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Abstract

The 26S proteasome is responsible for regulated proteolysis in eukaryotic cells. Its substrates are 

diverse in structure, function, sequence length, and amino acid composition, and are targeted to 

the proteasome by post-translational modification with ubiquitin. Ubiquitination occurs through a 

complex enzymatic cascade and can also signal for other cellular events, unrelated to proteasome­

catalyzed degradation. Like other post-translational protein modifications, ubiquitination is 

reversible, with ubiquitin chain hydrolysis catalyzed by the action of deubiquitinating enzymes 

(DUBs), ~90 of which exist in humans and allow for temporal events as well as dynamic 

ubiquitin-chain remodeling. DUBs have been known for decades to be an integral part of the 

proteasome, as deubiquitination is coupled to substrate unfolding and translocation into the 

internal degradation chamber. Moreover, the proteasome also binds several ubiquitinating enzymes 

as well as shuttle factors that recruit ubiquitinated substrates. The role of this intricate machinery 

and how ubiquitinated substrates interact with proteasomes remains an area of active investigation. 

Here, we review what has been learned about the mechanisms used by the proteasome to 

bind ubiquitinated substrates, substrate shuttle factors, ubiquitination machinery, and DUBs. We 

also discuss many open questions that require further study or the development of innovative 

approaches to be answered. Finally, we address the promise of expanded therapeutic targeting that 

could benefit from such new discoveries.
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Introduction

The timely and regulated removal of damaged and obsolete proteins is essential to the 

health of eukaryotic cells. There is an immense cellular investment in this process, which 

is mediated by the Ubiquitin-Proteasome System (UPS). Approximately 1000 enzymes 

interact with each other and additional components to form multi-step enzymatic cascades 

that convert hundreds of proteins (either obsolete, damaged, or misfolded) into substrates for 

the 26S proteasome, a 2.5 MDa proteolytic machine. At the center of the 26S proteasome 

is the cylindrical 20S Core Particle (CP) that contains the proteolytic active sites and 

is capped on either end by a highly dynamic 19S Regulatory Particle (RP), consisting 

of base and lid sub-assemblies (Fig. 1A). The base sub-assembly includes three intrinsic 

ubiquitin receptors (Rpn1, Rpn10, and Rpn13), the scaffolding protein Rpn2, and six 

AAA+ ATPase subunits (Rpt1-Rpt6) that form a heterohexameric ring-shaped motor. The lid 

sub-assembly contains the essential DUB Rpn11/poh1 and several structural Rpn subunits. 

To be efficiently recognized and degraded by the 26S proteasome, substrates require a 

polyubiquitin tag for binding to the proteasomal ubiquitin receptors and an unstructured 

initiation region for subsequent engagement by the ATPase motor [1–3], which mechanically 

unfolds and translocates the substrate polypeptides into the CP for degradation (Fig. 1B). 

Prior to this translocation, ubiquitin modifications must be removed from substrates by the 

deubiquitinating activity of Rpn11. The Rpt subunits of the base terminate in a 3-amino 

acid HbYX (hydrophobic-tyrosine-any amino acid) motif [4] and landmark cryo-electron 

microscopy (cryo-EM) studies from 2012 [5–7] showed that these C-termini dock into 

hydrophobic pockets on the apical face of the CP, trigger the opening of the CP gate, 

and thus allow substrate translocation into the degradation chamber (Fig. 1C). These and 

subsequent studies [8–19] came to reveal the proteasome in distinct states that differ in the 

conformation of the RP, the alignment of the central processing channel, the position of 

Rpn11 near the substrate entrance of the proteasome, and the extent of CP gate opening.

Central to the UPS is the small 76 amino acid protein ubiquitin, whose C-terminal glycine 

can be attached through an isopeptide bond to primary amines, namely the N-terminus (M1) 

or lysine (K) side chains, in protein substrates or other ubiquitin moieties to form chains. 

These ubiquitin chains show different topology, depending on whether the subsequent 

ubiquitin is linked to the N-terminus (M1) or any of the seven surface-dispersed lysines, 

K6, K11, K27, K29, K33, K48, and K63, of the previous moiety (Fig. 2A). There is an 

intrinsic polarity to ubiquitin chains, defined by the proximal end where the C-terminal G76 

is either conjugated to a protein substrate or unanchored, and the distal end at the other 

side. Sequential ubiquitin addition during chain formation can occur by using only one of 

the eight linkage sites in each ubiquitin, leading to homotypic chains, or involve multiple 

linkage sites to yield heterotypic or branched chains (Fig. 2B). The nature of ubiquitin 

chains attached to a substrate, referred to as the ubiquitin code [20], is interpreted by the 

Chen et al. Page 2

FEBS J. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ubiquitin receptors, some of which are linkage-specific, empowering this post-translational 

modification with the cellular fate of the ubiquitinated protein [21–23].

The configuration of ubiquitin chains is defined by the enzymatic cascade involved in 

ubiquitination. For example, the anaphase-promoting complex/cyclosome (APC/C) catalyzes 

formation of heterotypic K11/K48 branched ubiquitin chains, which bind to the proteasome 

and stimulate substrate degradation [24, 25]. Ubiquitination begins with an E1 ubiquitin­

activating enzyme charging ubiquitin in an ATP-dependent manner for thioester transfer to 

an E2 ubiquitin-conjugating enzyme; in humans, there are two E1 and ~40 E2 enzymes. 

Aided by scaffolding E3 ubiquitin ligase enzymes, E2 enzymes can modify substrates 

directly or, alternatively, attach ubiquitin to a catalytic cysteine of the E3 for relayed transfer 

to a substrate. There are ~600 E3 enzymes in humans as well as ~90 deubiquitinating 

enzymes (DUBs) that reverse or modulate the ligase effects by ubiquitin chain hydrolysis. 

Greater than 25% of DUBs bind proteins involved in ubiquitination [26], suggesting 

that DUBs may rescue ubiquitination machinery from auto-ubiquitination and/or promote 

dynamic chain remodeling. The proteasome relies on its Rpn11 DUB activity to hydrolyze 

ubiquitin chains from substrates as they are translocated into the RP.

With its well-recognized β-grasp fold (Fig. 2A), ubiquitin defines a superfamily of 

ubiquitin-like (UBL) proteins, a subset of which is also covalently attached to protein 

substrates by analogous enzymatic cascades. There is significant crosstalk between various 

UBLs and their modifiers, as well as other signaling pathways, including phosphorylation 

[27, 28]. Thus, in addition to the ubiquitin code, the allosteric amplitude of weak 

interactions involving protein substrates and other modifications appear to play important 

roles in determining the signaling outcome of ubiquitination [29, 30]. Several multi-domain 

proteins bind to different sites of the proteasome RP by using embedded UBL domains, 

including the DUB Usp14/Ubp6 [31, 32], the E3 ligase parkin [33], the shuttle factors 

that deliver ubiquitinated substrates to the proteasome [32, 34–39], and co-chaperone 

proteins [40–42]. The ubiquitin fold is pervasive in the UPS and adapted for multiple 

purposes. Moreover, interactions with UBL domains can modulate proteasome activity [43–

45] through mechanisms that are still not entirely clear.

Here, we review the current understanding of how the 26S proteasome interacts with 

ubiquitinated substrates via its ubiquitin receptors, the proteasomal AAA+ motor, and 

the essential deubiquitinase. We also discuss proteasomal interactions with ubiquitination 

machineries, DUBs, and substrate shuttle factors as well as the many challenges that remain 

to be addressed for developing a complete mechanistic understanding of substrate processing 

at the proteasome.

Ubiquitin binding at the proteasome

The proteasome has three established ubiquitin receptors that function in the recruitment 

of ubiquitinated proteins, namely, Rpn1 [32], Rpn10 [46], and Rpn13 [35, 47]. These 

three receptors are structurally diverse and use different binding modes to recognize 

a hydrophobic patch on ubiquitin that contains L8, I44, and V70, and is bound by 

most ubiquitin receptor proteins (Fig. 2A, [48]. A study of scRpn1 (S. cerevisiae Rpn1) 
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demonstrated this receptor to use an interface within its toroid structure (toroid 1, T1) 

comprised of three outer helices to bind two ubiquitin moieties [32] (Fig. 3A). The Rpn1 

toroid contains an additional recognition site (toroid 2, T2) for the ubiquitin fold at the 

N-terminal end of deubiquitinating enzyme Ubp6/Usp14 [32] (Fig. 3A), but whether the 

T1 and T2 sites act independently or are allosterically coupled is not yet known. hRpn10 

(human Rpn10) can also bind to two ubiquitin moieties simultaneously and does so at 

two distinct ubiquitin interaction motifs (UIMs), each of α-helical structure and embedded 

within an intrinsically disordered region [49, 50] (Fig. 3B). hRpn13 binds diubiquitin at a 

single ubiquitin-binding site, formed by the loops of a pleckstrin-like receptor for ubiquitin 

(Pru) domain [35, 47, 51] (Fig. 3C). Like Rpn1, Rpn13 also binds to a deubiquitinating 

enzyme, namely Uch37/UCHL5, although in this case, through a separate structural domain 

[52–54] (Fig. 3C). Proteasomes with these three ubiquitin receptors deleted or impaired 

failed to bind a ubiquitinated model substrate, and the yeast strain containing these mutated 

proteasomes was highly sensitive to canavanine, an arginine derivative that promotes protein 

misfolding [32]. The viability of this strain, however, suggests the presence of other 

ubiquitin receptor sites at the proteasome. Such cryptic binding sites have been proposed to 

be within the base ATPase subunit Rpt5 [55], the lid subunit Sem1/Dss1 [56], and Rpn10’s 

globular von Willebrand factor type A (VWA) domain [57]; yet, solid evidence is lacking 

to substantiate the importance of these regions as ubiquitin receptor sites in the proteasome 

context. Rpt5 was suggested based on ubiquitin cross-linking, which, however, may have 

also originated from the crosslinker reacting with ubiquitins bound to other RP subunits 

nearby, in particular Rpn10’s UIMs and Rpn11. Cryo-EM structures have revealed ubiquitin 

chains interacting with Rpn11 to extend along the Rpt4/Rpt5 coil coiled domain [58, 59]. 

Sem1’s ubiquitin-binding region overlaps with its proteasome interface, and no defect in 

ubiquitin binding was observed upon Sem1 deletion in yeast [32], indicating this subunit’s 

limited efficacy as a ubiquitin receptor at the proteasome. Rpn10 binds to the proteasome 

through its N-terminal VWA domain, which is proposed to be ubiquitinated for expulsion 

from the RP and to also bind ubiquitin non-covalently [57]. Similar to Sem1, future studies 

are needed to evaluate whether the VWA domain functions as a proteasomal ubiquitin 

receptor in vivo.

The receptor sites contributed by Rpn1 T1, Rpn10 UIMs, and Rpn13 Pru share a preference 

for K48-linked chains and collectively can interact with all ubiquitin chain types in 
vitro [38]. This combined ability to interact with all chain types is consistent with a 

quantitative proteomic study in S. cerevisiae that found all non-K63 ubiquitin chains to 

mediate proteasomal degradation in vivo [60]. More recently, a role even for K63-linked 

ubiquitin chains in proteasomal degradation was reported; namely, that they can serve as 

an initiator signal for the production of K63/K48 branched ubiquitin chains to subsequently 

trigger degradation [61]. Further evidence for branched chains promoting degradation by 

the proteasome was provided by a study focused on UCHL5, which has poor activity 

towards homotypic ubiquitin chains [52, 62], but readily hydrolyzes K48 branched chains 

[63]. In vitro, the proteasome is able to efficiently degrade model substrates modified with 

K63-linked ubiquitin chains [64], illustrating its promiscuity and suggesting that alternative 

factors make this chain type a poor signal for proteolysis in vivo [65].
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A striking feature of proteasomal substrate binding is the inherently dynamic nature of 

interaction between receptors and ubiquitin chains, as revealed by the nuclear magnetic 

resonance (NMR) spectroscopy analyses of the isolated ubiquitin-binding regions in 

complex with K48-linked diubiquitin [32, 49, 51]. Differential ubiquitin labeling revealed 

that all three ubiquitin receptors switch in their interactions between the two moieties of 

K48-linked diubiquitin. K48-linked ubiquitin chains adopt open conformations [51, 66] in 

dynamic exchange with a ‘closed’ state that is dominant in solution [51] and has the binding 

sites for proteasomal receptors occluded [67]. NMR studies showed that hRpn13 induces 

and maintains the extended, open conformational state for K48-diubiquitin, most likely by 

dynamically switching its interactions between the two ubiquitin moieties [51]. This effect 

has the potential to also increase the accessibility of K48-linked ubiquitin moieties to the 

other proteasome receptor binding sites in Rpn1 and Rpn10.

Individually, none of the known ubiquitin receptor sites at the proteasome has high affinity 

for a single ubiquitin. Rpn13 exhibits increased, yet still moderate, affinity for K48-linked 

diubiquitin in part due to interactions with the ubiquitin linker region [35, 39, 51, 68]. 

NMR experiments indicate that scRpn13 binds similarly to ubiquitin compared to hRpn13, 

but with weaker affinity and a more loosely folded domain structure [35, 47]. However, it 

is possible that these differences are attenuated when the proteins are assembled into the 

proteasome. Each of the two ubiquitin-binding sites in the scRpn1 T1 binds to an individual 

ubiquitin molecule weakly; however, the two sites act in concert to achieve a moderate 

affinity of 11 μM for K48-diubiquitin [32]. The two Rpn10 UIMs act similarly, binding at 

the same time to ubiquitin moieties of K48-diubiquitin to yield an affinity of 8.9 μM [32, 

49, 69, 70]. Schizosaccharomyces pombe Rpn10 (SpRpn10) and scRpn10 each have only 

one UIM, but bind to K48-diubiquitin with equivalent affinity compared to hRpn10 [71, 72], 

perhaps due to interactions with the K48 ubiquitin linker region [71].

The combined actions of Rpn1, Rpn10, and Rpn13 in the context of the proteasome 

is expected to enhance the affinity for ubiquitinated substrates, while preserving the 

dynamics observed in the isolated systems. These dynamics are likely critical for enabling 

the proteasome to bind substrates with varying ubiquitin-chain architectures, allowing 

multivalent ubiquitin interactions with the three receptors and associated DUBs, and 

orienting the unstructured initiation regions of substrates in a manner appropriate for 

engagement by the ATPase motor.

Substrate shuttle factors for the proteasome

In addition to the direct binding of ubiquitinated substrates to the ubiquitin receptors, 

ubiquitin-binding shuttle factors, namely Rad23, Dsk2, and Ddi1 family members deliver 

substrates to the proteasome [32, 34–39, 73, 74]. They interact through their UBL domains 

with receptor sites on Rpn1, Rpn10, and Rpn13 in a manner similar to ubiquitin, but contain 

amino acid substitutions that result in higher affinity for certain sites [38, 39, 75, 76]. For 

example, the UBL of Dsk2’s human orthologs preferentially bind hRpn10’s N-terminal UIM 

[38, 77], whereas hRad23s’ UBLs prefer the C-terminal UIM [36, 75, 76]. scRad23 favors 

one of the two scRpn1 T1 ubiquitin-binding sites where it forms additional hydrophobic 

interactions compared to ubiquitin due to substitution of ubiquitin L8 for phenylalanine 
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[78]. The identity of the shuttle factor delivering a substrate thus likely influences how 

the attached ubiquitin chain(s) are presented to the proteasome receptor sites and how 

a substrate’s flexible initiation region accesses the central pore. The hRad23 ortholog 

hHR23b and Dsk2 ortholog hPLIC1 are consistently observed by mass spectrometry to 

be associated with proteasomes isolated from cells [79, 80]. Similarly, the UBL of Rad23 

from S. cerevisiae binds scRpn1 with an affinity of 64 ± 25 nM [32], and how these more 

strongly binding shuttle factors are released from the proteasome has not yet been revealed.

Binding of shuttle factor UBL domains stimulates the ATP-hydrolysis and proteolytic 

activities of the proteasome [45], thus further linking binding at substrate receptor sites 

with induction of proteasome activity. It is therefore possible that proteasomes found to 

have hPLIC1 or hHR23b present are in activated states. It is not yet clear whether multiple 

shuttle factors are typically bound simultaneously to a particular proteasome; however, their 

ubiquitin-associated domains (UBAs) can bind a common substrate [81] and their UBL 

preferences for different receptor sites [32, 34–39, 73–76] make delivery of a substrate 

through multiple receptors a possibility.

hPLIC and hHR23 not only bind ubiquitin and ubiquitinated proteins, but also each other 

through UBL/UBA interactions [82], which for hHR23a occur intramolecularly as well 

[83]. These UBL/UBA proteins can therefore induce liquid-liquid phase separation [84, 

85]. Under hyperosmotic stress, phase separated nuclear foci are formed that contain 

proteasomes and p97 [84]. Formation of these proteolytic compartments is triggered 

by multivalent interactions of hHR23b’s two UBA domains [84], which simultaneously 

bind ubiquitin moieties [69]. These studies highlight the multi-faceted functional roles of 

proteasome shuttle factors, but how these and their many other activities are integrated is not 

yet known.

Challenges to studying ubiquitin-chain binding to proteasome receptors

The intrinsic flexibility of proteasomal receptors and the dynamics of their ubiquitin 

interactions are likely paramount to substrate processing. A technical consequence of these 

inherent and functionally critical dynamics is the intricacy of studying them with any of 

the modern structural biology tools. Ubiquitin receptors and ubiquitin chains bound to the 

proteasome have been at best poorly resolved by cryoEM. Only hRpn1 has been observed 

with a bound ubiquitin [58], whereas Rpn13 is missing entirely from cryo-EM density maps 

of the human proteasome and has been visualized only at low resolution in the context of 

the S. cerevisiae proteasome [5, 7, 10, 15, 17, 86]. hRpn13 binds an intrinsically disordered 

14 amino acid C-terminal extension of hRpn2 (Fig. 3C), which enables motion relative to 

the rest of hRpn2 and the proteasome [62, 68, 87], and likely aids in substrate capture, but 

challenges observation by cryoEM.

The C-terminal ubiquitin-binding region of Rpn10 is highly dynamic and missing from all 

cryo-EM density maps, which is unsurprising given that it is preceded by a flexible linker 

(Fig. 3B). Currently, solving structures by single particle cryo-EM relies on the detection 

of thousands of particles that are trapped in different orientations, yet a common state – a 

requirement unachievable for highly dynamic molecules. The applicability of NMR to the 
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intact proteasome, on the other hand, is limited by signal decay due to the slow tumbling of 

such a large complex [88]. Moreover, the RP has refracted crystallization, presumably due to 

its dynamic structural heterogeneity, whereas the more rigid CP has been crystallized many 

times [89]. An interesting thought experiment is to consider the relevance of a structure for 

the proteasome RP in a substrate-engaged, trapped state, with its receptors rigidly bound to 

a ubiquitin chain. Such a sample may be more amenable to crystallization or cryoEM study, 

but how well it would represent functionally relevant states of the proteasome as a highly 

dynamic proteolytic machine remains unknown.

In vitro biochemical and single molecule experiments with model substrates have provided 

mechanistic insights that are complementary to the results obtained from structural studies. 

The proteasome architecture based on structural analyses suggests that two distinct 

ubiquitin-chain pathways exist, one that extends along an hRpn10/hRpn13 axis and another 

that is directed across hRpn1 (Fig. 3D). This model is supported by single molecule 

studies demonstrating more efficient degradation at the proteasome for a model substrate 

with equivalent number of ubiquitin moieties, but distributed as two separate diubiquitins 

rather than a single tetraubiquitin chain [90]. A more recent study demonstrated that 

supernumerary ubiquitin chains can promote degradation of otherwise poor substrates [91], 

suggesting an advantage in proteasomal degradation for substrates with multiple ubiquitin 

chains. This study also identified substrate unfolding as the rate-limiting step of degradation 

occurring on the timescale of seconds [91], which provides insights into the time that the 

receptors may need to hold on to ubiquitinated substrates. The time of receptor interactions 

required for successful degradation depends on how stably a substrate’s unstructured 

initiation region engages with the ATPase motor to prevent substrate release during repeated 

unfolding attempts, and when, relative to the rate-limiting unfolding, an affinity-conferring 

ubiquitin chain is removed from the substrate by the Rpn11 DUB.

Substrate engagement and translocation by the ATPase motor

Ubiquitin-chain binding to proteasomal receptors increases the residency time of a substrate 

at the RP, such that an internal unstructured region or flexible tail of the substrate can 

passively enter the central processing pore and engage with the ring-shaped AAA+ ATPase 

motor of the base sub-assembly for ATP-hydrolysis driven translocation and unfolding (Fig. 

1B). The AAA+ motor of the proteasome consists of six distinct ATPase subunits in the 

clockwise order Rpt1, Rpt2, Rpt6, Rpt3, Rpt4, and Rpt5 (Figs. 1C, 4A) [92]. All Rpts 

have the same domain architecture, which features an N-terminal coil, followed by an 

oligosaccharide-binding fold (OB-fold) domain and C-terminal AAA+ ATPase domain that 

in the hexamer assemble into an N-terminal domain ring (N-ring) and an ATPase motor 

ring, respectively (Fig. 4A). The nucleotide-binding site in the ATPase domain of each Rpt 

is located at the interface with the clockwise neighboring subunit, allowing coordinated 

ATP hydrolysis and conformational changes in the hexamer. Motor interactions with the 

substrate polypeptide are primarily mediated by the so-called pore-1 loops that project from 

each AAA+ domain into the central channel of the ATPase ring and contain an Aromatic­

Nonpolar-Gly motif [93–97]. The highly conserved aromatic residues in this motif, Tyr in 

scRpts and Tyr or Phe in hRpts, together with the preceding Lys or Met, form pockets 
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to accommodate substrate side chains and directly contact the polypeptide backbone for 

mechanical pulling during translocation [58, 98].

Biochemical studies have found that proteasomal substrate degradation depends on a flexible 

initiation region or terminal tail of at least 25 amino acids [3, 91], a length required to reach 

through the N-ring and into the ATPase ring for engagement by the pore-1 loops [98]. The 

initiation region also needs some degree of sequence complexity, as stable engagement relies 

on sufficient grip of the pore-1 loops to prevent substrate escape out of the pore. Substrates 

with tails that are too short or low in complexity have been shown to be poorly engaged 

or degraded more slowly [91, 99, 100]. The redundancy of the ubiquitin receptors and the 

dynamic nature of their ubiquitin binding likely play important roles in properly positioning 

the substrate for tail insertion and engagement with the pore-1 loops.

Not all proteasome substrates in the cell contain unstructured regions that are long enough 

for engagement [101], and while most of these proteins may get prepared for proteasomal 

degradation through ubiquitin-dependent unfolding by Cdc48/p97 [102, 103], a recent study 

found that ubiquitin attachment itself can destabilize folded domains and induce transient 

unfolding sufficient for proteasome engagement [104]. Disordered initiation regions can 

also be obstructed by attached ubiquitin chains that prevent substrate engagement with 

the translocation machinery prior to deubiquitination [91]. If the obstructing chain is the 

only ubiquitin modification on a substrate and thus providing the affinity for proteasomal 

receptors, its removal leads to substrate dissociation and escape from degradation. These 

findings highlight that individual processing steps at the proteasome need to be strictly 

coordinated, and substrate engagement has to precede ubiquitin chain removal for efficient 

degradation, which is accomplished through the direct coupling of mechanical translocation 

by the ATPase motor and deubiquitination by Rpn11 (see below).

FRET (Förster Resonance Energy Transfer)-based biochemical analyses combined with 

cryo-EM structures indicated that substrate engagement by the pore-1 loops triggers a large 

conformational change of the entire RP, leading to the coaxial alignment of the N-ring, the 

ATPase ring, and CP, and thus facilitating substrate transfer into the degradation chamber [8, 

91] (Fig. 4B). In this engaged state, the AAA+ motor domains and their pore-1 loops form a 

spiral staircase arrangement around the substrate, a feature that was first shown for the 26S 

proteasome [8] and subsequently described for numerous other translocating AAA+ protein 

remodelers [105]. Two recent studies have revealed high-resolution cryo-EM structures of 

the substrate-bound S. cerevisiae and human proteasomes in apparently consecutive states of 

ATP hydrolysis and substrate translocation [58, 98]. These snapshots suggest that hydrolysis 

events progress counterclockwise around the ATPase ring and drive substrate translocation 

by a hand-over-hand mechanism. In this mechanism, 4 or 5 ATP-bound subunits are in 

contact with the substrate polypeptide, as the post-hydrolysis subunit disengages from the 

substrate at the bottom of the spiral staircase to move up and, after ATP binding, re-engage 

at the top; a process that leads to a downward translocation step of two amino acids [58, 98, 

105].
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Substrate interactions and conformational states of the proteasome

Deep classification of large-scale single-particle cryo-EM data revealed multiple distinct 

conformations of the proteasome that can be broadly separated into a substrate-free “apo” 

state (termed s1 for the S. cerevisiae proteasome) and several engaged states (termed s2, 

s3, s4, s5 and s6), representing the AAA+ motor at various stages of the ATPase cycle 

and with different registers of the Rpt staircase [5–15, 17–19]. In the apo state, the N-ring, 

ATPase ring, and CP are offset from a coaxial alignment, leading to a narrow, discontinuous 

substrate-processing channel (Fig. 4B). Rpn11 is located above the N-ring but shifted 

laterally relative to the central pore, opening up the accessibility to the flexible initiation 

regions of substrates that are tethered to ubiquitin receptors (Fig. 4C). Substrate insertion 

and engagement by the pore-1 loops triggers a major conformational change of the entire RP 

that aligns the N-ring, ATPase ring, and CP, opens the CP gate, and induces distinct spiral­

staircase arrangements of Rpt subunits around the substrate. This conformational change 

also rotates the lid relative to the base sub-assembly, such that Rpn11 moves to a position 

directly above the entrance to the processing channel, leaving only a small gap to the N-ring 

for the already engaged substrate to be pulled through [8, 58, 91, 98]. In this engaged 

state, Rpn11 is thus ideally positioned to capture and remove ubiquitin modifications 

from translocating polypeptides, but sterically blocks the pore entrance for newly arriving 

substrates. Efficient substrate insertion into the central channel and engagement by the 

ATPase motor therefore seems to depend on the apo state of the proteasome, whereas 

processive translocation, unfolding, co-translocational deubiquitination, and substrate 

transfer into the CP are facilitated by the engaged conformational states. This model 

is supported by mutational studies, showing that the disruption of apo-state specific lid­

base interactions shifts the conformational equilibrium towards the engaged states despite 

the absence of substrate and results in degradation defects that originate from inhibited 

substrate engagement [19]. Furthermore, FRET-based biochemical analyses indicate that 

the substrate-induced conformational switch represents a crucial kinetic gateway to select 

for substrates that contain appropriate ubiquitin modifications and unstructured initiation 

regions, mechanistically coupling these requirements to the commitment to degradation [91].

Binding of ubiquitin or UBLs to proteasomal receptors or the DUB Usp14/Ubp6 also 

appears to influence the conformational equilibrium of the proteasome, as various functional 

studies revealed a consequent increase in CP gate opening, proteolysis, and ATP-hydrolysis 

activities [45, 106–109]. However, cryo-EM analyses of the yeast proteasome in the 

presence of K48-linked tetraubiquitin chains showed only very minor differences compared 

to the conformational states in the absence of ubiquitin [110]. Thus, additional structural 

and mechanistic studies are needed to investigate how ubiquitin-chain binding affects the 

conformational dynamics of the proteasome.

Important in vivo evidence regarding the distribution of proteasome states and the 

conformational switch upon substrate engagement is provided by in situ cryo-electron 

tomography studies, which revealed that the majority of proteasomes adopt the apo state 

in intact neurons [111] as well as in the cytosol and nucleus of Chlamydomonas reinhardtii 
[112, 113]. Introduction of poly-GA containing protein aggregates into neurons results in the 

recruitment of proteasomes and their enrichment in the engaged states, suggesting that these 
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proteasomes attempt to process and stall on the poly-GA protein aggregates or switch their 

conformation in response to binding the ubiquitinated aggregates [114].

DUBs at the proteasome

Two independent cryoEM studies of yeast [98] and human [58] proteasome in trapped 

states bound to model substrates with conjugated K63-linked ubiquitin chains revealed 

density for the substrate threaded through the center of the ATPase ring and for ubiquitin 

bound to Rpn11. Rpn11 removes ubiquitin chains en bloc from substrates [115] in a 

co-translocational manner, with its cleavage activity enhanced by substrate translocation 

of the ATPase ring [16]. Interaction between ubiquitin and Rpn11 was first observed in 

a crystal structure of the isolated Rpn11-Rpn8 heterodimer from yeast complexed with 

monoubiquitin, which revealed that the Rpn11 Insert-1 region transitions from an inhibitory 

loop across the catalytic groove in the absence of ubiquitin to a β-hairpin that forms a 

three-stranded β-sheet with the C-terminus of ubiquitin, thereby stabilizing it for isopeptide 

cleavage [16]. This loop-to-hairpin transition of the Insert-1 region was found to be rate­

limiting for ubiquitin cleavage, which explains how mechanical substrate translocation 

and pulling attached ubiquitin moieties into the Rpn11 catalytic groove can significantly 

accelerate deubiquitination. Interaction between ubiquitin and hRpn11 is similarly observed 

by cryoEM for human proteasome complexed with M1-linked hexaubiquitin that is not 

conjugated to a substrate [59]. Thus, hRpn11 is fully accessible and binds ubiquitin at this 

location independent of a protein substrate interacting with the ATPase ring.

Not known, however, is the role of hRpn10 in the recruitment of ubiquitin chains to this 

location. The VWA domain that docks Rpn10 to the proteasome is well-resolved by cryoEM 

[5–7]. In the apo state, it binds the lid with no observable contacts to the base, yet in the 

engaged state of the proteasome, a rotation of ~30° causes the VWA domain to interact with 

the N-terminal coiled coil of Rpt4/Rpt5 (Fig. 4C). This interaction is apparently important 

for proteasome integrity, as loss of the Rpn10 VWA domain destabilizes lid-base association 

in both human [116] and yeast [117] proteasomes. The location of the VWA domain is 

nearby to where ubiquitin binds on hRpn11, however, the hRpn10 portion beyond the VWA, 

including the UIMs, is not visible in cryoEM density maps of the proteasome [11, 12, 18, 

58, 118, 119]. CryoEM proteasome structures show the unanchored M1-linked chains [59] 

as well as substrate-conjugated K63-linked chains [58] extending beyond Rpn11 and along 

the Rpt4/Rpt5 coiled. It is therefore likely that hRpn10 contributes to ubiquitin-binding at 

this location, either through its UIM or VWA domain. This contribution, however, may be 

less important for substrate-attached ubiquitin chains, as the mechanical translocation of a 

substrate into the central pore is expected to pull the attached ubiquitin into the Rpn11 active 

site.

In addition to the essential Rpn11, the DUBs hUsp14 (scUbp6) and hUCHL5/hUCH37 

transiently bind to the proteasome. scUbp6 binds via its UBL domain to the Rpn1 T2 

site in the base (Fig. 3A and 3D) [12, 32, 107, 120]. Ubp6’s DUB activity is sensitive 

to the conformational state of the proteasome and stimulated when its catalytic USP 

domain contacts the coaxially aligned N-ring and ATPase ring in the engaged states of 

the proteasome [31, 107, 120]. Consistently, ubiquitin-bound Ubp6 stabilizes the engaged 
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state of the proteasome and can therefore prevent subsequent substrate engagement by 

blocking the apo conformational state required for the insertion of a substrate’s flexible 

region into the AAA+ motor ring [107, 120]. Although the detailed mechanism is unknown, 

Ubp6 has been proposed to remove supernumerary ubiquitin chains from proteasomal 

substrates [121]. hUCHL5 binds to Rpn13 [52–54] and, similar to Usp14, its DUB activity 

is stimulated through this interaction with the proteasome [52–54, 122–124]. hUCHL5 has 

been proposed to edit ubiquitin chains on substrates or ubiquitinated proteasomal subunits, 

and to cleave ubiquitin chains bound to proteasome receptors [125–127]. Both Usp14 and 

UCHL5 stimulate the ATPase and peptidase activity of the proteasome [128–130], yet the 

detailed underlying mechanisms and how these effects contribute to substrate degradation 

remain unclear.

Ubiquitination machinery at the proteasome

As new functional roles continue to be discovered for the shuttle factors, multiple E3 ligases 

have been reported to associate with the proteasome as well [31, 79, 116, 131, 132]. It is 

possible that these ligases are recruited to ubiquitinate proteasome components [126, 132, 

133]. For UBE3C, the alternative role of remodeling substrate-attached ubiquitin chains at 

the proteasome has been proposed [134]. UBE3C was the first E3 ubiquitin ligase reported 

to physically interact with the proteasome [134, 135], but its binding location has yet to 

be elucidated, and its recruitment to the proteasome appears to be assisted by structurally 

impaired substrates [133].

Recently, the UBE3A/E6AP AZUL (amino-terminal zinc-binding domain of ubiquitin E3a 

ligase) was found to bind with 12 nM affinity to a site in the C-terminal flexible region 

of hRpn10, named RAZUL (Rpn10 AZUL-binding domain) [116]. Although intrinsically 

disordered on its own, RAZUL adopts a helical structure to form a 4-helix bundle with the 

E6AP AZUL domain (Fig. 3B) [116]. Despite the presence of ~600 cellular E3 ligases, 

knockdown of UBE3A by RNAi leads to a reduction of ubiquitinated proteins at the 

proteasome [116]. Whether this observable reduction is caused by a global effect on all 

substrates or a specific subset of substrates particularly reliant on UBE3A remains to be 

elucidated. This finding suggests that UBE3A may belong to a subset of E3 ligases that are 

prioritized for the proteasome, such as by physically co-localizing substrate ubiquitination 

and proteasomal degradation.

UBE3A isoform 3 depends on binding to hRpn10 for its nuclear localization [136], although 

it is not clear whether this interaction occurs with isolated hRpn10 outside of the 26S 

proteasome context. In the nucleus, UBE3A was found to co-localize with proteasomes 

within phase separated liquid droplets induced by hyperosmotic stress [84]. UBE3A also 

appears to have a regulatory role in the formation of these proteolytic compartments, which 

decrease in abundance by ~30% upon UBE3A knockout [84]. This effect may be caused 

by reduced substrate ubiquitination, as hHR23b and ubiquitinated proteins are required for 

proteasome foci formation [84].

UBA3A is at the forefront of multiple diseases. It is hijacked by human papilloma virus 

(HPV) oncoprotein E6 to trigger p53 degradation, contributing to cervical cancer [137–
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139]. Furthermore, it appears to be a driver of metastatic prostate cancer [140, 141], loss-of­

function mutations are linked to Angelman syndrome [142–144], and elevated gene dosage 

is correlated with autism spectrum disorders [145]. The recent findings of UBE3A having 

a dedicated, high affinity binding site at the proteasome, and its involvement in proteasome 

foci formation spur new research directions towards understanding the role of UBE3A in 

these diseases.

Huwe1, which also ubiquitinates p53 [146–148], has been found at the proteasome [132], 

although its mode of interaction remains unclear. Similarly, the N-end rule E3 Ubr4 

[149] binds to the proteasome through an unknown mechanism [132]. The E3 ligase 

parkin is recruited to the proteasome by its UBL domain binding to the Rpn13 Pru 

domain [33]. Mutations in parkin and its activating protein kinase PINK1 cause defects 

in mitophagy, the process by which damaged mitochondria are removed from cells, and lead 

to autosomal-recessive juvenile parkinsonism [150, 151]. The clearance of parkin substrates 

upon mitochondrial membrane depolarization is reported to be delayed following Rpn13 

knockdown [33], suggesting that interaction with the proteasome through Rpn13 plays a role 

in parkin-mediated protein degradation.

Proteasome as a therapeutic target

Capping the aforementioned advancements in the current understanding of proteasome 

biology is the breakthrough application of PROTAC (proteolysis targeting chimera) 

strategies to combat various diseases [152]. Whereas conventional pharmaceutical 

approaches target and inactivate proteins of interest, PROTACs use a bifunctional 

architecture to bridge proteins of interest with an E3 ubiquitin ligase for ubiquitination 

and in turn degradation by the proteasome. This mechanism mimics the activity described 

for HPV E6-induced ubiquitination of p53 by UBE3A. An outstanding question is whether 

HPV E6 targets UBE3A among the ~600 E3s because it can directly bind the proteasome 

and, by extension, whether this strategy of targeting a proteasome-binding E3 would be 

advantageous as a PROTAC approach. Critical to assess is also why PROTAC approaches 

lead to rapid degradation of some target proteins, but fail for many others. One aspect 

to consider is whether ubiquitination of a particular substrate will be sufficient for 

proteolysis by the proteasome. Some targets may lack appropriate intrinsically unstructured 

initiation regions, and it is not clear how pervasively the ubiquitin-dependent protein 

unfoldase Cdc48/p97/VCP can assist by preparing such ubiquitinated proteins of interest 

for proteasomal engagement and degradation.

Currently, less than ten E3s have been exploited as PROTACs. High affinity binders 

for the Cullin RING E3 ligase substrate recognition subunits cereblon (CRBN) and von 

Hippel-Lindau (VHL) tumor suppressor protein have allowed these two E3 complexes 

to be exploited effectively for the PROTAC technology [153–156]. The success of these 

PROTACs will likely drive expansion to other E3 ligase complexes, adding new modes of 

control over protein lifetimes. Alternative targeting strategies are also emerging, including 

autophagy-targeting chimeras (AUTACs) that use a guanine derivative as a degradation 

tag [157]. Endogenous 8-nitroguanosine 3’,5’-cyclic monophosphase (8-nitro-cGMP) 

modification (S-guanylation) of bacteria causes subsequent K63-linked ubiquitination and 
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triggers clearance by ubiquitin-mediated selective autophagic [158, 159]. By exploiting this 

mechanism, AUTACs have been demonstrated to promote targeted mitochondrial turnover 

via mitophagy and improve mitochondrial activity in Down syndrome-derived fibroblast 

cells through preferential degradation of impaired mitochondria [157].

The first application of proteasome biology to medicine was the inhibition of the CP, which 

is an established treatment for hematological cancers, reviewed in [160]. In an effort to 

develop alternative proteasome inhibitors, a class of chalcone derivatives, including RA190, 

were identified to bind to hRpn13, induce apoptosis in cancer cell lines, and restrict growth 

of tumor xenografts [161, 162]. An independent study further identified an hRpn13-binding 

peptoid ligand that similarly induces death of multiple myeloma cells [163]. Each of these 

hRpn13-targeting approaches were found to be synergistic with inhibition of the proteasome 

CP [163, 164]. RA190-induced accumulation of ubiquitinated proteins at the proteasome is 

lost upon deletion of hRpn13 [62] or its Pru domain [165]. Loss of cell viability however by 

either of these two hRpn13-targeting compounds does not seem to require hRpn13 according 

to hRpn13-knockdown experiments [166, 167] and a cell line with a defective hRpn13 Pru 

domain [165], although conflicting data on this matter exists [164]. These compounds are 

able to interact with other cellular components, which likely contribute to the induction 

of apoptosis [166, 167]. Nonetheless, these findings collectively suggest that hRpn13 is a 

promising therapeutic target. RA190 was fused to the CRBN binding ligand thalidomide 

to induce its degradation, but the benefit in this case was found to be modest [168]. Of 

higher interest may be the development of a PROTAC that targets proteins to hRpn13 at the 

proteasome and thus substitutes for ubiquitin in the delivery of substrates to the degradation 

machine.

Since substrate deubiquitination is an essential step for proteasomal degradation, additional 

proteasome inhibitors have been developed by targeting the zinc-dependent metalloprotease 

Rpn11. Two small-molecule inhibitors of Rpn11 were discovered by screening a library of 

metal binding pharmacophores; 8-thioquinoline (8TQ, IC50 ~2.5 μM) and capzimin (a 8TQ 

derivative, IC50 ~400 nM) [169], which also block proliferation of cancer cells in culture. 

Additional Rpn11 inhibitors have been described to prevent substrate deubiquitination by 

acting as zinc chelators, like SOP11 (IC50 ~1.3 μM) and thiolutin. SOP11 was identified via 

high throughput screening by using a novel proteasome degradation assay, and was found 

to stabilize some proteasomal substrates, induce the unfolded protein response, and trigger 

apoptosis [170]. Thiolutin is a disulfide-containing antibiotic and antiangiogenic compound 

produced by Streptomyces that, in its reduced form, inhibits Rpn11 [171]. SOP11 and 

reduced thiolutin were found to also inhibit other JAMM metalloproteases, suggesting that 

additional optimization may be required for improved Rpn11 specificity. A more extensive 

review of these inhibitors can be found in [172, 173].

Perspectives

Over the past decade, an arsenal of modern scientific technologies has been applied to the 

UPS, unveiling the proteasome as a sophisticated machine that tightly couples structure 

and molecular motion to functional activity. It is clear that the UPS relies on many 

additional layers of regulation and mechanistic action beyond the current understanding, 
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which most likely represents a bare-bones and incomplete comprehension. For example, 

the role of the many known post-translational modifications to proteasome subunits remain 

undefined. It has been postulated that the presence of shuttle factors and even intrinsic 

subunits at the proteasome is influenced by ubiquitination [57, 132], sumoylation [174], 

and phosphorylation [175, 176]. Nonetheless, what has emerged is a strong appreciation of 

the dependency of functional activity on dynamic motions, including redistribution of the 

relative population of conformational states upon binding of substrate or effectors. How this 

redistribution is implemented remains to be discovered, but single molecule experiments 

are likely to provide important insights by revealing whether the relative population of 

distinct proteasome states is defined by longer residency time of the more populated states, 

shorter times in lesser populated states, and/or changes to activation barriers that affect 

switching between such states. Additional factors will likely influence how these dynamic 

relationships play out in a crowded cellular context. Over the next decade, it will be critical 

to define these aspects of biological function, which will also serve as a catalyst of new 

emergent technology, just as the need for structural information drove forward technological 

advancements in cryoelectron microscopy, x-ray crystallography, and NMR spectroscopy. 

Such interplay between dynamics and function is sure to apply to many other biological 

systems.

We focused in this article on events that occur after proteasome assembly, beginning with 

the dynamic binding of ubiquitinated substrates, which occurs at multiple, weak affinity 

receptor sites that can collectively impart the affinity needed to hold substrates at the 

proteasome without rigidly locking them into a fixed orientation. The ubiquitin-binding 

UBA domains of shuttle factors expand this activity, but how all of these binding sites 

are organized and whether multiple shuttle factors bind to the RP at the same time is 

not yet known, and further structural studies will be required to answer these questions. 

Based on current knowledge, it is reasonable to propose that dynamic ubiquitin interactions 

with various binding sites enables the stochastic motion of the substrate required for 

its unstructured initiation region to engage with the ATPase motor. Engagement of the 

substrate’s initiation region with the ATPase motor then drives the conformational switch 

that facilitates the mechanical translocation and co-translocational deubiquitination needed 

for substrate entry into the degradation chamber. Given the presence of additional DUBs 

and E3 ligases at the proteasome, it is likely that ubiquitin chains are remodeled, but future 

experiments are needed to test this model and assess to what extent proteasome subunits 

themselves are ubiquitinated (or modified in other ways) as part of the protein degradation 

cycle.

We have been limited in what we can cover in this article, omitting discussion of proteasome 

assembly as an important area of research that requires further investigation. We have 

also focused on the RP-capped 26S proteasome, although there are other ATP-independent 

regulators capping the proteasome CP. The function of these regulators and whether they act 

in concert with the RP remains to be elucidated. For example, it is still unclear what fraction 

of proteasomes exist in hybrid states with different regulators capping each end of the CP. 

Long-range allosteric interactions have been uncovered between regulators and the CP [177–

180], as well as evidence that this long-range allostery does not extend to opposite ends 

of the CP, suggesting that the CP is capable of being simultaneously sensitive to allosteric 
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signaling at both ends [181]. A greater understanding of these long-range interactions and 

in particular how they occur between the RP and CP will likely emerge in the next decade 

and provide a more complete understanding of the functional roles performed by the many 

CP-binding factors.

The proteasome is an impressive biomachine, the scrutiny of which provides foundational 

information on how cells apply structural and dynamic properties to execute mechano­

chemical events. Yet its detailed study is also motivated by the already existing and growing 

therapeutic impact of the UPS. PROTAC-mediated turnover of target proteins provides 

revolutionary opportunity in precision medicine. That this approach mimics viral strategies 

in interacting with eukaryotic hosts, an evolutionary relationship that spans ~2.5 billion 

years, is perhaps the most compelling reason to invest heavily in this approach. Finding 

ways to expand PROTAC targeting to include a larger plethora of E3 ligases will open 

avenues for precise substrate targeting in specific tissues. The UPS is thus likely to spur 

myriad new medicines over the next decade directed towards the improvement of human 

health.
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Abbreviations

8-nitro-cGMP 8-nitroguanosine 3’,5’-cyclic monophosphase

8TQ 8-thioquinoline

AAA+ ATPases Associated with various cellular Activities

APC/C anaphase-promoting complex/cyclosome

AUTACs autophagy-targeting chimeras

AZUL amino-terminal zinc-binding domain of ubiquitin E3a 

ligase

CP core particle

CRBN cereblon

cryo-EM cryo-electron microscopy

DUB deubiquitinating enzyme

HbYX hydrophobic-tyrosine-any amino acid

HPV human papilloma virus

JAMM Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+)
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NMR nuclear magnetic resonance

PROTAC proteolysis targeting chimera

Pru pleckstrin-like receptor for ubiquitin

RAZUL Rpn10 AZUL-binding domain

RP regulatory particle

Rpn Regulatory particle non-ATPase

Rpt Regulatory particle triphosphatase

UBA ubiquitin-associated

UBL ubiquitin-like

UIM ubiquitin interaction motif

UPS ubiquitin proteasome system

VHL von Hippel-Lindau

VWA von Willebrand factor type A
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Fig. 1. 
Structure of the 26S proteasome. (A) A cryo-EM reconstruction of 26S proteasome (bottom, 

EMDB: 1992) showing the base (upper left) and lid (upper right) sub-complexes and their 

integration into the RP atop of the CP (bottom image). The DUB Rpn11 (green), together 

with the components displayed in pink (Rpn3, Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpn12, and 

Sem1), form the lid sub-complex (top right), whereas the remaining RP components Rpn1 

(beige), Rpn2 (beige), Rpn10 (indigo), Rpn13 (light blue), and Rpt1-Rpt6 (yellow) from 

the base sub-complex (top left). (B) Exterior (left) and CP cross-section (lower right) from 

cryo-EM reconstruction of the substrate-engaged proteasome (EMDB: 9045; PDB: 6EF3). 

The hollow degradation chamber of the CP is apparent in the cross section with the α-ring 

and β-rings in dark and light grey respectively. At the RP, a substrate (red) extends through 

the central channel of the ATPase ring (yellow) with an attached ubiquitin (orange) bound 

to the DUB Rpn11 (green). Density maps for Rpt5 and two α-subunits (α6 and α7) is 

omitted to show the substrate within the ATPase ring and CP entry. (C) Ribbon diagram of 

the CP:RP interface depicting the α-ring (grey), the C-terminal small AAA+ subdomains of 

Rpt1–6 (spanning red to green coloring), and a substrate (red) at the center of the substrate 

processing channel. The C-terminal HbYX motifs of Rpts docked into inter-subunit cavities 

of the CP α-ring are circled (blue). This figure was generated by using UCSF Chimera 

[182], UCSF ChimeraX [183], Adobe Illustrator (Adobe), and Adobe Photoshop (Adobe).
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Fig. 2. 
The many forms of ubiquitin modifications. (A) Ribbon diagram of ubiquitin (PDB: 1D3Z) 

highlighting functional sites, including the C-terminal glycine (G76) that is conjugated to 

substrate proteins or other ubiquitin molecules; lysine residues (K6, K11, K27, K29, K33, 

K48, and K63) and the N-terminus (M1), which are used to form ubiquitin chains; and the 

hydrophobic amino acids L8, I44, and V70 (yellow) that are typically used to bind receptors. 

Nitrogen is displayed in blue. (B) Depiction of ubiquitin chain types, with homotypic chains 

containing only one linkage type, heterotypic chains with mixed linkages, and branched or 

forked chains, in which one or more ubiquitin moieties have multiple ubiquitin molecules 

conjugated. In multiubiquitinated states more than one ubiquitin or ubiquitin chain is 

attached to a substrate. This figure was generated by using PyMOL (PyMOL Molecular 

Graphics System, http://www.pymol.org), Adobe Illustrator (Adobe), and Adobe Photoshop 

(Adobe).
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Fig. 3. 
Structure and functional domains of proteasome substrate receptors. (A) Domain layout of 

scRpn1 (top) illustrating the ubiquitin-binding T1 site (navy) and the T2 site (green), which 

binds the UBL domain of the DUB Ubp6. The scRpn1 toroid structure is displayed on the 

lower left, highlighting the T1 and T2 sites (PDB: 4CR2). An expanded ribbon diagram 

of K48-linked diubiquitin bound to the T1 site is shown on the lower right (PDB: 2N3V). 

In (A) and (B) the proximal (dark orange) and distal (light orange) ubiquitin moieties are 

displayed with the K48 linkage site in stick representation (oxygen, red; nitrogen, blue). 

(B) Domain layout for hRpn10 (top) illustrating the proteasome-binding VWA domain 

(grey), ubiquitin-binding UIMs and interhelical region (blue), and UBE3A-binding RAZUL 

domain (cyan). Ribbon diagrams of the VWA domain (lower left), a snapshot of the dynamic 
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UIM region bound to K48-linked diubiquitin with dashed arrows symbolizing flexibility 

(middle), and the RAZUL:UBE3A AZUL complex (lower right) are displayed. In the AZUL 

domain, Zn is shown as a blue sphere with coordinating cysteine sulfur atoms in yellow. 

PDB 2X5N, 2KDE, and 6U19 were used to generate this figure. (C) Domain layout of 

hRpn13 (top) highlighting the ubiquitin and proteasome binding Pru domain (blue) and 

UCHL5-binding DEUBAD domain (grey). When free of a binding partner, the two domains 

interact, as demonstrated in the central ribbon diagram. This structural image has omitted the 

interdomain region, which is intrinsically disordered. The structure of the Pru domain bound 

to an extended, dynamic form of K48-linked diubiquitin and 14-amino acid C-terminal 

region of Rpn2 (gold) is displayed on the lower left. Proximal ubiquitin (orange) is shown 

bound to the Pru domain loops. The dynamic distal ubiquitin (yellow, eight conformers 

displayed) exhibits limited order that is defined by interactions at the inter-ubiquitin linker 

region. A hydrogen bond between the G76 of the distal ubiquitin and K103 of the Pru 

domain contributes to hRpn13’s preference for K48-linked ubiquitins. The structure of the 

hRpn13 DEUBAD domain complexed with UCHL5 (green) and a suicide ubiquitin variant 

(orange) is displayed on the lower right. The DEUBAD domain splits to wrap around 

UCHL5. PDB 6UYI, 2KR0, and 4WLR were used to generate this figure. (D) Hypothetical 

model of the ubiquitin-bound 26S proteasome, highlighting the ubiquitin receptors Rpn1 

(beige) with T1 (navy) and T2 (green) sites, Rpn10 with the VWA domain (cyan) and UIMs 

(blue cartoon), and Rpn13’s Pru domain (blue). The ATPase ring, lid (except for Rpn11), 

Rpn2, Rpn11, and CP are colored yellow, pink, beige, grey, and light green, respectively. 

Ubiquitin moieties are displayed as yellow or orange ribbon diagrams with the linkage site 

rendered in stick representation (oxygen, red; nitrogen, blue). This model illustrates how a 

ubiquitin chain could extend from Rpn10 to Rpn13 and along Rpn1. In addition to the two 

distinct ubiquitin-chain pathways displayed here, Rpn10’s UIMs or Rpn13’s Pru could bind 

to different ubiquitin chains of a substrate or alternatively, the ubiquitin chain could bind 

to just one receptor. The distribution of ubiquitins to the various ubiquitin-binding sites is 

expected to depend on the number of attached ubiquitin chains, as well as their length and 

linkage type. PDB 6WJD, 6UYI, 2N3V, 1D3Z, and EMDB 21691 were used to generate 

this figure. This figure was generated by using UCSF Chimera [182], PyMOL (PyMOL 

Molecular Graphics System, http://www.pymol.org), Adobe Illustrator (Adobe), and Adobe 

Photoshop (Adobe).
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Fig. 4. 
ATPase ring gymnastics. (A) Structural motifs of the proteasome ATPase ring. Left: A top 

view of the EM density for the Rpt1-Rpt6 hexamer in the s4 state (EMDB: 9045), with the 

central channel of ATPase ring labeled. Middle: ATPase ring displayed as a ribbon diagram 

(PDB: 6EF3) rotated 90° relative to the view on the left and highlighting the N-terminal 

coiled coils, N-ring, ATPase motor ring, and HbYX motifs. Right: ribbon diagram structure 

of Rpt5 and Rpt6 (PDB: 6EF3) to illustrate the OB fold, Pore-1 loop (red), and nucleotide 

(oxygen, red; nitrogen, blue; phosphorus, orange). (B) Cutaway representations of the 26S 

proteasome in s1 (apo, EMDB: 3534) and s4 (engaged, EMDB: 3537) conformations, 

showing the different position of Rpn11 and change in alignment of the N-ring, ATPase 

motor ring, and CP. The central channel through the N-ring and ATPase motor ring 

is indicated by a dashed orange line. (C) Conformational switching of the human 26S 

proteasome between a ground state (SA, PDB: 5VFS) and substrate processing state (SD, 

PDB: 5VFP), with the CP aligned. During the transition from SA to SD, hRpn10’s VWA 

domain rotates by ~30° towards the hRpt4/hRpt5 coiled coil. The color scheme in panels 

(B) and (C) follows that in Fig. 1B and Fig. 3D. This figure was generated by using UCSF 

Chimera [182], UCSF ChimeraX [183], Adobe Illustrator (Adobe), and Adobe Photoshop 

(Adobe).
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