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How far do marine larvae disperse in the ocean? Decades of population genetic
studies have revealed generally low levels of genetic structure at large spatial
scales (hundreds of kilometres). Yet this result, typically based on discrete
sampling designs, does not necessarily imply extensive dispersal. Here, we
adopt a continuous sampling strategy along 950 km of coast in the north-
western Mediterranean Sea to address this question in four species. In line
with expectations, we observe weak genetic structure at a large spatial scale.
Nevertheless, our continuous sampling strategy uncovers a pattern of isolation
by distance at small spatial scales (few tens of kilometres) in two species. Indi-
vidual-based simulations indicate that this signal is an expected signature of
restricted dispersal. At the other extreme of the connectivity spectrum, two
pairs of individuals that are closely related genetically were found more
than 290 km apart, indicating long-distance dispersal. Such a combination of
restricted dispersal with rare long-distance dispersal events is supported by
a high-resolution biophysical model of larval dispersal in the study area,
and we posit that it may be common in marine species. Our results bridge
population genetic studies with direct dispersal studies and have implications
for the design of marine reserve networks.

1. Introduction

Marine species tend to have high fecundities, pelagic larval stages, large popu-
lation sizes, and extensive geographic ranges [1,2]. The marine environment is
also more homogenous than terrestrial and freshwater environments [3] and pre-
sents fewer geographic barriers to the movement of organisms [2]. Altogether,
these factors provide the potential for high demographic and genetic connectivity
among populations [4], which are key drivers of marine ecosystem resilience and
therefore fundamental to establish sound and effective conservation and manage-
ment practices [5]. Decades of population genetic studies have established that
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the genetic structure is generally weak across the seascape [6,7],
and the advent of high-throughput sequencing has not funda-
mentally changed this view [8]. Yet, the weak genetic structure
does not necessarily imply high gene flow and can even persist
for thousands of generations in the absence of gene flow when
effective population sizes are large, which is typical of marine
populations [9,10]. Furthermore, levels of gene flow that are
sufficient to prevent the establishment of a strong genetic struc-
ture may be insignificant from a demographic perspective (e.g.
just one migrant per generation in the infinite island model,
[11]). Thus, while a strong genetic structure can be generally
interpreted as a sign of low demographic exchange [12], a
weak genetic structure can be compatible with either extensive
or restricted dispersal [13-15].

Direct approaches to investigate larval dispersal such as
mass mark-recapture or parentage analyses support the
predominance of restricted dispersal in a variety of species
and indicate that dispersal kernels are often a rapidly
decreasing function of distance, with little dispersal
beyond a few tens of kilometres [16-23]. This suggests
that long-distance dispersal, defined here as dispersal
beyond 40 km [24], is rare. Nevertheless, parentage analyses
are challenging to scale up because the number of samples
that need to be genotyped rises disproportionately with the
increasing spatial scale (but see e.g. refs. [16,23]). They also
provide a snapshot of dispersal over just one generation and
therefore have to be repeated for every new generation
analyzed (e.g. refs. [18,20]).

Coupling individual-based sampling designs with
robust estimates of relatedness between any pair of individ-
uals provides the potential to estimate dispersal at different
spatial and temporal scales. This approach can be applied at
any spatial scale and allows one to go deeper into the recent
past by identifying relationships that are more distant than
parent-offspring. It also offers the possibility to work at
the level of individuals in continuous space, as opposed to
the population-level analyses that are typically conducted
at large spatial scales. Although the norm for the study of
marine organisms, the population-level approach can gener-
ate biases and artefacts when the sampling design
artificially discretizes species distributions that are much
more continuous in reality [25-27].

Coupling genetic approaches with individual sampling
and high-resolution biophysical models allows us to further
refine our understanding of larval dispersal [23,28]. This is
the challenge we propose to tackle by combining a continuous
sampling design, seascape genomic analyses, and biophysical
modelling of larval dispersal. We hypothesize that (i) the gen-
etic structure should be weak at a large spatial scale (hundreds
of kilometres), as is often the case in marine species [8]. We also
theorize that (ii) if most dispersal is restricted as suggested by
direct approaches, a pattern of genetic isolation by distance
(IBD) should emerge at small spatial scales (few tens of
kilometres). IBD refers to the tendency of individuals or popu-
lations to be more similar genetically the closer they are to
each other geographically, which is a direct consequence of
restricted dispersal [29]. As predicted by the theory [30],
IBD is expected to weaken or disappear at larger spatial
scales. Finally, we hypothesize that (iii) if long-distance dis-
persal events do occur, we should be able to capture such
events through the identification of pairs of individuals that
are geographically distant (hundreds of kilometres) but clo-
sely related genetically.

To test our hypotheses, we focused on four marine species
along 950 km of coast in the north-western Mediterranean Sea,
from Cabo de Gata (Spain) in the south to Cerberes-Banyuls
(France) in the north (figure 1). The northern region is
mainly influenced by the deep saline Mediterranean current,
while the southern region is rich in nutrients from the Atlan-
tic-Mediterranean surface current. The four species are the
white seabream (Diplodus sarqus, Linnaeus 1758), the striped
red mullet (Mullus surmuletus, Linnaeus 1758), the comber
(Serranus cabrilla, Linnaeus 1758), and the European spiny lob-
ster (Palinurus elephas, Fabricius 1787, figure 1). The four
species are reported over the entire study region [31] and
include a variety of pelagic larval durations (PLD) and life-
history traits (electronic supplementary material, table S1):
P. elephas has the longest PLD (4-6 months), while D. sargus
and M. surmuletus have a similar PLD (25-35 days) but may
differ in terms of seasonal migratory pattern (present in
D. sargus [32], unknown in M. surmuletus). Serranus cabrilla is
sedentary [33], solitary, and has the shortest PLD (21-28
days), so it is presumably the species with less dispersal poten-
tial among our study species, although we note that PLD is
only weakly correlated with dispersal [15]. This comparative
approach is adopted to provide a deeper understanding of
the determinants of connectivity in the marine realm [34].

2. Material and methods
(a) Sampling design and study species

We sampled as continuously as possible along 950 km of coast in
the north-western Mediterranean Sea (figure 1; electronic sup-
plementary material, figure S1). This strategy provides the
opportunity to explore IBD across a continuum of spatial
scales, from just a few kilometres to close to 950 km. Mature
specimens were mostly obtained from artisanal fishery landings
at shallow depths (mean 46 m, range 1.8-693.0 m) between June
and November 2017. The fact that we sampled adults implies
that our genetic data integrate the effect of dispersal at both
the larval and adult stages. This is particularly relevant in our
case since the habitats are more or less continuous, which implies
that adults can potentially move throughout these habitats
[28,32,35,36]. The exact position of each sample was provided
by the fishermen. We obtained a total of 2043 samples that con-
sisted of clips from pectoral fins (fishes) or pleopods (lobster).
The samples were preserved in 96% ethanol before storage at
4°C. Among these, 1305 samples were selected for genotyping
(280 for D. sargus, 312 for M. surmuletus, 245 for P. elephas, and
468 for S. cabrilla). This selection was made to maximize the
ratio of continuous spatial coverage over sequencing effort,
while also considering several samples per position when possible
to increase our power to detect the genetic structure.

(b) Molecular techniques

We extracted genomic DNA from fin clips (fishes) or pleopods
(Iobster) using the ReliaPrep™ gDNA Tissue Miniprep System
(Promega GmbH, Mannheim, Germany) following the manufac-
turer’s instructions for animal tissue. DNA concentrations were
measured with a Qubit™ 2.0 fluorometer (Thermo Fisher Scientific
Inc.,, Waltham, USA). Two different approaches were used
to generate single-nucleotide polymorphism (SNP) markers:
double-digest  restriction-site-associated DNA (ddRAD-seq)
sequencing for M. surmuletus and D. sargus and diversity array
technology sequencing (DArT-seq, a variant of ddRAD-seq) for
S. cabrilla and P. elephas. ddRAD-seq libraries were prepared in-
house following a protocol detailed in the study by Fietz et al.
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Figure 1. Sampling design. Four species were sampled as continuously as possible along 950 km of coast in the north-western Mediterranean Sea for a total
of 1299 individuals. (a) White seabream (Diplodus sargus) (n = 276), (b) red mullet (Mullus surmuletus) (n = 312), (c) European spiny lobster (Palinurus elephas)
(n=243), and (d) comber (Serranus cabrilla) (n = 456). The size of circles reflects the number of individuals per site (mean = 2, range 1-31 samples). A total of

615 sites were sampled. (Online version in colour.)

[37]. Each library was sequenced on one lane of a HiSeq 4000 Illu-
mina Sequencer (paired-end, 2 x 150 bp) at the Institute of Clinical
Molecular Biology, Kiel University, Germany. For S. cabrilla and
P. elephas, genomic DNA extracts were standardized to 50 ng pl™'
and sent to Diversity Array Technology (Canberra, Australia) for
genotyping with the DArT-seq technology following [38].

(c) Raw sequence filtering, SNP calling, and filtering

For ddRAD-seq datasets, we removed adapters from raw
sequences using Trimmomatic v. 8.25 [39]. Raw sequences were
then demultiplexed and filtered using the process_radtags pipeline
in STACKS v. 2.2 [40] (see electronic supplementary material,

text S1). We then aligned paired-end read sequences with Bur-
rows-Wheeler Aligner (BWA) [41] onto the reference genomes
for M. surmuletus and D. sargus, which were assembled for this
study specifically and are described in the study by Fietz et al.
[37], thereby improving the reliability of genotyping. Aligned
reads were sorted using SAMTOOLS 1.9 [42], and loci were
built with gstacks. For the DArT-seq data, SNPs were processed
using the S. cabrilla reference genome, which was also assembled
for this study specifically [37]. Both ddRAD-seq and DArT
sequencing data were further filtered with the population pipeline
and with vcftools v. 0.1.16 [43]. Each filtering step was performed
on each species separately as detailed in the electronic supplemen-
tary material, table S2.
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(d) Population structure and isolation by

distance—empirical data

We assessed the population structure using ADMIXTURE [1],
a maximum-likelihood model to detect population stratification
in genome-wide SNP datasets, with 2000 bootstrap replicates.
We computed genetic relatedness between pairs of samples,
namely, the kinship coefficient of Loiselle et al. [44] using GEN-
ODIVE [45]. It was chosen because it uses a correction for a
small sample size and tends to show less bias than other coeffi-
cients in this case [46]. We note that the Loiselle coefficient
correlates well with five other coefficients that we tested on a
subset of the data (electronic supplementary material, table S3).
This approach was complemented by a sibship inference analysis
using COLONY [47], a maximum-likelihood approach to test for
the occurrence of siblings in our datasets.

Genetic IBD was tested in the four species. To this end,
GEBCO-gridded bathymetry data (https://www.gebco.net) were
used to derive the shortest across-water distance (km) between
all pairs of samples with a minimum depth of 0.1 m using the
marmap package available in R [48]. When samples were collected
very close to the coastline, the GEBCO grid sometimes erroneously
considered them on land. In these cases, the position of the sample
was minimally adjusted to ensure that it is considered in the water
and kept in the analysis. The relationships between pairwise indi-
vidual genetic distances and in-water geographic distances were
calculated using the linear regression function Im available in
R, and IBD slopes were then calculated at decreasing spatial
scales of observation, from the entire sampling area (0-950 km)
down to 0-5 km (i.e. considering only pairs of samples separated
by <5 km) with 5 km decrements. This provided 182-186 spatial
intervals per species. To test for significance, we examined whether
the observed IBD slope for each spatial interval (ie. 0-5km,
0-10 km, etc.) was larger or smaller than expected under a
stochastic model. We tested this by running a null model with indi-
vidual-based genetic distances allocated randomly to each spatial
interval. The null modelling procedure was performed for each
species and repeated 1000 times (see electronic supplementary
material, Text S1). Standardized effect sizes (SES) were calculated
for each spatial interval using the observed slope values,
the mean and standard deviation of the null distributions:
SES = (observed — mean(null))/SD(null).

(e) Isolation by distance—simulated data

To assess the cause and robustness of the spatial IBD patterns in
our empirical data and to explore what kind of dispersal distri-
butions may yield such patterns, we conducted simulations
using the coalescent approach implemented in the software
IBDSim v. 2.0 [49]. The simulations followed a classic lattice
model, with one individual on each node of the lattice. Briefly,
each individual produces a large number of gametes and dies.
Mutation occurs in the gametes, which then disperse and fuse
into diploid individuals. Competition brings the number of indi-
viduals in each node back to one and individuals are sampled
after the last dispersal step. We considered various dispersal
kernels following Puebla et al. [50]. In the extreme case where dis-
persal occurs only between neighbouring individuals, the lattice
model reduces to the stepping-stone model. Different dispersal
functions—stepping stone, geometric, and pareto—with varying
degrees of short versus long-distance dispersal and emigration
rates (from 0.1 to 0.9) were implemented. Simulation settings
were set to reflect our empirical sampling design. To this end,
we considered a two-dimensional lattice of size 300 x 3000 with
absorbing boundaries. We implemented an SNP mutation
model and considered only polymorphic loci. Three hundred
samples were taken following a line in the centre of the lattice,
with single spacing between adjacent samples. We tested the

effect of varying the number of loci, the shape of the dispersal n

function, and the total emigration rate, i.e. the proportion of indi-
viduals dispersing to other nodes of the lattice (electronic
supplementary material, table S4). The input file of one exemplary
simulation is provided in the electronic supplementary material,
Text S2. The data generated were analysed and visualized follow-
ing the same procedure that was used for the empirical SNP data,
including the subsampling and SES procedures.

(f) Lagrangian biophysical model

We built a Lagrangian biophysical model for the three fish
species. The model builds on the Lagrangian tracking tool Parcels
(oceanparcels.org, [51]) applied to the horizontal surface velocity
fields consisting of ocean currents and wave-induced Stokes drift
at 1/24° horizontal resolution (approximately 4 km) for the year
2017 from the E.U. Copernicus Marine Service Mediterranean
Forecasting System  (http://marine.copernicus.eu). Currents
were retrieved as daily means from the ocean component of
the Mediterranean Forecasting System (Med-Currents, [52]).
Stokes drift was obtained as hourly means from the wave com-
ponent of the Mediterranean Forecasting System (Med-Waves,
[53]). Parcels allow one to calculate Lagrangian trajectories by
advecting virtual particles approximated as dimensionless and
immotile within a given discretized flow field. To ensure no par-
ticle flux through boundaries (seafloor, coastlines), we chose a
no-slip boundary condition by setting velocities to zero on land
so that velocities slow down towards the coast, which is expected
to reduce dispersal overall. We then used this Lagrangian model
to simulate surface larval dispersal accounting for spawning
season, pelagic larval duration, and settlement period of each
species, as well as temperature tolerance (electronic supplemen-
tary material, table S1). Simulated larvae were seeded in eight
marine protected areas from the study region that are known
spawning grounds for the selected species and represent a total
area of approximately 1072 km® (electronic supplementary
material, figure S2b). Since these areas are shallow, particles
were released at the surface, with a uniform random spatial
distribution within each marine protected area for a total of
17160 particles (~100 per model grid box of 16 km?) per day.
As a result, a total of 2093520 larvae were simulated for
D. sargus, which was seeded over 122 days (March to June),
and 2625480 for M. surmuletus and S. cabrilla, which were
seeded over 153 days (March to July). The biophysical model
was not run for the lobster because the drifting parameters
(e.g. active vertical migration, resulting in drifting depth) were
not known to the degree of certainty needed to be reasonably
confident about the simulation results. Subsequently, each virtual
larva was passively advected with the horizontal surface
velocities (currents and Stokes drift) for the species-specific maxi-
mum larval duration period, with an integration time-step of
5min. The virtual larvae’s position and distance travelled in
water as well as the ambient temperature were stored hourly.
When the ambient temperature fell outside the temperature
tolerance, the larva was assumed to die. Further details are
available in the electronic supplementary material, Text S3.

3. Results
(a) Population genetic patterns

The 1305 selected samples were genotyped at more than
10000 stringently filtered SNP markers: 18 512 markers for
D. sarqus (n=276 samples), 14318 for M. surmuletus (n=
312), 13101 for S. cabrilla (n=468), and 25230 for P. elephas
(n = 243). Six samples were discarded due to a high proportion
(more than 30%) of missing data, resulting in a final dataset of
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Figure 2. Empirical spatial genetic patterns. The slope of the linear regression between genetic relatedness and geographic distance among pairs of individuals at
various spatial scales of observation. Slope averages and error bars from a resampling procedure (see Methods). Note the logarithmic scale on the slope. The slopes
that are statistically significant following the standardized effect size (SES) procedure (see Methods) are highlighted in bold. (a) White seabream (Diplodus sargus),
(b) red mullet (Mullus surmuletus), (c) European spiny lobster (Palinurus elephas), and (d) comber (Serranus cabrilla). (Online version in colour.)

1299 individuals. The distribution of the geographic distance
between pairs of samples indicates that our sampling,
although not uniform, covers a continuous range of distances
from 1 to 950 km (electronic supplementary material, figure
S1). As expected, large-scale population genetic structure
was absent in three species (D. sarqus, M. surmuletus, and
P. elephas) and weak in one species (S. cabrilla) (electronic
supplementary material, figure S3). Two genetic clusters
were identified in S. cabrilla, corresponding to a northern
and a southern group separated by the Cabo de la Nao
(electronic supplementary material figure S4, fixation index
(Fs1) between the two groups =0.021). No genetic isolation
by distance was observed at the scale of the entire study area
in any of the four species (electronic supplementary material,
table S5).

In line with our second hypothesis, a significant IBD
pattern emerged at small spatial scales (few tens of kilometres)
in two species (M. surmuletus and S. cabrilla), with a negative

correlation between genetic relatedness (kinship coefficient)
and geographic distance among pairs of individuals (figure 2).
This pattern was not driven by a small number of highly related
and geographically close individuals, which may result from
sweepstake recruitment events. Such cases were rare (only
seven pairs of individuals across the four datasets), and IBD
patterns remained unchanged when these pairs were removed
(electronic supplementary material, figure S5). Nevertheless,
IBD was weaker—arguably absent—in D. sargus and P. elephas
and only statistically significant in M. surmuletus at spatial
scales of 0-10 km (SES between —2.91 and —2.31) and in S. cab-
rilla at spatial scales of 0-35 km (SES between —3.25 and —2.02,
considering only the larger northern cluster in the latter species
to eliminate the confounding effect of genetic structure;
electronic supplementary material, figure S6).

To explore the occurrence of this IBD pattern more
broadly, we searched the literature for datasets similar to
ours (i.e. from marine species sampled continuously at a
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Figure 3. Results from four representative genetic simulations. The slope of the linear regression between genetic relatedness and geographic distance among pairs
of samples at various spatial scales of observation. Slope averages and error bars from a resampling procedure (see Methods). The slopes that are statistically
significant following the standardized effect size (SES) procedure (see Methods) are highlighted in bold. The four panels show four scenarios with different dispersal
kernels that vary in the proportion of long-distance dispersal. Total emigration rate = 0.1 for all simulations with the following dispersal function: (a) geometric,
g=1, (b) Pareto, n=0.5, (c) Pareto, n="1, and (d) stepping stone (dispersal between neighbouring nodes only). The dispersal kernel used for each panel is
illustrated in the inset (the numbers 75, 76, 77, and 106 refer to the simulation ID in electronic supplementary material table S4, where the details of the simulation
parameters are presented). The four simulations illustrate the range of the results that were observed in the simulations, from a slight increase in IBD at small spatial
scales and a pattern that is never significant (a) to a marked increase in IBD at small spatial scales and a pattern that is significant at all spatial scales (d).

large spatial scale with more than 100 samples and greater
than 1000 SNP 'markers). A single dataset matching these cri-
teria was found [54], confirming the novelty of our approach.
This study focused on the summer flounder (Paralichthys
dentatus) along 1900 km of coastline in the northwest Atlantic
(n =232 samples, 1137 SNP markers). In line with our results,
the authors reported weak genetic structure (Fsy=0.0014)
and no IBD at the scale of the entire study area (electronic
supplementary material, table S5). Nevertheless, a reanalysis
of this dataset revealed the emergence of a statistically signifi-
cant IBD pattern at smaller spatial scales (electronic
supplementary material, figure S7).

(b) Individual-based simulations

A series of individual-based simulations were run to test
whether the emergence of IBD at small spatial scales observed
in the empirical data could be generated by simple population
genetic models. IBD emerged at small spatial scales for all par-
ameters and dispersal functions that we tested (electronic
supplementary material, table S4), indicating that this is a
robust pattern (figure 3). Our random subsampling procedure
also demonstrated that the emergence of IBD at small spatial
scales was not driven by the reduction in sample size
(number of pairwise comparisons) at smaller spatial scales.
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Figure 4. Dispersal distance distributions as simulated by the high-resolution biophysical model of the north-western Mediterranean. Relative frequencies of binned
(30 km bin-width) larval dispersal distances for (a) white seabream (Diplodus sargus, magenta), (b) red mullet (Mullus surmuletus, orange), and (c) comber
(Serranus cabrilla, turquoise) reveal that dispersal is occurring most frequently at short distances around 15 km, but long-distance dispersal events with secondary
peaks between 300 and 400 km related to the advection of larvae with ocean currents in the order of 0.1 m s~ are also captured. These results are consistent with
the combination of restricted and long-distance dispersal suggested by the empirical and simulated genetic data. (Online version in colour.)

With a flat dispersal function (extensive dispersal, figure 3a),
IBD was non-significant at all spatial scales of observation,
as observed in D. sargus and P. elephas (figure 2). The small
increase of IBD at small spatial scales still observed in this
case may be because all simulations presented in figure 3
were standardized to a total emigration rate of 0.1, implying
that just 10% of individuals disperse. Dispersal functions
with ‘fat tails” (i.e. that integrate both restricted and long-
distance dispersal, figure 3b,c) generated patterns that were
similar to what was observed in M. surmuletus, S. cabrilla,
and P. dentatus (figure 2, electronic supplementary material,
figure S6). The IBD slope also decreased with the increasing
spatial scale of observation in the stepping-stone case
(figure 3d), where dispersal was restricted to neighbouring
nodes only. This implies that the decrease of IBD at large
spatial scales does not necessarily imply long-distance disper-
sal. Nevertheless, IBD decreased more gradually with the
increasing spatial scale of observation in the stepping-stone
case, plateaued at non-zero values, and presented much stron-
ger levels of significance than the empirical data. The weaker
IBD signal that we observed with long-distance dispersal is
consistent with analytical IBD models that include long-dis-
tance dispersal [55].

(c) Long-distance dispersal

Empirical evidence of long-distance dispersal was provided by
two pairs of S. cabrilla individuals that were closely related (i.e.
close kin, kinship =0.106 and 0.108), notwithstanding the fact
that they were sampled 292 and 294 km apart (electronic sup-
plementary material, figure S8). This result was confirmed by
the sibship inference analysis, which classified these two pairs
of individuals as half-sibs (probability =1.00). This category
refers to individuals who share alleles from one parent, so not
just half-siblings but also e.g. uncle-niece or grandmother-
grandson relationships. In this perspective, the distances of
292 and 294 km would have been covered in one or two gener-
ations. It should be noted, however, that the origin of these
samples is unknown (it could be between where they were
collected or even further away). Another seven pairs of closely

related individuals were identified by both the Loiselle coeffi-
cient and sibship inference analysis (two in M. surmuletus and
five in S. cabrilla), yet these were geographically close (1-6 km).

(d) Biophysical model

To test whether a combination of restricted and long-distance
larval dispersal is consistent with the oceanography of the
study area, we ran high-resolution larval dispersal simu-
lations with a biophysical model of the north-western
Mediterranean tailored to the biology of our three fish species
(electronic supplementary material, table S1). The biophysical
model indicates that dispersal is expected to follow a decreas-
ing function of distance for the three species, with dispersal
occurring most frequently at distances around 15km and
decreasing thereafter. Dispersal at small distances is greatly
enhanced in our simulations including Stokes drift compared
to complementary simulations without Stokes drift (not
shown), potentially due to wave propagation towards the
coast. We also observe a secondary peak centred around
315, 345, and 375 km for S. cabrilla, D. sarqus, and M. surmu-
letus, respectively (figure 4). These are related to advection of
larvae with regional currents at speeds in the order of
0.1 ms™": the longer the PLD, the larger the distances associ-
ated with advective dispersal (figure 4). Longer PLD also
leads to an increased number of potential dispersal pathways
subject to larger current variability, resulting in a broadening
of the secondary peak (which is further enhanced through the
inclusion of Stokes drift). These results are consistent with
the combination of restricted and long-distance dispersal
suggested by the empirical and simulated genetic data.
Regional oceanographic conditions can either contribute to
restricted dispersal at specific locations (e.g. Cap de Creus or
Cabo de Gata, see electronic supplementary material, figure
S2b in the supplementary electronic material) or facilitate
long-distance dispersal. The biophysical model also captured
the reduced connectivity observed between the northern and
southern groups that we observed in S. cabrilla (electronic
supplementary material, figure S2b).
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4. Discussion

Generations of population genetic studies have revealed gen-
erally low levels of genetic structure in the sea [7], and our
results are consistent with this broad picture. Nevertheless,
our continuous sampling design uncovers a pattern of genetic
IBD at a small spatial scale in two species. Such a pattern is
indicative of restricted dispersal and emerges at a surprisingly
small spatial scale (few tens of kilometres) considering the
weak genetic structure observed at a large spatial scale (close
to 1000 km). This result is consistent with the evidence of
restricted dispersal provided by direct and local approaches
such as mark-recapture or parentage analysis over the last
two decades [19,56,57]. In this sense, our approach empirically
bridges the results provided by large-scale population genetic
[58] and small-scale dispersal [59,60] studies. A step in this
direction was taken by Pinsky et al. [57], who showed that
dispersal estimates based on parentage analysis are in agree-
ment with those based on IBD in the clownfish Amphiprion
percula. Nevertheless, this study considered IBD at the popu-
lation level and at a fixed spatial scale of 200 km [57]. Our
continuous approach shows that IBD can develop at substan-
tially smaller spatial scales. The decrease of IBD at a large
spatial scale has been documented both theoretically and
empirically [30], but here again at the population level and at
large spatial scales (hundreds to thousands of kilometres). Our
results show that this pattern holds at a much smaller spatial
scale at the individual level. This decrease of IBD at large spatial
scales may result from the fact that it takes more time to reach the
mutation-drift equilibrium at large spatial scales [61,62] and
that factors other than dispersal (e.g. demographic history or
selection) may shape genetic variation.

Small-scale IBD was not significant in all species, indicat-
ing that this pattern is not universal. The absence of
statistically significant IBD in P. elephas conforms with the
life history of this species [28]. With a PLD of five to six
months, the larvae reside in the water column much longer
than the other species, allowing for extensive dispersal and
gene flow. Isolation by distance might emerge at a larger
spatial scale in such extreme cases (e.g. ref. [63]). The absence
of statistically significant IBD in D. sargus was not expected in
this perspective considering that this species has a larval dur-
ation of 26-30 days [64], which is similar to M. surmuletus and
S. cabrilla. We suggest that this non-significance may be due to
the known migratory behaviour of D. sargus, which spends the
majority of the year in genetically heterogeneous populations
[36] before returning to specific and distinct areas for repro-
duction [32]. Sampling was mostly conducted between June
and November, almost exclusively outside of the D. sargus
spawning period (March—June [35,65]), when migration may
have contributed to obliterate the IBD signal, and the same
is true for P. elephas [28,35]. The overlap between sampling
and spawning season was greater for M. surmuletus and
S. cabrilla (June-July), the two species for which we did
detect a significant IBD signal. The combination of restricted
larval dispersal, captured with the biophysical model, and
limited adult movement during the spawning season is
likely to explain our findings. Furthermore, the strongest
IBD pattern in terms of both slope and statistical significance
was observed in the P. dentatus data from the northwest Atlan-
tic [54] that we reanalysed. This species is characterized by a
strong homing behaviour [66] and high residency on spawn-
ing grounds [67], where the samples were collected. This

illustrates the fact that our approach, which is based on the
sampling of adults, integrates both larval and adult move-
ment. It is, therefore, preferable to sample during the
spawning season when it comes to detect IBD. All in all, the
emergence and statistical significance of IBD at small spatial
scales in two species out of four as well as in P. dentatus, the
only species for which we could find a previously published
dataset similar to ours, suggest that this pattern may be rela-
tively common in marine species. This outcome complements
the results of Crandall et al. [14], who provide evidence of step-
ping-stone dispersal in a variety of marine species.

We detected small-scale IBD with both ddRAD-seq (for
M. surmuletus) and DArT-seq (for S. cabrilla) despite the
fact that DArT-seq tar- gets gene-rich regions of the
genome compared to ddRAD-seq [68]. This suggests that
the library type was not a major factor, but we would none-
theless recommend harmonizing library types when possible.

Individual-based simulations indicate that under restricted
dispersal, the emergence of IBD at a small spatial scale is a
robust pattern that is observed under a broad range of par-
ameter values (figure 3). Nevertheless, this signal is easily
missed empirically when considering discrete population
samples at the regional scale, which is the standard sampling
design in marine population genetic studies [6]. Empirical pat-
terns were more similar to simulated ones when dispersal
functions included long-distance dispersal (figure 3c,d). This
suggests that long-distance dispersal events also occur, and
the observation of two pairs of S. cabrilla individuals that were
geographically distant (greater than 290 km), but close kin indi-
cates that this is indeed the case (electronic supplementary
material, figure S8). Our empirical and simulated genetic data
draw a picture in which the bulk of dispersal is local but
where long-distance dispersal events also occur. Such a scenario
is also simulated by our high-resolution biophysical model of
the western Mediterranean Sea. Our results imply that even
though marine populations can be genetically connected over
large spatial scales, dispersal is expected to occur mostly at a
much smaller spatial scale. The combination of continuous
sampling, multispecies genomic data, genetic and biophysical
simulations presented here allows us to better understand the
relationship between dispersal and gene flow in marine systems.
The integrative approach taken here may be extended to a diver-
sity of species whose habitat is more or less continuous.

Data accessibility. All code used for the analysis is available from the
Montpellier Bioinformatics Biodiversity platform gitlab at https://
gitlab.mbb.univ-montp2.fr/reservebenefit/snakemake_stacks2.
Scripts for the download of all environmental data are available
on gitlab at https://gitlab.mbb.univ-montp2.fr/reservebenefit/
environmental assign_data. Scripts for analyses are available on
https://github.com/laurabenestan/finescale_ibd at Laura Benestan
github page. All data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.8w9ghx3h4 [69] and scripts are
available on Reservebenefit Gitlab page (https://gitlab.mbb.univ-
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The data are provided in electronic supplementary material [71].
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