantly with waves, wind and

boat movement, it is difficult to estimate the exact volume

of water being filtered.

Campanale et al. (2020) collected microplastics by three

surface plankton nets fixed in the middle of Ofanto River,

in order to reduce the spatial and temporal variability

(Campanale et al. 2020). In order to ensure that the most

representative body of water is being sampled, factors such

as time, location and length of trawls in relation to the

strength of tides should be carefully considered. Further-

more, the trawling distance using nets varies depending on

the abundance of floating microplastics. It should further

consider whether the trawl direction with reference to the

prevailing wind direction could have an effect on the

abundance and size of particles captured within the trawl

(Zhang et al. 2018). In these methods, nets are limited by a

single mesh size that is sometimes clogged by suspended

material (e.g., organic matter or phytoplankton) (Lieder-

mann et al. 2018; Sadri and Thompson 2014).

Types of microplastics are closely related to the mesh

size of tools used for specimen collection. For instance,

smaller-sized mesh used in some studies could increase

plastic particles of certain shapes (e.g., fibers) to a con-

centration several orders of magnitude higher than those

collected using nets with a larger mesh size. On that

account, the abundance of microplastics is largely under-

estimated by researchers who used a trawl for sample

collection (Z.F.Wang et al. 2018b). By using manta trawl, a

significant fraction of actual small microplastic particles is

very likely to be underestimated because they might pass

through the net.

Regarding the limitations of obtaining sufficient water

volumes while avoiding net clogging, it was strongly rec-

ommended to use tandem nets with different mesh sizes.

This helps to better characterize smaller microplastics

(Anderson et al. 2017). Dris et al. (2018) had a 250-times

higher probability of sampling fibers when using an 80-lm
mesh compared to a 330-lm mesh (Dris et al. 2018).

Double neuston net trawl (500 lm mesh size) was used as

sampling tool in assessing microplastics in surface waters of

Lake Superior. No difference was detected between the

paired net samples, suggesting that single net sampling

produces a representative estimate of microplastic particle

condition within a body of water (Cox 2018). A comparison

study was conducted between a manta net and a neuston net

for microplastics in ocean surface water. Results showed

that the manta net tended to have slightly higher densities of

microplastics than those of the neuston net. However, no

statistical difference was observed. Neuston net is relatively

stable in rough water although efforts are needed to main-

tain the net in submerged depth. Manta net tends to jump in

rough water (Michida et al. 2019). Sampling with the manta

trawl to function properly requires relatively calm condi-

tions (Anderson et al. 2017). Modified BfG basket sampler

used for the Austrian Danube River, clearly showed the

necessity of a strong and stable equipment carrier. The nets

were positioned on the surface, in the middle of the water

column, and at the bottom of the river and with different

mesh sizes (Liedermann et al. 2018).

Nets alone may fail to deliver the overall pattern of

microplastic pollution in an area, because there does not

seem to be sufficiently retaining fibers and small

microplastics.

Table 1 (continued)

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

River–

atmospheric

fallout–urban

runoff–WWTP

effluents-CSOs

1 River Marne, France Manta trawl 80 and 300 lm
mesh size

Fibers Dris et al.

(2018)

Surface water,

storm water

runoff,

agricultural

runoff, and

treated

wastewater

effluent

1 Lake Ontario of the

Laurentian Great Lakes in

Canada

Stainless steel bucket (4 L)

passed through 10 lm mesh

size filter

Fibers Grbić et al.

(2020)

Urban prairie

creek

1 Wascana Creek, northern

outskirts of Regina, Canada

Conical net (water), seine

nets, gill nets, conventional

tackle, and minnow traps

(biota)

Fibers Campbell

et al.

(2017)
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Table 2 Microplastic studies in sediment of inland water bodies around the world

Study

compartment

Number Study area Sampling tool Dominant microplastic

characteristics (shape,

polymer type, size)

Reference

River–

estuary

1 Rivers and tidal flat of urban

districts, Shanghai, China

Shovel (0.5 m 9 0.5 m quadrat, depth

of 5 cm)

Spheres, PP, Peng et al.

(2018)

Littoral sediment 100 -500 lm

2 Changjiang Estuary, China Box corer (depth of 5–10 cm) Fibers, rayon, 0–100 lm,

100 -500 lm,

Peng et al.

(2017)

Benthic sediment 500–1000 lm (SMP)

3 Beijiang River littoral zone,

China

Stainless steel shovel (0.2 m 9 0.2 m

quadrate, depth of 2 cm)

PE J.D. Wang

et al.

(2017)Littoral sediment

4 St. Lawrence River, Canada Petite Ponar grab (225 cm2 area), and

Peterson Grab (930 cm2 area, depth of

10–15 cm)

Microbeads, PE Castañeda

et al.

(2014)
Benthic sediment

5 Tamar Estuary, UK – Fibers, PES, Browne et al.

(2010)Littoral sediment \ 1 mm

6 Rivers Rhine and Main,

Germany

Stainless steel spoon (30 cm2 area) Fragments, PS, Klein et al.

(2015)

Littoral sediment 63–200 lm

7 Thames River Basin, UK Stainless steel Scoop (depth of 10 cm) Fragments, fiber, PET, Horton et al.

(2017a)Littoral sediment 1–2 mm

8 Gulf ofMexico estuaries

(Mobile Bay, AL), USA

(0.25 m 9 0.25 m quadrate, depth of

3–6 cm)

Hard plastics, PE, Wessel et al.

(2016)

Littoral sediment 0.2–1 mm

9 10 rivers, northwest UK Cylinder resuspension technique Microbeads Hurley et al.

(2018)Benthic sediment

10 Two sandy beaches

(Santubong and Trombol)

in Kuching, Sarawak,

Malaysia

Stainless steel scoop (0.2 m 9 0.2 m

quadrate, depth of 2 cm)

PP, PE Noik and

Tuah

(2015)

Littoral sediment

11 Atoyac River Basin, Central

Mexico

Van Veen grab sampler, trowel Films Shruti et al.

(2019)

Benthic sediment

12 Urban river in Scotland

(River Kelvin), UK

A spade (depth of 8–10 cm) Fibers Blair et al.

(2019

Littoral sediment

13 Derwent Estuary, Tasmania,

Australia

Sediment corer (depth of 104 cm) Fibers,\ 63-[ 100 lm Willis et al.

(2017)

Benthic sediment

14 Rhine River, Germany Steel spade, buckets of a chain dredging

(depth of 52 cm and 111 cm)

APV, 62–125 lm Mani et al.

(2019b)Benthic sediment

15 Vitória bay estuarine system

(SVB), Brazil

Van Veen grab sampler Fibers Neto et al.

(2019

Benthic sediment

16 River Tame and four of its

tributaries, Birmingham,

UK

Stainless steel scoop (depth of

5–10 cm)

FragmentS, PE, 63–

\ 250 lm, 250–

\ 1000 lm

Tibbetts et al.

(2018)

Benthic sediment

17 BrisbaneRiver, Australia Ponar stainless steel grab sampler

(depth of 0–3 cm)

Films,, PE, 3–4 mm He et al.

(2020Benthic sediment
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Table 2 (continued)

Study

compartment

Number Study area Sampling tool Dominant microplastic

characteristics (shape,

polymer type, size)

Reference

18 Liaohe estuary, Daliao River

and Shuangtaizi River

Steel grab sampler Films, PE Xu et al.

(2020)

Benthic sediment

19 Thames River, Ontario,

Canada

Stainless steel petite ponar grab

sampler (depth of 90–100 cm)

Pellets, PE, 1–5 cm Corcoran

et al.

(2019)Benthic sediment

20 Warnow estuarine, Germany Van Veen grab, Sediment trap PS Enders et al.

(2019)Benthic sediment

21 River Yongfeng, China Peterson Gravity Sampler Films, PE, 200–500 lm,

500–1000 lm
Rao et al.

(2020)Benthic sediment

22 Jagir Estuary, Surabaya City,

Indonesia

Ekman dredge sampler Lines/fibers, PES, small

MP (1 lm-1 mm)

Firdaus et al.

(2020)

Benthic sediment

Stream 1 Seven water

streamssurrounding the

lagoon of Bizerte, Northern

Tunisia

Stainless steel spatula

(0.25 m 9 0.25 m quadrate, depth of

2–3 cm)

Fibers, PP Toumi et al.

(2019)

Littoral sediment

Lake–

reservoir

1 Subalpine lake Garda, Italy – PE Imhof et al.

(2013)

Littoral sediment

2 Lake Ontario, Canada Glew gravity corer, shipek grab, ponar

grab, split spoon corer

Fragments, PE Ballent et al.

(2016)Littoral sediment and Benthic

sediment

3 Lake Ontario, Canada Mini box corer (depth of 30 cm) Pellets, PE, 1–5 cm Corcoran

et al.

(2015)
Littoral sediment and Benthic

sediment

4 Remote lakes in Tibet

plateau, China

Shovel (20 cm 9 20 cm quadrate,

depth of 2 cm)

PP, 1–5 mm Zhang et al.

(2016)

Littoral sediment

5 Beaches of Lake Huron,

Canada

Stainless steel trowel Pellets, PE,\ 5 mm Zbyszewski

and

Corcoran

(2011)
Littoral sediment

6 Great Lakes, North America

Lake Erie and St. Clair),

USA

Stainless steel trowel Fragments, PE Zbyszewski

et al.

(2014)

Littoral sediment

7 Edgbaston Pool,

Birmingham, UK

HTH gravity corer (depth of 10 cm) Fibers, Films Vaughan

et al.

(2017)Littoral sediment and Benthic

sediment

8 Setúbal Lake, Portugal Stainless steel shovel

(0.25 m 9 0.25 m quadrate, 3 cm

depth)

Fragments Blettler et al.

(2017)Littoral sediment

9 Beaches of Lake Garda, Italy Sediment cores (depth of 10 cm) 1–50 lm Imhof et al.

(2018)Littoral sediment

10 Lake Erie, Canada Shipek sediment grab sampler and

passive sediment trap, split spoon

sampler, Petite Ponar grab sampler

Fibers, PE Dean et al.

(2018)Littoral sediment and Benthic

sediment
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Table 2 (continued)

Study

compartment

Number Study area Sampling tool Dominant microplastic

characteristics (shape,

polymer type, size)

Reference

11 Subalpine Lake Garda, Italy Sediment cores (depth of 5 cm) – Imhof et al.

(2016)Littoral sediment

12 Three Gorges Reservoir,

China

Stainless steel Trowel

(20 cm 9 20 cm, depth of 2 cm)

Sheet,PP, 1—5 mm Zhang et al.

(2019

Littoral sediment

13 Hampstead Pond (Lake), UK Piston corer (depth of 212 cm) Fibers Turner et al.

(2019)Benthic sediment

14 Lake Mjøsa and Lake

Femunden, Norway

Kajak-Brinkhurst sediment corer (depth

of 3 cm), Van Veen grab (depth of

10–15 cm)

Fibers, PS, Small

microplastics\ 1 mm

Lusher et al.

(2018)

Benthic sediment

15 Lake Victoria, Uganda,

Africa

Stainless steel trowel

(0.5 cm 9 0.5 cm quadrat, depth of

5 cm), Ponar grab

Films (shoreline), filaments

(lake), PE, 0.3–1 mm

(lake) 1–2 (shoreline)

Egessa et al.

(2020)

Littoral sediment and Benthic

sediment

16 Donghu Lake, Wuhan, china Piston gravity sampler (depth of 57 cm) Fibers, PET,\ 0.5 mm Dong et al.

(2020)Benthic sediment

17 Lake Ziway, Ethiopia Ekman grab sampler (depth of 0–2 cm) Fragments, PE, 0.15–5 mm Merga et al.

(2020)Benthic sediment

18 Donting Lake, China Stainless steel shovel (0.25 m2 area,

depth of 2 cm), grab sampler

Fibers, PET,

PE,\ 0.5 mm

Yin et al.

(2020)Littoral sediment and Benthic

sediment

River–

estuary–

lake

1 Vembanad Lake, Kerala,

India

Van Veen grab (25 cm2 area) Films, Foams, LDPE Sruthy and

Ramasamy

(2017)

Benthic sediment

2 Urban water areas

inChangsha, China

Shovel (depth of 5 cm) Fragments, PS,\ 0.5 mm Wen et al.

(2018)

Littoral sediment

3 Coastal plain river network

(Wen-Rui Tang River

watershed) in eastern China

Peterson grab (32 cm 9 20 cm, depth

of 0–15 cm)

Figments, PE, 20–100 lm Z.F.Wang

et al.

(2018)

Benthic sediment

4 Skudai and Tebrau river,

Malaysia

Box corer 1001–5000 lm Sarijan et al.

(2018)

Benthic sediment

5 Cecina river estuary,

Tuscany, Italy

Wide mouth glass jars 1 L by scientific

scuba divers (depth of 5 cm)

Fragments,[ 500 lm Blašković

et al.

(2018)Littoral sediment andBenthic

sediment

Lagoon 1 Lagoon of Venice, Italy Box corer (depth of 0–5 cm) Fragments, PE,\ 100 lm Vianello

et al.

(2013)
Benthic sediment

2 Complex Lagoon-Channel of

Bizerte, Northern Tunisia

Stainless steel spatula

(0.25 m 9 0.25 m quadrats, depth of

2–3 cm)

Fibers Abidli et al.

(2016)

Littoral sediment
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Table 3 Microplastic studies in water and sediment of inland water bodies around the world

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

River–

estuary

1 Three GorgesReservoir,

China

12 V DC Teflon pump (25 L),

passed through 48-lm stainless

steel sieve (water) and Van Veen

grab (0.25 m2 area) (sediment)

Fibers, PS,\ 0.5 mm Di and

Wang

(2018)

2 Five urban estuaries of

KwaZulu-Natal, South

Africa

Conical zooplankton net (300 lm
mesh size) (water) and sediment

corer (depth of 10 cm) (sediment)

Fragments Naidoo

et al.

(2015)

3 Pearl River along Guangzhou

City, China

Water sampler (5 L) ( water), Van

Veen grab (depth of 5 cm)

(sediment)

Fibers, PP, 0.02–0.5 mm,

0.5–1 mm

Lin et al.

(2018)

4 Antuã River, Portugal Water pump (55 lm mesh size

(water), Van Veen grab (depth of

12 cm) (sediment)

Foams, PE, PP Rodrigues

et al.

(2018)

5 Ottawa River, Canada Bottle sampling and Manta trawls

(100 lm mesh size) (water),

Ekman bottom grab sampler

(sediment)

Fibers Vermaire

et al.

(2017)

6 Charleston Harbor and

Winyah Bay, two

developed estuaries in US

Sea surface microlayer collection

apparatus (4L) (water) and

stainless steel trowel

(0.25 m 9 0.25 m transect)

(sediment)

Fragments, 150–499 lm Gray et al.

(2018)

7 Slum and industrial area of

Ciwalengke River,

Majalaya, Indonesia

Grab samples with glass container

(1L) (water), Ekman grab

sampler and shovel (sediment)

– Alam et al.

(2019)

8 Pearl River catchment, China Plankton net (160 lm mesh size

(water), grasp bucket and gravity

corer (depth of 54 cm) (sediment)

Sheets, PP, LDPE,\ 0.25 mm Fan et al.

(2019)

9 Wei River, China Bulk sampling using clean pump

(5L) passed through 75 lm mesh

size (water), grab (sediment)

Fibers,\ 0.5 mm Ding et al.

(2019)

10 Tibet Plateau Rivers, China

(Buqu River (the source of

the Yangtze

Large flow sampler (water) and a

stainless steel shovel (depth of

2 cm) (sediment)

Fibers, PET (sediment samples),

PE (water samples),\ 0.5 mm

Jiang et al.

(2019)

11 Middle and lower reaches of

the Yangtze River, China

A fishery administration vessel

(AVANI trawl net 333 lm mesh

size), A plankton net (64 lm
mesh size) (water) and grab

sampler (sediment)

Sheets, PP, 0.3–0.5 mm,

0.5–1 mm

Xiong

et al.

(2019)

12 Nakdong River, South Korea Stainless steel beaker, submersible

pump (water), Van Veen grab

(depth of 2 cm) (sediment)

Fragments, PP Eo et al.

(2019)

13 Mohawk River, USA Manta trawl (333 lm mesh size

(water) and Ekman grab sampler

was (sediment)

Fibers, fragments Smith

et al.

(2017)

14 Ebro River Delta,

Northeastern Iberian

Peninsula, Spain

Neuston net (5 lm mesh size)

(water), stainless steel spoon

(0.2 m 9 0.2 m quadrant, depth

of 2.5 cm) and van Veen grab

sampler (sediments)

Fibers, PE, 200–500 lm Simon-

Sánchez

et al.

(2019)

15 Yongjiang River, Nanning

City, South China

12 V DC Teflon pump (10 L)

passed through 50-lm-mesh size

sieve (water) and Van Veen grab

(sediment)

Fibers, PE, 330–1000 lm and

1–3 mm

Zhang

et al.

(2020)
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Table 3 (continued)

Study

compartment

Number Study area Sampling tools Dominant microplastic

characteristics (shape, polymer

type, size)

Reference

16 Maozhou River, China Stainless steel bucket (5L), depth

of 50 cm (water) box corer, depth

of 20 cm (sediment)

Fragments, 10 lm-0.1 mm Wu et al.

(2020)

17 Chao Phraya River,

Bangkok, Thailand

Manta trawl 2 m long, width of

50 cm, and a height of 20 cm,

300 lm mesh size (water), Van

Veen grab sampler (sediment)

Fragments, PP, 0.5–1.0 (water

samples) 0.053–0.5 mm

(sediment samples)

Ta et al.

(2020)

18 Ravi River in urban center (

predominant drains and

canals of Lahore district),

Lahore, Pakistan

Stainless steel spatula,

0.3 m 9 0.3 m quadrate, depth

of 1 cm (sediment)

Fragments, PE, 150–300 lm
(sediment samples), and large

size MPs 300 lm–5 mm (water

samples)

Irfan et al.

(2020)

19 Magdalena River, Colombia Neuston net 20 lm mesh size

(water), metal shovel, depth of

5 cm (sediment)

Fibers, PP Martı́nez

Silva

and

Nanny

(2020)

Lake–

reservoir

1 Lake Bolsena and Lake

Chiusi, Italy

Manta trawl 300 lm mesh size

60 cm 9 18.5 cm (water), 0.25

m2 area, depth of 3 cm

(sediment)

Fibers,\ 0.3 mm, 0.3–0.5 mm Fischer

et al.

(2016)

2 Dongting Lake, China Flow sampler (30L), passed

through 45 lm mesh size (water)

and Stainless shovel

0.3 m 9 0..2 m quadrat, depth of

0–2 cm (sediment)

Fibers, PET (sediment sediment),

PE (water sediment),\ 0.5 mm

Jiang et al.

(2018)

3 Six dams near Ithaca, USA Grab sample 1 L plastic bottles

(water), plastic scoop (sediment

samples)

Fibers Watkins

et al.

(2019a)

4 Danjiangkou Reservoir,

China

12 V DC Teflon pump (20L), depth

of 0–20 cm (water), grab

(sediment)

Fibers, PP, group 1

(48 lm - 0.5 mm), group 2

(0.5–1 mm), group 3 (1–2 mm),

Di et al.

(2019)

5 Lakes along the middle and

lower reaches of Yangtze

River Basin, China

Neuston plankton net 74 lm mesh

size (water), Van Veen grab

(sediment)

Fibers, PET, 20–50 lm Li et al.

(2019)

Stram 1 18 streams in and around the

city of Auckland, New

Zealand

Phytoplankton net 63 lm mesh

size (water) and scooped with

container, depth of 5 cm

(sediment)

Fragments, fibers (water samples),

fragments (sediment samples),

poly(hexadecyl) methacrylate

(PHM), ethylene/ethyl acrylate

copolymer (EEAC), 63–500 lm

Dikareva

and

Simon

(2019)

Fish ponds 1 Central and Eastern

European region

Jet pumps, passed through 2 mm

mesh size strainer, depth of

10–20 cm (water), Veen grab

sampler and a hand spade

(sediment samples)

PP Bordós

et al.

(2019

River–

estuary–

lake–

WWTPs

1 River Barrow, River, Nore,

Lough, Lurgan (Cushina,

Co. Offaly) and River

Liffey (Newbridge, Co.

Kildare), Ireland

- PS Cedro and

Cleary

2015
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Pump samplers and grab samples

Volume reduction pump sampler and grab samples are also

used in some of the research papers. Pump sampling con-

sist of pumping water manually or using a motor through

an inline filter. Grab sampling method includes using a

bucket to collect water and sieve the water in the field (Han

et al. 2020; Miller et al. 2017; Y. Mao et al. 2020a). A fixed

amount of bottle is also submerged, filling with surface

water for laboratory analysis (Barrows et al. 2018; Dubaish

and Liebezeit 2013). Water collected using pumps or bulk

samplers is taken from different depths with different

volumes. Due to the high variability of microplastic spatial

distribution, the sampling area covered is limited and using

a pump or bulk sampler may not be representative.

Therefore, taking multiple replicates is suggested (Zhang

et al. 2018). However, pumps can be used to collect large

volumes of water, which may be advantageous in areas

where the density of microplastics is suspected to be low

(Crawford and Quinn 2017). Water volume could be

variable from 5 mL to 500 L (Braun et al. 2018). In

addition, they do not possess the limitation caused by

pacific sampling mesh tool. Based on literature reviews,

significantly more microplastic particles are present in

smaller size ranges. A combination of volume-reduced net-

based sampling and bulk sampling seems to be very helpful

Table 4 Microplastic studies in water, sediment and biota of inland water bodies around the world

Water

compartment

Number Study area Sampling tools Dominant

microplastic

characteristics

(shape, polymer

type, size)

Reference

River–

estuary–

lake

1 Xiangxi Bay of Three Gorges

Reservoir, China

Surface trawl 50 9 100 9 150 cm,

112 lm mesh size (water) and Petersen

grab (sediment)

Sheets, PP,

1–5 mm

Zhang

et al.

(2017

2 Qinghai Lake, China Trawl net 50 9 100 9 150 cm, 112 lm
mesh size (water) and stainless steel

shovel, 0.2 m 9 0.2 m quadrate, depth

of 0–2 cm (sediment)

Sheets, PP,PE,

0.112–0.5 mm

Xiong

et al.

(2018

3 Taihu Lake, China Nylon plankton net 333 lm mesh size

and steel sampler (5L) (water), Peterson

sampler (sediment) and a bottom fauna

trawl (biota)

Fibers,

100–333 lm,

333–1000 lm

Su et al.,

2016

4 Lake Geneva, Switzerland Manta trawl 300 lm mesh size (water),

fishes and birds were collected by a

fisherman

\ 5 mm, PS Faure

et al.

(2012

5 Poyang Lake, China Steel sampler (20 L), passed through

50 lm mesh size (water), Van Veen

grab (sediment), fish samples were

obtained from an aquatic product

market

Fibers, PP,

0.1–0.5 mm

Yuan

et al.

(2019

River–

estuary–

lake

1 Six of the largest Swiss lakes and some

rivers-Switzerland

Manta trawl 300 lm mesh size (water),

multi-mesh gillnets and vertical benthic

and pelagic nets (biota)

Fragments,

PE,[ 300 lm
Faure

et al.

(2015

2 Middle-Lower Yangtze River Basin,

China

Steel bucket (5 L), depth of 0.12 cm

(water), Peterson sampler, depth of

10 cm (sediment), bottom fauna trawls

(biota)

Fibers, PES,

0.25–1 mm

Su et al.

(2018

Pond 1 Storm water pond, Viborg, Denmark Bulk samples (10 L), glass bottles, depth

of 10 cm (water), Sediment corer, depth

of 5–8 cm (sediment), gill net and

fishing net (biota)

PP Olesen

et al.

(2019

Small water

bodies

1 YangtzeRiver Delta, China Steel bucket (water), stainless steel

spatula, depth of 0–5 cm (sediment)

Fibers,

PES,\ 0.5 mm

Hu et al.

(2018

River,

Canal,

WWTPs,

Sea

1 Dutch river delta and Amsterdam

canals, wastewater treatment plants,

North Sea sediments and biota,

Netherland and Germany

Bulk sample, glass bottles (2L) (water)

and grab samples and Van Veen grab

(sediment)

Fibers, 10–300 lm Leslie

et al.

(2017
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in estimating the missing fractions and enables a greater

spatial resolution (Fischer et al. 2016).

Comparison between different water sampling methods

In the comparison of manta trawling and pump sampling

methods in microplastic sampling from water of Lake

Tollense, Germany, different results were observed in the

abundance of microplastics, microplastics shape and size.

It was suggested that manta trawl is not sufficient in

retaining fibers and small microplastics from water sam-

ples. Therefore, the pump sampling approach with the fil-

tration of large water volumes is necessary to generate

reliable results. However, the pump sampling covers small

microplastics. Small plastic particles are greater in number.

Volume-reduced sampling covers large microplastics,

being less abundant but still important. Fibers detected in

the manta samples were unevenly spread across the whole

size range. Fibers found in the pump samples showed

distinct positively skewed distribution peaking at[
500–600 lm in length. The most abundant polymer

composition in manta trawl samples was polyethylene and

polyethylene terephthalate for the pump sampling method

(Tamminga et al. 2020).

Lahens and colleagues utilized a bucket and 300-lm
plankton net. Bulk water sampling was used for anthro-

pogenic fiber analysis and 300-lm-mesh size plankton net

exposition for fragment analysis (Lahens et al. 2018). In

the study of Su and colleagues, the average abundance of

microplastics was found to be higher in plankton net

samples rather than bulk surface water samples (Su et al.

2016). In general, water sampling volumes depend on the

solid richness and the target microplastic size range. Bar-

rows et al. (2017) compared grab samples to the

conventional neuston net approach. Grab samples collected

three orders of magnitude more microplastics than the net

approach (Barrows et al. 2017).

In comparison between manta trawl and in situ pump

filtration methods, it was found that the pump sampling

method is more accurate in volume measurement and

versatile for point sampling and filter size choice. How-

ever, due to the lower sampling volume, it might be more

suitable for sampling in areas with a higher level of con-

tamination. On the other hand, the trawling method has the

ability to cover and sample a larger area and therefore

overcomes some of the problems related to patchiness

(Karlsson et al. 2020). A combination of volume-reduced

net-based sampling and bulk sampling seems to be very

effective in comprehensive monitoring of microplastic in

aquatic environment.

Sediment compartment

Because of such characteristics as buoyancy and extreme

durability, synthetic polymers are present in rivers, lakes

and oceans and accumulate in sediments all over the world.

Microplastic durability makes it highly resistant to degra-

dation from decades to millennia in its polymer forms

(Mathalon and Hill 2014). Small plastic particles are easily

accessible to a wide range of aquatic organisms, accumu-

lating in their cells and tissues and ultimately transferred

through the food web. Most plastics are extremely durable

and persistent (Sharma and Chatterjee 2017).

Microplastics in water compartment may be diluted due

to seasonal variation in water volume and water dynamic

behavior. For sediment compartments, with a static envi-

ronment, dilution barely happens, and sediments can easily

act as accumulation environments. Sediments are a site of
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Fig. 2 Frequency and trend of

studies (n = 150) on the

presence of microplastic

particles in freshwater

environment in different matrix

including water, sediment,

water ? sediment, water or

sediment ? biota and

water ? sediment ? biota
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microplastics accumulation and the habitat of benthic

organisms, which are key components of food webs. In

microplastic scientific assessment, sediment samples are

taken from both the subtidal and benthic part of freshwater

bodies. This issue affects the life quality of the organisms

in ecosystems, both in benthic and littoral sediment zone.

For example, microplastics were recorded in fecal sam-

ples and feathers of waterbirds from contaminated wet-

lands in South Africa. Plastic particles can fill the gizzard

and possibly block the pyloric valve leading into the

intestine (Reynolds and Ryan 2018). Microplastics were

present in the benthic fish species and benthic organisms of

the Caspian Sea, and the abundance of plastic particles in

animals near the shore was greater than in the central part

(Bagheri et al. 2020). High doses of microplastics led to

fewer species and fewer juvenile isopods and periwinkles

in European flat oysters and their associated benthic com-

munities (Green 2016).

Sampling tools are selected with regard to sampling

places. Sampling is performed in various directives with

respect to the analysis of nutrients or pollutants, such as

metal ions or persistent organic substances (Braun et al.

2018).

Manual grab samplers

Sediment manual grab methods utilize tools such as hand

spades and stainless steel spoon for littoral and beach

environments (Fig. 3). As sampling of sediments is facili-

tated compared to that of the water column, monitoring

shore sediments appears to be advantageous. Moreover,

non-buoyant particles can be analyzed in sediment samples

rather than in water surface samples (Klein et al. 2015).

Therefore, sampling from different compartments can give

a comprehensive outlook of microplastic pollution

problem.

Deep sediment samplers

Different kinds of grabs and corers are suggested to be

suitable for deeper sediment sampling. Ekman and Van

Veen grab samplers are deployed to study benthic sediment

(Merga et al. 2020; Neto et al. 2019; Sruthy and Ramasamy

2017). Deep sediment sampler can provide a look at the

changing abundance and microplastic debris in lake sedi-

ments that span a century to present day. These particle can

contribute to the discussion on plastic wastes as strati-

graphic markers for the Anthropocene (Turner et al. 2019;

Vaughan et al. 2017). For specimen transition, the use of

glass bottle is recommended. However, plastic or alu-

minum foil bags can also be used. In the case of plastic

container utilization, blank control should be included to

prevent bias in the study results (Zhang et al. 2018). Care

must also be taken to homogenize the sample during fur-

ther processing.

Comparison between different sediment sampling methods

Surface sediment in shore zone could reflect long-term

interfacial interaction between waters and terrestrial envi-

ronment (Yu et al. 2016). Shore sediment sampling consists

of multiple transects at a right angle from the water line

and the placement of quadrats along the transects. Tran-

sects may be visually scanned for bigger microplastics in

the field. The surface layer can be removed to a proximate

depth and sieved or transferred to the laboratory for sepa-

ration steps (Ballent et al. 2016; Egessa et al. 2020).

Variation in plastic abundance at different natural beach

zones (water line, drift line and high-water line) in Lake

Garda was investigated. Results showed that the water line

contained the lowest level of plastic particles, whereas the

highest proportion of plastic debris was observed in the

drift line and high-water line (Imhof et al. 2018). Core

samples have the advantage of being able to see depth

profile and to study potential microplastic trends in con-

siderable time periods. Surface analysis of these

microplastics may show higher degradation effects due to

longer time period. However, surface particles may be

more exposed to degradation factors.

Sediment sampling tools are selected with regard to

sampling places and sampling purposes, as they may show

different aspects.

Sample preservation

Samples were are usually preserved with 5% methyl

aldehyde and stored at 4 �C before analysis (Zhang et al.

2015) or fixed in 2.5% formalin (Zhao et al. 2014) or

submerged in * 40% ethanol (EtOH) (Mani and Bur-

khardt-Holm 2020).

Discussion

No standardized methods exist for selecting mesh size,

sampling, clean up, enrichment and detection, making the

comparison of different studies complicated. Improving

methods is needed to save time and effort in identifying

microplastics in different compartments. To the best of our

knowledge, water compartments are the most investigated

matrix, assessed for microplastics in freshwater
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environments (102/150). Rivers and estuarine systems are

the most frequently studied compartments for microplastic

detection, both in water and in sediment (85/150). This

may be due to the reported importance of rivers and estu-

aries as a vector for microplastics transfer to seas and

oceans. Littoral or shore sediments and bottom sediment

are frequently assessed for microplastics in reviewed

studies. Many microplastic studies used Manta nets to

collect surface water samples (Fig. 4). Van Veen grabs and

simple hand tools like trowels and stainless steel spoons

were the most frequently used tools for the bottom and

littoral sediments, respectively (Fig. 5). They are also the

most common sediment sampling tools from benthic and

beach zones and seem to be appropriate for microplastic

studies. Regarding sampling tool characteristics, both false

positive and false negative results in analyses of small

microplastics occur. In recent studies, there is a tendency to

detect microplastics in both water and sediment at the same

time. The simultaneous detection of microplastics in the

water and sediment compartment gives a better perspective

Fig. 3 Microplastics sampling

tools in freshwater studies;

a manta trawl, b plankton net,

c Petite ponar grab d Van Veen

garb, e Ekman grab sampler,

f box corer, g sediment corer,

h metal pail, i showel, j trowel
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of the situation in the ecosystem. The lack of uniformity in

reporting the numbers of microplastics, mostly due to

employing different units, is considerably noticeable in

reviewing papers. This makes the comparison of results

difficult and challenging. Some studies have reported

microplastic numbers or weights per volume of sampled

water or per total dry matter for sampled sediments (par-

ticles/kg); the latter is highly recommended.

Fig. 3 continued
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Conclusion

Employing suitable and reliable sampling, treatment and

identification methods is crucial to evaluate microplastic

pollution. Sampling and experimental techniques should be

standardized to more effectively assess microplastics.

Although a smaller mesh size is more appropriate, the

choice of trawl or sieve mesh size depends greatly on the

study purpose. The kind of environment being studied, e.g.,

a dynamic river with high water velocity or a calm

Fig. 4 Frequency of water

sampling tools, used in

microplastic freshwater studies

Fig. 5 Frequency of sediment

sampling tools, used in

microplastic freshwater studies
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eutrophic lake or wetland, is also of importance. The exact

sampling volume, place and depth must be chosen carefully

to ensure that samples represent water body characteristics.

Sample volumes should be large enough to minimize

overestimation induced by scaling up results, especially for

water samples. The pump sampling approach with the fil-

tration of large water volumes is necessary to generate

reliable results in the spatial association between

microplastic pollution in the surface waters and sediments.

The trawling method has the ability to cover a larger area

during sampling. To cover different microplastic size and

shape, it is advantageous to combine both volume reduc-

tion and bulk sampling methods for surface water. More

research is required to extend the understanding of repre-

sentative in the study of microplastics as a key factor for

the potential development of reliable data.
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